Simulation-based assessment of complex suspended sediment transport processes to support revitalisation measures

Keywords: Suspended sediment, 3D numerical model, complexity, sediment plume, revitalisation

Abstract

A three-dimensional numerical model was built and applied to simulate the suspended sediment transport of the Upper-Hungarian reach of the Danube River. The study area is rather complex – the spatial distribution of the suspended sediment transport is influenced by river training works, and the sediment plume of the high flow of the Raba River, inflowing from the Mosoni-Duna. The presented modelling approach uses detailed field data to calibrate and validate the model for fluvial hydrodynamics and suspended sediment transport. This involved adjusting model parameters and boundary conditions to achieve optimal agreement between the simulation results and the reference data over a reasonably wide range of flow rates and suspended sediment concentrations. The model was able to reproduce the strong spatial inhomogeneity of suspended sediment transport. Furthermore, a case study was conducted to demonstrate the potential of the model to support river revitalisation measures, such as the recovery of side arms. Through the example of the Erebe islands side-arm system, scenarios were simulated to estimate the sedimentation of the side arm due to different measures. By concentrating the deposited material in a sediment trap, maintenance dredging activities could be optimised.

Author Biographies

Flóra Pomázi, Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Sanitary and Environmental Engineering

FLÓRA POMÁZI She graduated from the Budapest University of Technology and Economics with a BSc in Civil Engineering in 2016, and an MSc in Infrastructure Engineering in 2018. Currently, she is a research assistant at the Department of Hydraulic and Water Resources Engineering at the university. Her PhD research is focused on fluvial suspended sediment transport. She is a member of the Hungarian Hydrological Society since 2013.

Sándor Baranya, Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Sanitary and Environmental Engineering

SÁNDOR BARANYA He graduated in Civil Engineering from the Budapest University of Technology and Economics in 2003 and received his PhD from the same university in 2010. Currently, he is an associate professor and the Head of the Department of Hydraulic and Water Resources Engineering at BME. His research interests include the study of riverbed morphology, flow and sediment transport using field methods and numerical modelling. He is a member of the Hungarian Hydrological Society since 2003.

References

Agrawal, Y.C., Hanes, D.M. (2015). The implications of laser-diffraction measurements of sediment size distributions in a river to the potential use of acoustic backscatter for sediment measurements. Water Resources Research, 51. pp. 8854-8867. https://doi.org/10.1002/2015WR017268

Baranya S., Józsa J. (2010). ADCP alkalmazása lebegtetett hordalék-koncentráció becslésére. Hidrológiai. Közlöny, 90(3). pp. 17-22.

Baranya S., Olsen, N.R.B., Józsa J. (2013). Flow analysis of a river confluence with field measurements and RANS model with nested grid approach. River Research Applications, 31. pp. 28-41. https://doi.org/10.1002/rra.2718

Baranya S., Olsen, N.R.B., Stoesser, T., Sturm, T.W. (2014). A nested grid based computational fluid dynamics model to predict bridge pier scour. Water Management. 167(5). pp. 259-268. https://doi.org/10.1680/wama.12.00104

Binder, J., Glas, M., Hauer, C., Liedermann, M., Habersack, H., Tritthart, M. (2022). Kiesinseln an der Donau – naturbasierte Lösungen zum Erhalt der Wasserstraße. Österreichische Wasser- und Abfallwirtschaft, 75. pp. 54-61. https://doi.org/10.1007/s00506-022-00918-w

DanubeSediment (2020). Long-term Morphological Development of the Danube in Relation to the Sediment Balance. Angol nyelvű projektjelentés. https://tinyurl.com/3vfhw4b4 (Letöltés dátuma: 2023.10.25.)

Dethier, E.N., Renshaw, C.E., Magilligan, F.J. (2020). Toward Improved Accuracy of Remote Sensing Approaches for Quantifying Suspended Sediment: Implications for Suspended‐Sediment Monitoring. Journal of Geophysical Research: Earth Surface, 125(7). https://doi.org/10.1029/2019JF005033

Downing, J. (2006). Twenty-five years with OBS sensors: The good, the bad, and the ugly. Continental Shelf Research, 26. pp. 2299-2318. https://doi.org/10.1016/j.csr.2006.07.018

Ferguson, R.I., Church, M.A. (2004). A Simple Universal Equation for Grain Settling Velocity. Journal of Sedimentray Research, 74(6). pp. 933-937. https://doi.org/10.1306/051204740933

Fleit G., Hauer, C., Baranya S. (2020). A numerical modeling-based predictive methodology for the assessment of the impacts of ship waves on YOY fish. River Research. Applications, 37. pp. 373-386. https://doi.org/10.1002/rra.3764

Gillefalk, M., Massmann, G., Nützmann, G., Hilt, S. (2018). Potential Impacts of Induced Bank Filtration on Surface Water Quality: A Conceptual Framework for Future Research. Water, 10, 1240. https://doi.org/10.3390/w10091240

