Maternal diversity of the Yellow-faced sheep of Kecskemét based on the mtDNA control region

  • Eilish TULLY Institute of Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, István utca 2, 1078 Budapest, Hungary
  • Levente HARMAT Experimental Farm, University of Veterinary Medicine Budapest, Dóra-major, 2225 Üllő, Hungary
  • Ákos MARÓTI-AGÓTS Institute of Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, István utca 2, 1078 Budapest, Hungary
  • Petra ZENKE Institute of Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, István utca 2, 1078 Budapest, Hungary
  • Endre KOVÁCS Institute of Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, István utca 2, 1078 Budapest, Hungary
  • András GÁSPÁRDY Institute of Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, István utca 2, 1078 Budapest, Hungary
Keywords: Yellow-faced sheep of Kecskemét or Sand-sheep, mtDNA control region, maternal origin


Regarding the Yellow-faced sheep of Kecskemét or Sand-sheep, known as a variant of Yellow-faced Berke sheep, very little research has been undertaken to date and the small population, which is mainly found in the southern region of Hungary, is at risk of extinction. In this study blood samples from Yellow-faced sheep of Kecskemét were selected for Control Region (CR) sequencing and subsequent analysis. These were compared with CR data available from GenBank resources and other indigenous Hungarian breeds in order to compare and contrast the differences and similarities between these. A total of 40 individuals from 2 flocks in the South of Hungary were sampled in 2020. Investigations were performed based on the total number of sites (1174 bps) of the CR. It was revealed that the relative genetic diversity within the Yellow-faced sheep of Kecskemét (haplotype and nucleotide diversity 0.950 and 0.01635, respectively), in comparison to other indigenous breeds, albeit from a limited population, cannot be deemed a narrow genetic pool. The values of the Tajima D test, Fu’s Fs statistic, Fu & Li’s D*- and F* tests were found to be non-significant (in each case P > 0.10). Statistical evaluation does not indicate a lack of alleles. This study demonstrated three haplogroups within the Yellow-faced sheep of Kecskemét population – A, B and C. Haplogroup B was the most prevalent, which is typical for European sheep breeds, given an understanding about their arrival into Europe from the Near East. This is comparative to other Hungarian breeds, such as the Cikta and Polled Racka, and also similar to the native breeds of neighbouring countries. Regarding Haplogroup A, which was found to a minor frequency, being lower than that found in the Cikta or Polled Racka, but to a greater extent than Tsigai. To date, haplogroup C, which is typically demonstrated in sheep from Central Asia, had only been discovered in one native Hungarian breed: the Cikta, however its presence was also discovered in the Sand-sheep. The examination of the haplogroups seems to confirm the fact that the sheep came to Hungary not only from Asia Minor, but also from the interior of Asia in the past, and the mitochondrial genetic information of these latter animals maintained in some representatives of today's breeds, surviving the effects of crossbreeding and selection.


BANDELT, H. – FORSTER, P. – RÖHL, A. (1999): Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16, 37–48.

CHEN, S.Y. – DUAN, Z.Y. – SHA, T. – XIANGYU, J. – WU, S.F. – ZHANG, Y.P. (2006): Origin, genetic diversity, and population structure of Chinese domestic sheep. Gene 376:216–23.

ĆINKULOV, M. – POPOVSKI, Z. – PORCU, K. – TANASKOVSKA, B. – HODZIĆ, A. – BYTYQI, H. – MEHMETI, H. – MARGETA, V. – DJEDOVIĆ, R. – HODA, A. – TRAILOVIĆ, R. – BRKA, M. – MARKOVIĆ, B. – VAZIĆ, B. – VEGARA, M. – OLSAKER, I. – KANTANEN, J. (2008): Genetic diversity and structure of the West Balkan Pramenka sheep types as revealed by microsatellite and mitochondrial DNA analysis. J Anim Breed Genet 125, 417–426.

DUDU, A. – GHIŢĂ, E. – COSTACHEA, M. – GEORGESCU, S.E. (2016): Origin and genetic diversity of Romanian Racka sheep using mitochondrial markers. Small Rumin Res 144, 276–282.

FERENCAKOVIC, M. – CURIK, I. – PEREZ-PARDAL, L. – ROYO, L.J. – CUBRIC-CURIK, V. – FERNANDEZ, I. – ÁLVAREZ, I. – KOSTELIC, A. – SPREM, N. – KRAPINEC, K. – GOYACHE, F. (2013): Mitochondrial DNA and Y-chromosome diversity in East Adriatic sheep. Anim Genet 44, 184–192.

FU, Y.X. – LI, W.H. (1993): Statistical tests of neutrality of mutations. Genetics 133, 693–709.

GANBOLD, O. – LEE, S.H. – SEO, D. – PAEK, W.K. – MANJULA, P. – MUNKHBAYAR, M. – LEE, J.H. (2019): Genetic diversity and the origin of Mongolian native sheep. Livest Sci 220, 17–25.

GÁSPÁRDY, A. – ZENKE, P. – KOVÁCS, E. – ANNUS, K. – POSTA, J. – SÁFÁR, L. – MARÓTI-AGÓTS, Á. (2021): Evaluation of maternal genetic background of two Hungarian autochthonous sheep breeds came from different geographical directions. Animals 12:218.

