Analysis of Precipitation Data Series in the TIVIZIG Operational Area (Hungary)

  • Dorottya Szám National University of Public Service Faculty of Water Sciences, Department of Rural Water Managementental Policy https://orcid.org/0009-0006-4299-8712
  • Zsolt Hetesi National University of Public Service Faculty of Water Sciences, Department of Water and Environmental Secutity https://orcid.org/0000-0002-4250-4050
  • Tibor Bódi National University of Public, Service Faculty of Water Sciences, Department of Water and Environmental Security
  • Zoárd Ivor Marosi Trans-Tisza Water Management Directorate
Keywords: Precipitation, Trans-Tisza region, extreme weather events, drought, climate change

Abstract

The-Trans Tisza Regional Water Directorate area is one of the regions of the Carpathian Basin most exposed to the adverse effects of drought on agriculture. Climate change here increases the likelihood of extreme weather events. It is also true that the frequency of drought and extreme precipitation periods is increasing. A better understanding of all this is essential for water planning and control of water management to create conditions of adaptive, precision farming. This paper's research used daily rainfall data from 16 Trans-Tisza Regional Water Directorate hydro-meteorological stations between 1964 and 2022. We have shown that the change in extreme precipitation events is not statistically significant for the aggregated data of the 16 stations between 1964 and 2022. However, significant changes were detected after splitting the data series into two periods of equal length (1965-1993; 1994-2022) for further comparative statistical analysis. We showed a significant increase in the frequency of periods without precipitation of at least 25 days, according to the data of the hydro-meteorological station in the area of Nagybajom municipality. This, combined with the area's soil conditions, suggests that precision irrigation management is becoming essential to achieve desirable agricultural yields and that, where appropriate, it may be necessary to drain low-lying areas at risk of inland flooding.

Author Biographies

Dorottya Szám, National University of Public Service Faculty of Water Sciences, Department of Rural Water Managementental Policy

DOROTTYA SZÁM graduated as a plant scientist and agricultural engineer from the Hungarian University of Agricultural and Life Sciences (2022), is currently an employee of the National University of Public Service, and a student at the Doctoral School of Biology and Sports Biology of the University of Pécs. She has been a member of the Hungarian Hydrological Society since 2022.

Zsolt Hetesi, National University of Public Service Faculty of Water Sciences, Department of Water and Environmental Secutity

ZSOLT HETESI holds a degree in physics and a PhD from ELTE University of Applied Sciences. He is currently an associate professor at the Faculty of Water Sciences of the National University of Public Service and a senior research fellow at the Institute of Mathematics and Informatics of the University of Pécs. His research interests include sustainability and modeling of stochastic processes in environmental science.

Tibor Bódi, National University of Public, Service Faculty of Water Sciences, Department of Water and Environmental Security

TIBOR BÓDI earned a BSc degree in civil engineering from the Faculty of Water Sciences of the National University of Public Service in 2023. He wrote his thesis on the precipitation patterns and hydrography of the area of ​​the Trans-Tiszántúli Water Directorate.

 
Zoárd Ivor Marosi, Trans-Tisza Water Management Directorate

MAROSI ZOÁRD IVOR is a certified civil engineer and water construction engineer, currently the acting director and deputy technical director of the Trans-Tisza Water Directorate. His areas of expertise are water management, hydrography, and hydrology. He participated in the preparation of watershed management plans, in the revisions of the operating regulations of the Tisza-Körös-völgyi Cooperative Water Management System, and in the development of the Hydrographic Module sectoral software that helps manage hydrological data. He has been a member of the Hungarian Hydrological Society since 1998.

References

Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J. (2006). Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. Journal of Geophysical Research, p. 11, 5, pp. 1-22. https://www.doi.org/10.1029/2005JD006290

Bartholy, J., Pongrácz, R. (2005). Tendencies of extreme climate indices based on daily precipitation in the Carpathian Basin for the 20th century. Időjárás, p. 109, 1, pp. 1-20.

