Investigation of irrigation water storage options in the area of Békés-Rosszerdő (Hungary)

Keywords: drought, irrigation, reservoir, modelling, Körös Rivers, Climate change

Abstract

The adverse effects and risks of climate change also have a significant impact on our country's agriculture, and experience shows that we will encounter increasingly serious situations as the years go by. Based on meteorological statistics, it can be stated that the annual average temperature values ​​in Hungary show an increasing trend, within which the average temperature of the summer months is increasing significantly. On the other hand, the annual average amount of precipitation is ‘only’ decreasing slightly, but its spatial and temporal distribution shows a significant shift in certain areas of our country.

The Valley of Körös Rivers is in a very unique, dual situation in agricultural terms: many of the most valuable agricultural areas of our country are located in this area, but as a result of former river regulation works, most of the areas are prone to the formation of inland excess waters. In addition, our country is significantly exposed to the decisions of upstream countries regarding water management. Due to all these risks, the importance of agricultural irrigation is becoming increasingly appreciated over time, and nowadays the view that if someone wants to farm in a profitable way, they must irrigate.

In Hungary, one of the defining development directions is currently the search for water retention options: in recent decades, the number of reservoirs for various purposes has increased, the purpose of which is to store falling water volumes and use them when necessary. Accordingly, we set ourselves the goal of finding a place suitable for water retention in our environment that could be suitable for temporary storage of irrigation water.

The area we examined is located in the area of Békés-Rosszerdő. After a geodetic survey of the area, we created a 3D terrain model and then determined the main parameters of the reservoir. After that, we created a model of the reservoir flooding using the HEC-RAS 6.6 program and determined that the expected filling time, taking into account the maximum irrigation operating water level of the V. Vargahosszai main canal, is approximately 19 days. Then, we prepared a detailed cost estimate for the expected construction works, where we took into account all expected costs (preparatory works, planning, official authorization, construction, etc.).

 

Author Biographies

Attila Nagy, University of Debrecen, Institute of Water and Environmental Management,

ATTILA NAGY is an associate professor at the Faculty of Agricultural Sciences, University of Debrecen.He graduated as an agricultural engineer in 2005, obtained his PhD degree in 2009 and habilitated in 2016. In his scientific career he has worked on phytoremediation. His current research interests include the application of remote sensing and geospatial information in water management processes, drought stress effects, and the assessment of critical flow factors in agricultural water management. Awards: Rector's certificate of recognition 2012, Magyary Zoltán Postdoctoral Scholarship (2013-2014), MTA Bolyai János Research Scolarship (2022-). Member of the Hungarian Hydrological Society since 2015    

Ádám Luczó, FUTIZO Ltd.

Ádám Luczó Civil Engineer (Eötvös József College, 2013), Agricultural Water Management Engineer (University of Debrecen, 2024). From 2013, he participated in hydraulic engineering and irrigation-related projects, first at Békés Drén Kft., then at FUTIZO Kft. He is a member of the Hungarian Chamber of Engineers and the Hungarian Hydrological Society.

References

AKI (2023a). A mezőgazdasági kockázatkezelési rendszer működésének értékelése 2022, Agrárközgazdasági Intézet, p. 119. https://www.aki.gov.hu/termek/a-mezogazdasagi-kockazatkezelesi-rendszer-mukodesenek-ertekelese-2022/ ISSN 2786-3247 (Online) (Letöltve: 2024. 10.02.)

AKI (2023b). Statisztikai jelentések – Öntözésjelentés 2022. év, Agrárközgazdasági Intézet, XXVI. évf., 1. szám, p. 22. https://www.aki.gov.hu/termek/ontozesjelentes-2022-ev (Letöltve: 2024. 07. 17.)

Barker, L.J., Hannaford, J., Magee, E., Terner, S., Sefton, C., Parry, S., Evans, J., Szczykulska, M., Haxton, T. (2024). An appraisal of the severity of the 2022 drought and its impacts. Hydrology and Earth System Sciences, Volume 79, Issue 7. https://doi.org/10.1002/wea.4531

Biavetti, I., Mulhem, G. (2022). Crop monitoring in Europe September 2022 – Rain arrived too late for summer crops – Yield forecasts further reduced. https://publications.jrc.ec.europa.eu/repository/handle/JRC127965 (Letöltve: 2024. 08. 07.)

