Komplex folyami lebegtetett hordalékszállítási folyamatok szimuláció alapú vizsgálata revitalizációs célú beavatkozások támogatására
Absztrakt
A tanulmányban egy 3D numerikus modellt építettünk fel, igazoltunk és alkalmaztunk a Duna felső-magyarországi szakaszának lebegtetett hordalékszállításának szimulálására. A mintaterület igen összetett, mivel folyószabályozási művek, illetve a Mosoni-Duna felől a Rábán levonuló nagyvíz esetén érkező hordalékcsóva terjedése is befolyásolja a lebegtetett hordalékvándorlás térbeli alakulását. A bemutatott modellezési megközelítéshez részletes terepi adatokat használtunk fel a modell igazolásához. Ennek során a modell paramétereit, illetve a peremfeltételeket úgy választottuk meg, hogy a mért és a modellezett eredmények között optimális egyezőséget kapjunk a víz- és hordalékjárási körülmények kellően széles tartományán. A modell képes volt reprodukálni a lebegtetett hordalékszállítás jelentős térbeli inhomogenitását. Ezen kívül egy esettanulmány példáján keresztül bemutattuk, hogy a modell milyen lehetőségeket rejt magában folyami revitalizációs beavatkozások támogatására, mint például a mellékágak helyreállítása. Az Erebe-szigeteki mellékágrendszer példáján keresztül különböző változatok hatását vizsgáltuk a mellékágban végbemenő hordaléklerakódási folyamatok szempontjából. Bemutattuk, hogy a kiülepedő hordalékmennyiség csapdázásával optimalizálni lehet a fenntartó kotrási tevékenységeket.
Hivatkozások
Agrawal, Y.C., Hanes, D.M. (2015). The implications of laser-diffraction measurements of sediment size distributions in a river to the potential use of acoustic backscatter for sediment measurements. Water Resources Research, 51. pp. 8854-8867. https://doi.org/10.1002/2015WR017268
Baranya S., Józsa J. (2010). ADCP alkalmazása lebegtetett hordalék-koncentráció becslésére. Hidrológiai. Közlöny, 90(3). pp. 17-22.
Baranya S., Olsen, N.R.B., Józsa J. (2013). Flow analysis of a river confluence with field measurements and RANS model with nested grid approach. River Research Applications, 31. pp. 28-41. https://doi.org/10.1002/rra.2718
Baranya S., Olsen, N.R.B., Stoesser, T., Sturm, T.W. (2014). A nested grid based computational fluid dynamics model to predict bridge pier scour. Water Management. 167(5). pp. 259-268. https://doi.org/10.1680/wama.12.00104
Binder, J., Glas, M., Hauer, C., Liedermann, M., Habersack, H., Tritthart, M. (2022). Kiesinseln an der Donau – naturbasierte Lösungen zum Erhalt der Wasserstraße. Österreichische Wasser- und Abfallwirtschaft, 75. pp. 54-61. https://doi.org/10.1007/s00506-022-00918-w
DanubeSediment (2020). Long-term Morphological Development of the Danube in Relation to the Sediment Balance. Angol nyelvű projektjelentés. https://tinyurl.com/3vfhw4b4 (Letöltés dátuma: 2023.10.25.)
Dethier, E.N., Renshaw, C.E., Magilligan, F.J. (2020). Toward Improved Accuracy of Remote Sensing Approaches for Quantifying Suspended Sediment: Implications for Suspended‐Sediment Monitoring. Journal of Geophysical Research: Earth Surface, 125(7). https://doi.org/10.1029/2019JF005033
Downing, J. (2006). Twenty-five years with OBS sensors: The good, the bad, and the ugly. Continental Shelf Research, 26. pp. 2299-2318. https://doi.org/10.1016/j.csr.2006.07.018
Ferguson, R.I., Church, M.A. (2004). A Simple Universal Equation for Grain Settling Velocity. Journal of Sedimentray Research, 74(6). pp. 933-937. https://doi.org/10.1306/051204740933
Fleit G., Hauer, C., Baranya S. (2020). A numerical modeling-based predictive methodology for the assessment of the impacts of ship waves on YOY fish. River Research. Applications, 37. pp. 373-386. https://doi.org/10.1002/rra.3764
Gillefalk, M., Massmann, G., Nützmann, G., Hilt, S. (2018). Potential Impacts of Induced Bank Filtration on Surface Water Quality: A Conceptual Framework for Future Research. Water, 10, 1240. https://doi.org/10.3390/w10091240
Glas, M., Tritthart, M., Liedermann, M., Pessenlehner, S., Habersack, H. (2018). Numerical groyne layout optimisation for restoration projects in large rivers: An adaptive approach towards a desired morphodynamic equilibrium. In A. Paquier & N. Riviere (Eds.), Proceedings of the 9th International Conference on Fluvial Hydraulics, River Flow 2018, Lyon-Villeurbanne; France, 5–8 SEP 2018 (Vol. 40, Issue 02002). EDP Sciences. https://doi.org/10.1051/e3sconf/20184002002
