Exploring the genetic diversity of sheep using mitochondrial DNA

Keywords: mtDNA, genetic diversity, gene conservation

Abstract

Under today's prevailing economic conditions, the keeping of world breeds predominates. These animals are capable of excellent performance and produce efficiently and profitably. The more these breeds spread, the more native breeds are pushed out of breeding and public awareness. In the latter case, in addition to the decline in the number of those, perhaps an even greater problem is that without appropriate mating plan, their allele diversity will also decline, and they will fall into risk. The mitochondrial DNA (mtDNA)-based investigation is playing an increasingly important role in the genetic conservation of endangered domestic breeds. The authors aim to give an overview of the possibilities offered by this, with a special focus on sheep. After a general description of the mtDNA and it genes and their functions the specificity of the maternal lineages is presented. In this way, they inform the practical breeders to the promising potential of mtDNA for controlling the genetic diversity of endangered livestock breeds. All this not only preserves an essential part of our culture and history, but also contributes to sustainability.

References

ANNUS, K. – ARKENBERG, H. – PRIKOSZOVICH, M. – OLÁH, J. – MARÓTI-AGÓTS, Á. – GÁSPÁRDY, A. (2015a): Characterisation of the female Tsigai population by use of Hungarian herd-book data. In: Hajas P, Gáspárdy A, editors. 25 years with DAGENE. Printed by Palatia Nyomda és Kiadó Kft. Győr, ISBN 978- 963-12-3101-4, 2015;108-113.

ANNUS, K. – MARÓTI-AGÓTS, Á. – PÁSZTOR, K. – VADA, E. – SÁFÁR, L. – GÁSPÁRDY, A. (2015b): Characterisation of Hungarian Tsigai variants based on control region of mtDNS. Magyar Állatorvosok Lapja, 137(10):625-631.

ANTON, I. – ZSOLNAI, A. – FÉSÜS, L. (1999a): Identification of the variant C of ß-lactoglobulin in sheep using a polymerase chain reaction-restriction fragment length polymorphism method. Journal of Animal Breeding and Genetics, 116(6):525–528.

ANTON, I. – ZSOLNAI, A. – FÉSÜS, L. – KUKOVICS, S. – MOLNÁR, A. (1999b): Survey of ß-lactoglobulin and αS1 polymorphisms is Hungarian dairy sheep breeds and crosses on DNS level. Archiv Tierzucht, 42(4):387–392.

ÁRNYASI, M. – KOMLÓSI, I. – LIEN, S. – CZEGLÉDI, L. – NAGY, S. – JÁVOR, A. (2009): Searching for DNS markers for milk production and composition on chromosome 6 in sheep. Journal of Animal Breeding and Genetics, 126(2):142–147. https://doi.org/10.1111/j.1439-0388.2008.00764.x

CHEN, S.Y. – DUAN, Z.Y. – SHA, T. – XIANGYU, J. – WU, S.F. – ZHANG, Y.P. (2006): Origin, genetic diversity, and population structure of Chinese domestic sheep. Gene, 376(2):216-223. https://doi.org/10.1016/j.gene.2006.03.009

Chessa, B. – Pereira, F. – Arnaud, F. – Amorim, A. – Goyache, F. – Mainland, I. – Kao, R.R. – Pemberton, J.M. – Beraldi, D. – Stear, M. – Alberti, A. – Pittau, M. – Iannuzzi, L. – Banabazi, M.H. – Kazwala, R. – Zhang, Y-P. – Arranz, J.J. – Ali, B.A. – Wang, Z. – Uzun, M. – Dione, M. – Olsaker, I. – Holm, L-E. – Saarma, U. – Ahmad, S. – Marzanov, N. – Eythorsdottir, E. – Holland, M.J. – Ajmone-Marsan, P. – Bruford, M.W. – Kantanen, J. – Spencer, T.E. – Palmarini, M. (2009): Revealing the history of sheep domestication using retrovirus integrations. Science, 324(5926):532-536. https://doi.org/10.1126/science.1170587

CUMMINS, J. (1998): Mitochondrial DNS in mammalian reproduction. Reviews of reproduction, 3(3):172-182. https://doi.org/10.1530/ror.0.0030172

DEMIRCI, S. – BAŞTANLAR, E.K. – DAĞTAŞ, N.D. – PIŞKIN, E. – ENGIN, A. – ÖZER, F. – YÜNCÜ, E. – DOĞAN, Ş.A. – TOGAN, I. (2013): Mitochondrial DNS diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: new insights on the evolutionary history of sheep. PLoS One, 8(12):e81952. https://doi.org/10.1371/journal.pone.0081952

Dymova, M.A. – Zadorozhny, A.V. – Mishukova, O.V. – Khrapov, E.A. – Druzhkova, A.S. – Trifonov, V.A. – Kichigin, I.G. – Tishkin, A.A. – Grushin, S.P. – Filipenko, M.L. (2017): Mitochondrial DNS analysis of ancient sheep from Altai. Animal Genetics, 48(5):615-618. https://doi.org/10.1111/age.12569

FÉSÜS, L. (1974): A juh vércsoportjai I. Az első hazai vizsgálatok eredménye. Állattenyésztés. 23(5):83–88.