Bartholy, J., Pongrácz, R. (2007). Regional Analysis of Extreme Temperature and Precipitation Indices for the Carpathian Basin from 1946 to 2001. Global and Planetary Change, V. 57, I. 1-2, pp. 83-95. https://doi.org/10.1016/j.gloplacha.2006.11.002

Bartholy J., Barcza Z., Bihari Z; Lakatos M.; Mészáros R., Pieczka I., Pongrácz R., Práger T., Radics K., Szerkesztők: Bartholy J., Pongrácz R. (2013). Klímaváltozás. Eötvös Loránd Tudományegyetem, Budapest, pp. 1-180.

Buzási A. (2021). Climate Vulnerability and Adaptation Challenges in Szekszárd Wine Region, Hungary. Climate 9(2):25. https://www.doi.org/10.3390/cli9020025

Czigány Sz., Pirkhoffer E., Lóczy D., Balatonyi L. (2013). Flash flood analysis for Southwest-Hungary. Springer Geography, pp. 67-82., ISBN: 978-94-007-6300-5

Donat, M.G, Alexander, L.V., Yang, H., Durre, I., Vose, R., Dunn, R.J.H., Willett, K.M., Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack, C., Klein Tank, A.M.G., Kruger, A.C., Marengo, J.A., Peterson, T.C., Renom, M., Oria Rojas, C., Rusticucci, M., Salinger, M.J., Sekele, S.S., Srivastava, A.K., Trewin, B., Villarroel, C., Vincent, L.A., Zhai, P., Zhang, X., Kitching, S. (2013). Updated Analyses of Temperature and Precipitation Extreme Indices since the Beginning of the Twentieth Century: The HadEX2 Dataset. Journal of Geophysical Research. p. 118, 5, pp. 2098-2118. https://www.doi.org/10.1002/jgrd.50150

Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., Tignor, M., Midgley, P.M. (eds.) (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, p. 582. https://www.doi.org/10.1017/cbo9781139177245

Gavrilov, M.B., Radakovic, M., Sipos, Gy., Mezősi, G. (2020). Aridity in the Central and Southern Pannonian Basin. Atmosphere 11(12). pp. 1‒19.

Green, J.I., Nelson, E.J. (2002). Calculation of Time of Concentration for Hydrologic Design and Analysis Using Geographic Information System Vector Objects. Journal of Hydroinformatics: p. 4, 2, pp. 75-81. https://www.doi.org/10.2166/hydro.2002.0009

Hoffmann L., Lakatos M. (2019). Növekvő csapadékintenzitás, magasabb mértékadó csapadékok a változó klímában. In: Bíró T. (ed.): Országos Települési Csapadékvíz-gazdálkodási Konferencia. Tanulmányok. Dialóg Campus Kiadó, Budapest, pp. 11-19.

HungaroMet (2021). Éves és évszakos csapadékösszegek változása Magyarországon. Internet: https://www.met.hu/eghajlat/eghajlatvaltozas/megfigyelt_hazai_valtozasok/homerseklet_es_csapadektrendek/csapadekosszegek/ (08.05.2024)

Ilyés Cs., Szűcs P., Turai E. (2019). Csapadékösszegek és talajvízszint idősorok spektrális elemzése. In: Bíró T. (ed.): Országos Települési Csapadékvíz-gazdálkodási Konferencia. Tanulmányok. Dialóg Campus Kiadó, Budapest, pp. 21‒27.

Janssen J., Laatz W. (2007). Statistische Datenanalyse mit SPSS für Windows. Springer Gabler Kiadó, Wiesbaden, p. 569.

Kis A. (2018). Csapadékextrémumok múltbeli tendenciái, jövőre becsült változásai és hidrológiai hatásai. Doktori értekezés, ELTE, Természettudományi Kar, Meteorológiai Tanszék, Budapest, pp. 1-112. Internet: https://edit.elte.hu/xmlui/bitstream/handle/10831/41469/Disszertacio_kisanna_2018.pdf;jsessionid=BB7388EC0073A36D1A01F37A6CA78377?sequence=1 (08.05.2024)

Kiss T., Hetes, Zs., Füzi T. (2019). Az átlaghőmérséklet és a csapadékmennyiség alakulása Mosonmagyaróváron. Statisztikai Szemle: p. 97, 6, pp. 568-593.