Gray, J.R., Gartner, J.W. (2009). Technological advances in suspended-sediment surrogate monitoring. Water Resources Research, 45. https://doi.org/10.1029/2008WR007063
Guan, M., Liang, Q. (2017). A two-dimensional hydro-morphological model for river hydraulics and morphology with vegetation. Environmental Modelling & Software, 88. pp. 10-21. https://doi.org/10.1016/j.envsoft.2016.11.008
Guerrero, M., Szupiany, R.N., Amsler, M.L. (2011). Comparison of acoustic backscattering techniques for suspended sediments investigations. Flow Measurement Instrumentation, 22. pp. 392-401. https://doi.org/10.1016/j.flowmeasinst.2011.06.003
Guerrero, M., Rüther, N., Szupiany, R., Haun, S., Baranya S., Latosinski, F. (2016). The acoustic properties of suspended sediment in large rivers: consequences on ADCP methods applicability. Water, 8,13. https://doi.org/10.3390/w8010013
Habersack, H., Tritthart, M., Liedermann, M., Hauer, C. (2014). Efficiency and uncertainties in micro- and mesoscale habitat modelling in large rivers. Hydrobiologia, 729. pp. 33-48. https://doi.org/10.1007/s10750-012-1429-x
Haimann, M., Liedermann, M., Lalk, P., Habersack, H. (2014). An integrated suspended sediment transport monitoring and analysis concept. International Journal of Sediment Research, 29. pp. 135-148. https://doi.org/10.1016/S1001-6279(14)60030-5
Haimann, M., Hauer, C., Tritthart, M., Prenner, D., Leitner, P., Moog, O., Habersack, H. (2018). Monitoring and modelling concept for ecological optimized harbour dredging and fine sediment disposal in large rivers. Hydrobiologia, 814. pp. 89-107. https://doi.org/10.1007/s10750-016-2935-z
Haun, S., Kjærås, H., Løvfall, S., Olsen, N.R.B. (2013). Three-dimensional measurements and numerical modelling of suspended sediments in a hydropower reservoir. Journal of Hydrology, 479. pp. 180-188. https://doi.org/10.1016/j.jhydrol.2012.11.060
Henning, M., Hentschel, B. (2013). Sedimentation and flow patterns induced by regular and modified groynes on the River Elbe, Germany. Ecohydrology 6(4). pp. 598-610. https://doi.org/10.1002/eco.1398
Lane, S.N., Parsons, D.R., Best, J.L., Orfeo, O., Kostaschuk, R.A., Hardy, R.J. (2008). Causes of rapid mixing at a junction of two large rivers: Río Paraná and Río Paraguay, Argentina. Journal of Geophysical Research, 113. https://doi.org/10.1029/2006JF000745
Mead, A.A., Demas, C.R., Ebersole, B.A., Kleiss, B.A., Little, C.D., Meselhe, E.A., Powell, N.J., Pratt, T.C., Vosburg, B.M. (2012). A water and sediment budget for the lower Mississippi-Atchafalaya River in flood years 2008-2010: implications for sediment discharge to the oceans and coastal restoration in Louisiana. Journal of Hydrology, 432. pp. 84-97. https://doi.org/10.1016/j.jhydrol.2012.02.020
Moate, B.D., Thorne, P.D. (2012). Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition. Continental Shelf Research, 46. pp. 67-82. https://doi.org/10.1016/j.csr.2011.10.007
Moreira, D., Simionato, C.G. (2019). Modeling the Suspended Sediment Transport in a Very Wide, Shallow, and Microtidal Estuary, the Río de la Plata, Argentina. Journal of Advances in Modeling Earth Systems, 11. pp. 3284-3304. https://doi.org/10.1029/2018MS001605
Mossa, J. (1996). Sediment dynamics in the lowermost Mississippi River. Engineering Geology, 45(1-4). pp. 457-479. https://doi.org/10.1016/S0013-7952(96)00026-9
Nienhuis, J.H., Ashton, A.D., Nardin, W., Fagherazzi, S., Giosan, L. (2016). Alongshore sediment bypassing as a control on river mouth morphodynamics. Journal of Geophysical Research: Earth Surface 121(4). pp. 664-683. https://doi.org/10.1002/2015JF003780
Nones, M. (2019). Dealing with sediment transport in flood risk management. Acta Geophysica, 67. pp. 677-685. https://doi.org/10.1007/s11600-019-00273-7
Olsen, N.R.B. (2003). Three-Dimensional CFD Modelling of Self-Forming Meandering Channel. Journal of Hydraulic Engineering, 129(5). pp. 366-372. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:5(366)
Olsen, N.R.B. (2009). A Three-Dimensional Numerical Model for Simulation of Sediment Movements in Water Intakes with Moving Option. Angol nyelvű felhasználói kézikönyv. The Norwegian University of Science and Technology.