FÉSÜS, L. (1992): Blood group and biochemical polymorphism studies in Hungarian gene reserve sheep breeds. 2nd DAGENE-Symposium on Gene Conservation, Üllő, Hungary, 6–8 of October, 1992.

FÉSÜS, L. (1999): A FecB lokuszhoz kapcsolt OarAE101 és BM1329 mikroszatellit marker allélok gyakorisága a debreceni szapora merinó állományokban. Állattenyésztés és Takarmányozás, 48. 9–18.

FÉSÜS, L. (2000): Molekuláris genetikai markerek segítségével végzett szelekció háziállatokban 7. közlemény: A szarvasmarha, a juh és a sertés izmoltságát befolyásoló gének: myostatin, callopyge, myogenin. Állattenyésztés és Takarmányozás, 49(4):289–299.

GÁSPÁRDY, A. – KUKOVICS, S. – ANTON, I. – ZSOLNAI, A. – KOMLÓSI, I. (2013): Hazai cigája juhnyájak összehasonlítása mikroszatellita-polimorfizmusok alapján. Magyar Állatorvosok Lapja, 135(11):660–665.

GÁSPÁRDY, A. – KUKOVICS, S. – ANTON, I. – ZSOLNAI, A. – KOMLÓSI, I. (2014): Hazai cigája változatok biokémiai és DNS polimorfizmusainak áttekintő vizsgálata, Állattenyésztés és Takarmányozás, 63(2):123–135.

GÁSPÁRDY, A. (2021): Reality of Mitogenome Investigation in Preservation of Native Domestic Sheep Breeds. In: Amr Elkelish, editor. Landraces - Traditional Variety and Natural Breed https://doi.org/10.5772/intechopen.95768

GUO, J. – DU, L.X. – MA, Y.H. – GUAN, W.J. – LI, H.B. – ZHAO, Q.J. – LI, X. – RAO, S.Q. (2005): A novel maternal lineage revealed in sheep (Ovis aries). Animal Genetics, 36(4):331-336. https://doi.org/10.1111/j.1365-2052.2005.01310.x

HORSBURGH, K.A. – RHINES, A. (2010): Genetic characterization of an archaeological sheep assemblage from South Africa’s Western Cape. Journal of Archaeological Science, 37(11):2906-2910. https://doi.org/10.1016/j.jas.2010.06.035

JOOST, S. – BONIN, A. – BRUFORD, MW. – DESPRÉS, L. – CONORD, C. – ERHARDT, G. – TABERLET, P. (2007): A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Molecular Ecology, 16(18):3955-3969. https://doi.org/10.1111/j.1365-294X.2007.03442.x

Kijas, J.W. – Townley, D. – D alrymple, B.P. – Heaton, M.P. – Maddox, J.F. McGrath, A. – Wilson, P. – Ingersoll, R.G. – McCulloch, R. – McWilliam, S. Tang, D. – McEwan, J. – Cockett, N. – Oddy, V.H. – Nicholas, F.W. – Raadsma, H., for the International Sheep Genomics Consortium. (2009): A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE, 4(3):e4668. https://doi.org/10.1371/journal.pone.0004668

KIM, Y.S. – TSEVEEN, K. – BATSUKH, B. – SEONG, J. – KONG, H.S. (2020): Origin-related study of genetic diversity and heteroplasmy of Mongolian sheep (Ovis aries) using mitochondrial DNS. Journal of Animal Reproduction and Biotechnology, 35(2):198-206. https://doi.org/10.12750/JARB.35.2.198

KOMLÓSI, I. – ANTON, I. – FÉSÜS, L. (2005): Összefüggés egyes mikroszatellit markerek és a magyar merinó súlygyarapodása között. Állattenyésztés és Takarmányozás, 54. 521–527.

KOVÁCS, E. – MARÓTI-AGÓTS, Á. – HARMAT, L. – ANNUS, K. – ZENKE, P. TEMPFLI, K. – SÁFÁR, L. – GÁSPÁRDY, A. (2020a): Characterisation of Hungarian Cikta sheep based on the control region of mtDNS. Magyar Állatorvosok Lapja, 142(7):421-428.

KOVÁCS, E. – HARMAT, L. – TEMPFLI, K. – SÁFÁR, L. – BECSKEI, ZS. – MARÓTI-AGÓTS, Á. – GÁSPÁRDY, A. (2020b): Ergebnisse der Sequenzanalyse des mitochondrialen Gens Cyt-b von Cikta Schafen. Danubian Animal Genetic Resources, 5(1):19-25.