Klein Tank, A.M.G., Können, G.P. (2003). Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946-1999. Journal of Climate 16(22), pp. 3665-3680. https://www.doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2

Kristóf E., Pongrácz R., Bartholy J. (2017). Távkapcsolati rendszerek hatása a Kárpát-medence térségére. HUNGEO 2017: “Bányászat és környezet – harmóniában”: Magyar földtudományi szakemberek XIII. világtalálkozója. Program- és előadáskivonatok. Konferencia helye, ideje: Pécs, Magyarország, 2017.08.16.-2017.08.20. Budapest, Magyarhoni Földtani Társulat, pp. 75-76.

KSH (2024). Központi Statisztikai Hivatal

Lakatos M., Szentimrey T., Birszki B., Kövér Zs., Bihari Z., Szalai S. (2007). Changes of Temperature and Precipitation Extremes following Homogenization. Acta Silvatica et Lignaria Hungarica: An International Journal in Forest, Wood and Environmental Sciences, 3 (1), pp. 87‒95.

Lakatos M., Bihari Z., Izsák B., Szentes O. (2021). Globális és hazai éghajlati trendek, szélsőségek változása: 2020-as helyzetkép. Scientia et Securitas 2(2), pp. 164-171. https://www.doi.org/10.1556/112.2021.00037

McBean, G.A. (2004). Climate Change and Extreme Weather: A Basis for Action. Natural Hazards 31(1), pp. 177-190. https://www.doi.org/10.1023/B:NHAZ.0000020259.58716.0d

McCuen, R.H. (2009). Uncertainty Analysis of Watershed Time Parameters. Journal of Hydrologic Engineering 14(5). https://www.doi.org/10.1061/(ASCE)HE.1943-5584.0000011

Mesterházy I., Pongrácz R., Ladányi M. (2015). A vegetációs időszak számításának módszerei az 1951-2100 modellezett időszakban. In: Kovács E., Kúti Zs., Puskás J. (ed.) 7. Szőlő és Klíma Konferencia. Szombathely, Magyarország, p. 98, pp. 83-89., p.7.

Pieczka, I., Pongrácz, R., Bartholy, J. (2011). Expected Trends of Regional Climate Change for the Carpathian Basin for the 21st Century. International Journal of Environment and Pollution 46 (1-2), pp. 6-17. https://www.doi.org/10.1504/IJEP.2011.042605

Pongrácz R., Bartholy J., Kis A. (2014). Estimation of Future Precipitation Conditions for Hungary with Special Focus on Dry Periods. Időjárás 118(4), pp. 305-321.

Schumacker, R., Tomek, S. (2013). Understanding Statistics Using R. Springer, New York, USA. https://www.doi.org/10.1007/978-1-4614-6227-9_11

Stott, P. (2016). How climate change affects extreme weather events. Science 352(6293), pp. 1517‒1518. https://www.doi.org/10.1126/science.aaf7271

Szám D., Keve G., Fekete Á., Hetesi, Zs. (2024). Changing rainfall patterns & their impact on cereal crops in the Szentes district. Időjárás (in press)

TIVIZIG (2024). Tiszántúli Vízügyi Igazgatóság (ONLINE), http://www.tivizig.hu/content/documents/VKGTT.pdf

VKGTT (2017). Vízkészlet-gazdálkodási Térségi Terv a Tiszántúli Vízügyi Igazgatóság területére Elérhető: http://www5.tivizig.hu/content/documents/VKGTT/VKGTT_TIVIZIG.pdf

Published
2025-02-22
How to Cite
SzámD., HetesiZ., BódiT., & MarosiZ. I. (2025). Analysis of Precipitation Data Series in the TIVIZIG Operational Area (Hungary). Hungarian Journal of Hydrology, 105(1), 46-54. https://doi.org/10.59258/hk.18331
Section
Scientific Papers