Olsen, N.R.B. (2021). 3D numerical modelling of braided channel formation. Geomorphology, 375(15). https://doi.org/10.1016/j.geomorph.2020.107528
Olsen, N.R.B., Hillebrand, G. (2018). Long-time 3D CFD modeling of sedimentation with dredging in a hydropower reservoir. Journal of Soils and Sediments, 18. pp. 3031-3040. https://doi.org/10.1007/s11368-018-1989-0
Pomázi F., Baranya S. (2020). Nagy folyók lebegtetett hordalékvándorlásának új vizsgálati módszerei 2. – Közvetlen és közvetett lebegtetett hordalékmérési eljárások összehasonlító vizsgálata. Hidrológiai Közlöny, 100(3). pp. 64-73.
Pomázi F., Baranya S. (2022). Acoustic based assessment of cross-sectional concentration inhomogeneity at a suspended sediment monitoring station in a large river. Acta Geophysica, 70. pp. 2361-2377. https://doi.org/10.1007/s11600-022-00805-8
Pomázi F., Baranya S., Török G.T. (2020). Nagy folyók lebegtetett hordalékvándorlásának új vizsgálati módszerei 1. – A továbbfejlesztett hordalékmonitoring módszertan bemutatása. Hidrológiai Közlöny, 100(2). pp. 37-47.
Schleiss, A.J., Franca, M.J., Juez, C., De Cesare, G. (2016). Reservoir sedimentation. Journal of Hydraulic Research, 54(6). pp. 595-614. https://doi.org/10.1080/00221686.2016.1225320
Schumm, S.A. (1977). The Fluvial System. John Wiley & Sons, New York.
Thorne, P.D., Vincent, C.E., Hardcastle, P.J., Rehman, S., Pearson, N. (1991). Measuring suspended sediment concentrations using acoustic backscatter devices. Marine Geology, 98. pp. 7-16. https://doi.org/10.1016/0025-3227(91)90031-X
Török G.T., Baranya S., Rüther, N. (2017). 3D CFD Modeling of Local Scouring, Bed Armoring and Sediment Deposition. Water, 9. pp. 56-72. https://doi.org/10.3390/w9010056
Tritthart, M., Haimann, M., Habersack, H., Hauer, C. (2019). Spatio‐temporal variability of suspended sediments in rivers and ecological implications of reservoir flushing operations. River Research Applications, 35. pp. 918-931. https://doi.org/10.1002/rra.3492
Tu, L.X., Thanh, V.Q., Reyns, J., Van, S.P., Anh, D.T., Dang, T.D., Roelvink, D. (2019). Sediment transport and morphodynamical modeling on the estuaries and coastal zone of the Vietnamese Mekong Delta. Continental Shelf Research, 186. pp. 64-76. https://doi.org/10.1016/j.csr.2019.07.015
van Rijn, L.C. (1984a). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10). pp. 1431-1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
van Rijn, L.C. (1984b). Sediment Transport, Part II: Suspended Load Transport. Journal of Hydraulic Engineering, 110(10). pp. 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
Xie, Q., Yang, J., Lundström, T.S. (2019). Field Studies and 3D Modelling of Morphodynamics in a Meandering River Reach Dominated by Tides and Suspended Load. Fluids, 4. pp. 15-33. https://doi.org/10.3390/fluids4010015
Zhang, B., Wu, B., Ren, S., Zhang, R., Zhang, W., Ren, J., Chen, Y. (2021). Large-scale 3D numerical modelling of flood propagation and sediment transport and operational strategy in the Three Gorges Reservoir, China. Journal of Hydro-environment Research, 36. pp. 33-49. https://doi.org/10.1016/j.jher.2021.03.003
Zhang, W., Jia, Q., Chen, X. (2014). Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks. Journal of Applied Mathematics, 2014, 948731. https://doi.org/10.1155/2014/948731
Copyright (c) 2024 Flóra Pomázi, Sándor Baranya
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.