Glas, M., Tritthart, M., Liedermann, M., Pessenlehner, S., Habersack, H. (2018). Numerical groyne layout optimisation for restoration projects in large rivers: An adaptive approach towards a desired morphodynamic equilibrium. In A. Paquier & N. Riviere (Eds.), Proceedings of the 9th International Conference on Fluvial Hydraulics, River Flow 2018, Lyon-Villeurbanne; France, 5–8 SEP 2018 (Vol. 40, Issue 02002). EDP Sciences. https://doi.org/10.1051/e3sconf/20184002002

Gray, J.R., Gartner, J.W. (2009). Technological advances in suspended-sediment surrogate monitoring. Water Resources Research, 45. https://doi.org/10.1029/2008WR007063

Guan, M., Liang, Q. (2017). A two-dimensional hydro-morphological model for river hydraulics and morphology with vegetation. Environmental Modelling & Software, 88. pp. 10-21. https://doi.org/10.1016/j.envsoft.2016.11.008

Guerrero, M., Szupiany, R.N., Amsler, M.L. (2011). Comparison of acoustic backscattering techniques for suspended sediments investigations. Flow Measurement Instrumentation, 22. pp. 392-401. https://doi.org/10.1016/j.flowmeasinst.2011.06.003

Guerrero, M., Rüther, N., Szupiany, R., Haun, S., Baranya S., Latosinski, F. (2016). The acoustic properties of suspended sediment in large rivers: consequences on ADCP methods applicability. Water, 8,13. https://doi.org/10.3390/w8010013

Habersack, H., Tritthart, M., Liedermann, M., Hauer, C. (2014). Efficiency and uncertainties in micro- and mesoscale habitat modelling in large rivers. Hydrobiologia, 729. pp. 33-48. https://doi.org/10.1007/s10750-012-1429-x

Haimann, M., Liedermann, M., Lalk, P., Habersack, H. (2014). An integrated suspended sediment transport monitoring and analysis concept. International Journal of Sediment Research, 29. pp. 135-148. https://doi.org/10.1016/S1001-6279(14)60030-5

Haimann, M., Hauer, C., Tritthart, M., Prenner, D., Leitner, P., Moog, O., Habersack, H. (2018). Monitoring and modelling concept for ecological optimized harbour dredging and fine sediment disposal in large rivers. Hydrobiologia, 814. pp. 89-107. https://doi.org/10.1007/s10750-016-2935-z

Haun, S., Kjærås, H., Løvfall, S., Olsen, N.R.B. (2013). Three-dimensional measurements and numerical modelling of suspended sediments in a hydropower reservoir. Journal of Hydrology, 479. pp. 180-188. https://doi.org/10.1016/j.jhydrol.2012.11.060

Henning, M., Hentschel, B. (2013). Sedimentation and flow patterns induced by regular and modified groynes on the River Elbe, Germany. Ecohydrology 6(4). pp. 598-610. https://doi.org/10.1002/eco.1398

Lane, S.N., Parsons, D.R., Best, J.L., Orfeo, O., Kostaschuk, R.A., Hardy, R.J. (2008). Causes of rapid mixing at a junction of two large rivers: Río Paraná and Río Paraguay, Argentina. Journal of Geophysical Research, 113. https://doi.org/10.1029/2006JF000745

Mead, A.A., Demas, C.R., Ebersole, B.A., Kleiss, B.A., Little, C.D., Meselhe, E.A., Powell, N.J., Pratt, T.C., Vosburg, B.M. (2012). A water and sediment budget for the lower Mississippi-Atchafalaya River in flood years 2008-2010: implications for sediment discharge to the oceans and coastal restoration in Louisiana. Journal of Hydrology, 432. pp. 84-97. https://doi.org/10.1016/j.jhydrol.2012.02.020

Moate, B.D., Thorne, P.D. (2012). Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition. Continental Shelf Research, 46. pp. 67-82. https://doi.org/10.1016/j.csr.2011.10.007

Moreira, D., Simionato, C.G. (2019). Modeling the Suspended Sediment Transport in a Very Wide, Shallow, and Microtidal Estuary, the Río de la Plata, Argentina. Journal of Advances in Modeling Earth Systems, 11. pp. 3284-3304. https://doi.org/10.1029/2018MS001605

Mossa, J. (1996). Sediment dynamics in the lowermost Mississippi River. Engineering Geology, 45(1-4). pp. 457-479. https://doi.org/10.1016/S0013-7952(96)00026-9

Nienhuis, J.H., Ashton, A.D., Nardin, W., Fagherazzi, S., Giosan, L. (2016). Alongshore sediment bypassing as a control on river mouth morphodynamics. Journal of Geophysical Research: Earth Surface 121(4). pp. 664-683. https://doi.org/10.1002/2015JF003780

Nones, M. (2019). Dealing with sediment transport in flood risk management. Acta Geophysica, 67. pp. 677-685. https://doi.org/10.1007/s11600-019-00273-7

Olsen, N.R.B. (2003). Three-Dimensional CFD Modelling of Self-Forming Meandering Channel. Journal of Hydraulic Engineering, 129(5). pp. 366-372. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:5(366)

Olsen, N.R.B. (2009). A Three-Dimensional Numerical Model for Simulation of Sediment Movements in Water Intakes with Moving Option. Angol nyelvű felhasználói kézikönyv. The Norwegian University of Science and Technology.