KUSZA, SZ. – NAGY, I. – SASVÁRI, ZS. – STÁGEL, A. – NÉMETH, T. – MOLNÁR, A. – KUME, K. – BŐSZE, ZS. – JÁVOR, A. – KUKOVICS, S. (2008): Genetic diversity and population structure of Tsigai and Zackel type of sheep breeds in the Central-, Eastern- and Southern-European regions. Small Ruminant Research, 78(1-3):13–23. https://doi.org/10.1016/j.smallrumres.2008.04.002

KUSZA, SZ. – NAGY, I. – NÉMETH, T. – MOLNÁR, A. – JÁVOR, A. – KUKOVICS, S. (2010): The genetic variability of Hungarian Tsigai sheep. Archiv Tierzucht, 53(3):309–317.

KUSZA, SZ. – ZAKAR, E. – BUDAI, CS. – CZISZTER, L. – PADEANU, I. –GAVOJDIAN, D. (2015): Mitochondrial DNS variability in Gyimesi Racka and Turcana sheep breeds. Acta Biochimia Polonica, 62(1):273-280. https://doi.org/10.18388/abp.2015_978

MEADOWS, J.R.S. – HAWKEN, R.J. KIJAS, J.W. (2004): Nucleotide diversity on the ovine Y chromosome. Animal Genetics, 35(5):379-385. https://doi.org/10.1111/j.1365-2052.2004.01180.x

Meadows, J.R.S. – Li, K. – Kantanen, J. – Tapio, M. – Sipos, W. – Pardeshi, V. – Gupta, V. – Calvo, J.H. – Whan, V. – Norris, B. – Kijas, J.W. (2005): Mitochondrial sequence reveals high levels of gene flow between breeds of domestic sheep from Asia and Europe. Journal of Heredity, 96(5):494-501. https://doi.org/10.1093/jhered/esi100

MEADOWS, J.R.S. – HIENDLEDER, S. – KIJAS, J.W. (2011): Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel. Heredity, 106(4):700-706. https://doi.org/10.1038/hdy.2010.122

PEDROSA, S. – UZUN, M. – ARRANZ, J-J. – GUTIÉRREZ-GIL, B. – PRIMITIVO, F.S. – BAYÓN, Y. (2005): Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events. Proceedings of the Royal Society of London, Series B: Biological Sciences. 272(1577):2211-2217. https://doi.org/10.1098/rspb.2005.3204

Polyak, K. – Li, Y. – Zhu, H. – Lengauer, C. – Willson, J.K.V. – Markowitz, S.D. – Trush, M.A. – Kinzler, K.W. – Vogelstein, B. (1998): Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genetics, 20(3):291-293. https://doi.org/10.1038/3108

POSTA, J. – KOVÁCS, E. – TEMPFLI, K. – SÁFÁR, L. – GÁSPÁRDY, A. (2019): Pedigree analysis of a population bottlenecked, the Cikta with special regard to its maternal lineages. Magyar Állatorvosok Lapja, 141(3):171-180.

Tapio, M. – Marzanov, N. – Ozerov, M. – Ćinkulov, M. – Gonzarenko, G. – Kiselyova, T. – Murawski, M. – Viinalass, H. – Kantanen, J. (2006): Sheep Mitochondrial DNS Variation in European, Caucasian, and Central Asian Areas, Molecular Biology and Evolution, 23(9):1776–1783. https://doi.org/10.1093/molbev/msl043

TULLY, E. – HARMAT, L. – MARÓTI-AGÓTS, Á. – ZENKE, P. – KOVÁCS, E. – GÁSPÁRDY, A. (2023): Maternal Diversity of the Yellow-Faced Sheep of Kecskemét based on the mtDNS Control Region. Danubian Animal Genetic Resources, 8(1):37-48. https://doi.org/10.59913/dagr.2023.12263

United Mitochondrial Disease Foundation (UMDF) https://www.umdf.org/

ZARDOYA, R. – VILLALTA, M. – LÓPEZ-PÉREZ, M.J. – GARRIDO-PERTIERRA, A. – MONTOYA, J. – BAUTISTA, J.M. (1995): Nucleotide sequence of the sheep mitochondrial DNS D-loop and its flanking tRNA genes. Current Genetics, 28(1):94-96. https://doi.org/10.1007/BF00311887

ZSOLNAI, A. – ANTON, I. – KÜHN, C. – FÉSÜS, L. (2003): Detection of single nucleotide polymorphisms coding for three ovine prion protein variants by primer extension assay and capillary electrophoresis. Electrophoresis, 24(4):634–638. https://doi.org/10.1002/elps.200390074

Published
2024-12-20
Section
Scientific papers