Brouwer, C., Heibloem, M. (1986). Irrigation water needs, https://www.fao.org/4/s2022e/s2022e07.htm. (Letöltve: 2024. 07. 17.)

Dunka S., Fejér L., Papp F. (2003). A Közép-Tiszántúl vízi története. Vízügyi Múzeum, Levéltár és Könyvgyűjtemény Budapest, p. 210. ISBN 963-212-280-1

ECMWF (2023). European Centre for Medium-Range Weather Forecasts, European climate marked by heat and drought in 2022 – report https://www.ecmwf.int/en/about/media-centre/news/2023/european-climate-marked-heat-and-drought-2022-report (Letöltve: 2024. 08. 07.)

EOTR (1973). Egységes Országos Térképrendszer 1:10 000 méretarányú térképsorozat (1973). https://geoshop.hu/

E-KÖZMŰ (2025). www.ekozmu.e-epites.hu (Letöltve: 2025. 04. 23.)

Fejér L. (2010). A vízitársulatok 200 éve. Vízgazdálkodási Társulatok Országos Szövetsége Budapest, p. 260. ISBN 978-963-06-9370-7

Garrido-Perez, J.M., Vicente-Serrano, S.M., Barriopedro, D., García-Herrera, R., Trigo, R., Beguería, S. (2024). Examining the outstanding Euro-Mediterranean drought of 2021–2022 and its historical context Journal of Hydrology, vol. 630, February 2024, https://doi.org/10.1016/j.jhydrol.2024.130653 (Letöltve: 2024. 07. 11.)

HEC-RAS (2024). HEC-RAS 6.6 Guides and Tutorials, https://www.hec.usace.army.mil/confluence/rasdocs/hgt/latest/guides (Letöltve: 2024. 10. 16.)

Jogtár (2004). 196/2004. (VI. 21.) Korm. rendelet a Magyar Köztársaság Kormánya és Románia Kormánya között a határvizek védelme és fenntartható hasznosítása céljából folytatandó együttműködésről szóló Egyezmény kihirdetéséről https://net.jogtar.hu/jogszabaly?docid=a0400196.kor (Letöltve: 2024. 10. 14.)

Kozák P., Fiala K., Benyhe B., Fehérváry I. (2022). Az aszály monitoring hálózat és az aszálykezelés gyakorlata a 2022. évi aszály tükrében. Vízügyi Közlemények 2022. 104. évf. 3. sz. pp. 113-131.

KÖVIZIG (2020). Körös-vidéki Vízügyi Igazgatóság Általános Belvízvédelmi terve és mellékletei.

MET (2024). Magyarország éghajlata - éghajlati visszatekintő. https://www.met.hu/eghajlat/magyarorszag_eghajlata/eghajlati_visszatekinto/elmult_honapok_idojarasa/ (Letöltve: 2024. 10. 02.)

NATURA 2000 (2024). Natura 2000 Network https://natura2000.eea.europa.eu/ (Letöltve: 2024.10.14.)

Marton A. (2023). A 2022. év időjárása. Légkör, 68. évf. 2. szám, pp. 102-109. https://epa.oszk.hu/03900/03956/00071/pdf/EPA03956_legkor_2023_2_102-109.pdf (Letöltve: 2024. 07. 17.)

OVF (2022). Magyarország vízgyűjtő-gazdálkodási tervének második felülvizsgálata – Magyarország vízgyűjtő-gazdálkodási terve 2021. Budapest, p. 712.. https://vizeink.hu/vizgyujto-gazdalkodasi-terv-2019-2021/vgt3-elfogadott/ (Letöltve: 2024. 03. 20.)

Ramsar Convention (2024). The Convention Of Wetlands https://www.ramsar.org/ (Letöltve: 2024. 10. 14.)

Published
2025-05-25
How to Cite
Nagy A., & Luczó Ádám. (2025). Investigation of irrigation water storage options in the area of Békés-Rosszerdő (Hungary). Hungarian Journal of Hydrology, 105(2), 38-58. https://doi.org/10.59258/hk.19235
Section
Scientific Papers