Olsen, N.R.B. (2021). 3D numerical modelling of braided channel formation. Geomorphology, 375(15). https://doi.org/10.1016/j.geomorph.2020.107528

Olsen, N.R.B., Hillebrand, G. (2018). Long-time 3D CFD modeling of sedimentation with dredging in a hydropower reservoir. Journal of Soils and Sediments, 18. pp. 3031-3040. https://doi.org/10.1007/s11368-018-1989-0

Pomázi F., Baranya S. (2020). Nagy folyók lebegtetett hordalékvándorlásának új vizsgálati módszerei 2. – Közvetlen és közvetett lebegtetett hordalékmérési eljárások összehasonlító vizsgálata. Hidrológiai Közlöny, 100(3). pp. 64-73.

Pomázi F., Baranya S. (2022). Acoustic based assessment of cross-sectional concentration inhomogeneity at a suspended sediment monitoring station in a large river. Acta Geophysica, 70. pp. 2361-2377. https://doi.org/10.1007/s11600-022-00805-8

Pomázi F., Baranya S., Török G.T. (2020). Nagy folyók lebegtetett hordalékvándorlásának új vizsgálati módszerei 1. – A továbbfejlesztett hordalékmonitoring módszertan bemutatása. Hidrológiai Közlöny, 100(2). pp. 37-47.

Schleiss, A.J., Franca, M.J., Juez, C., De Cesare, G. (2016). Reservoir sedimentation. Journal of Hydraulic Research, 54(6). pp. 595-614. https://doi.org/10.1080/00221686.2016.1225320

Schumm, S.A. (1977). The Fluvial System. John Wiley & Sons, New York.

Thorne, P.D., Vincent, C.E., Hardcastle, P.J., Rehman, S., Pearson, N. (1991). Measuring suspended sediment concentrations using acoustic backscatter devices. Marine Geology, 98. pp. 7-16. https://doi.org/10.1016/0025-3227(91)90031-X

Török G.T., Baranya S., Rüther, N. (2017). 3D CFD Modeling of Local Scouring, Bed Armoring and Sediment Deposition. Water, 9. pp. 56-72. https://doi.org/10.3390/w9010056

Tritthart, M., Haimann, M., Habersack, H., Hauer, C. (2019). Spatio‐temporal variability of suspended sediments in rivers and ecological implications of reservoir flushing operations. River Research Applications, 35. pp. 918-931. https://doi.org/10.1002/rra.3492

Tu, L.X., Thanh, V.Q., Reyns, J., Van, S.P., Anh, D.T., Dang, T.D., Roelvink, D. (2019). Sediment transport and morphodynamical modeling on the estuaries and coastal zone of the Vietnamese Mekong Delta. Continental Shelf Research, 186. pp. 64-76. https://doi.org/10.1016/j.csr.2019.07.015

van Rijn, L.C. (1984a). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10). pp. 1431-1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)

van Rijn, L.C. (1984b). Sediment Transport, Part II: Suspended Load Transport. Journal of Hydraulic Engineering, 110(10). pp. 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)

Xie, Q., Yang, J., Lundström, T.S. (2019). Field Studies and 3D Modelling of Morphodynamics in a Meandering River Reach Dominated by Tides and Suspended Load. Fluids, 4. pp. 15-33. https://doi.org/10.3390/fluids4010015

Zhang, B., Wu, B., Ren, S., Zhang, R., Zhang, W., Ren, J., Chen, Y. (2021). Large-scale 3D numerical modelling of flood propagation and sediment transport and operational strategy in the Three Gorges Reservoir, China. Journal of Hydro-environment Research, 36. pp. 33-49. https://doi.org/10.1016/j.jher.2021.03.003

Zhang, W., Jia, Q., Chen, X. (2014). Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks. Journal of Applied Mathematics, 2014, 948731. https://doi.org/10.1155/2014/948731

Published
2024-02-04
How to Cite
PomáziF., & BaranyaS. (2024). Simulation-based assessment of complex suspended sediment transport processes to support revitalisation measures . Hungarian Journal of Hydrology, 104(1/HU), 56-70. https://doi.org/10.59258/hk.15075
Section
Tudományos közlemények