GÁSPÁRDY, A. – CSURGAY, K. – HARMAT, L. – MAYER, T. – ZENKE, P. – BARNA M. – SÁFÁR, L. – MARÓTI-AGÓTS, Á. (2022): Az alföldi suta racka juh mint genetikai ,zárványfajta filogenetikai hátterének és haplotípusdiverzitásának feltárása a kontrollrégió alapján. Magy Állatorvosok Lapja 144, 213–222.

HAMMOND, J. – JOHANSSON, I. – HARING, F. (1961): Handbuch der Tierzüchtung (Dritter Band: Rassenkunde). Verlag Paul Parey. Hamburg und Berlin, 194–200.

HEGEDŰS, L. (2021): The Kecskemét Sheep. Safeguard for Agricultural Varieties in Europe. SAVE e-News 1/2021. 8 Accessed 22 Feb 2022

HIENDLEDER, S. – KAUPE, B. – WASSMUTH, R. – JANKE, A. (2002): Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc R Soc B: Biol Sci 269, 893–904.

JUKES, T.H. (1990): How Many Nucleotide Substitutions Actually Took Place? Department of biophysics and medical physics. Accessed 17 Nov 2021

KOVACS, E. (2000): Állattartás a vajdasági Doroszlón. Logos

KOVACS, E. – MAROTI-AGOTS, Á. – HARMAT, L. – ANNUS, K. – ZENKE, P. – TEMPFLI, K. – SÁFÁR, L. – GÁSPÁRDY, A. (2020): A cikta juh jellemzése a mitokondriális DNS kontrollrégiója alapján. Magy Állatorvosok Lapja 142, 421–428.

LV, F.-H. – PENG, W.-F. – YANG, J. – ZHAO, Y.-X. – LI, W.-R. – LIU, M.-J. – MA, Y.-H. – ZHAO, Q.-J. – YANG, G.-L. – WANG, F. – LI, J.-Q. – LIU, Y.-G. – SHEN, Z.-Q. – ZHAO, S.-G. – HEHUA, E. – GORKHALI, N. – VAHIDI, S.M.F. – MULADNO, M. – NAQVI, A.N. – TABELL, J. – ISO-TOURU, T. – BRUFORD, M.W. – KANTANEN, J. – HAN, J.-L. – LI, M.-H. (2015): Mitogenomic meta-analysis identifies two stages of migration in the history of Eastern Eurasian sheep. Mol Biol Evol 32, 2515–2533.

MARIOTTI, M. – VALENTINI, A. – MARSAN, P.A. – PARISET, L. (2013): Mitochondrial DNA of seven Italian sheep breeds shows faint signatures of domestication and suggests recent breed formation. Mitochondrial DNA 24, 577–583.

MEADOWS, J.R.S. – LI, K. – KANTANEN, J. – TAPIO, M. – SIPOS, W. – PARDESHI, V. – GUPTA, V. – CALVO, J.H. – WHAN, V. – NORRIS, B. – KIJAS, J.W. (2005): Mitochondrial sequence reveals high levels of gene flow between sheep breeds from Asia and Europe. J Hered 96, 494–501.

PARISET, L. – MARIOTTI, M. – GARGANI, M. – JOOST, S. – NEGRINI, R. – PEREZ, T. – BRUFORD, M. – MARSAN, P.A. – VALENTINI, A. (2011): Genetic Diversity of Sheep Breeds from Albania, Greece, and Italy Assessed by Mitochondrial DNA and Nuclear Polymorphisms (SNPs). Sci World J 11, 1641–1659.

PEDROSA, S. – ARRANZ, J. – BRITO, N. – MOLINA, A. – PRIMITIVO, F.S. – BAYÓN, Y. (2007): Mitochondrial diversity and the origin of Iberian sheep. Genet Sel Evol 39, 91–103.

PEREIRA, F. – DAVIS, S.J.M. – PEREIRA, L. – MCEVOY, B. – BRADLEY, D.G. (2006): Genetic Signatures of a Mediterranean Influence in Iberian Peninsula Sheep Husbandry. Mol Biol Evol 23, 1420–1426.

PÓCZOS, L. (1934): Fésűsmerinó és cigája juhok termelési és jövedelmezőségi viszonyai. Doktori értekezés, Horváth Nyomda, Kiskunhalas

RODICZKY, J. (1904): A juhtenyésztés mult és jelen irányairól. Pátria Irodalmi Vállalat és Nyomdaipari Rt., Budapest, pp. 174.

ROZAS, J. – FERRER-MATA, A. – SÁNCHEZ-DELBARRIO, J.C. – GUIRAO-RICO, S. – LIBRADO, P. – RAMOS-ONSINS, S.E. – SÁNCHEZ-GRACIA, A. (2017): DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34, 3299–3302.

SULAIMAN, Y. – WU, C. – ZHAO, C. (2010): Phylogeny of 19 Indigenous Sheep Populations in Northwestern China Inferred from Mitochondrial DNA Control Region. Asian Journal of Animal and Veterinary Advances 6, 71–79.

SZENTKIRÁLYI, Á. (1923): Erdély juhai, Erdély juhtenyésztése, A mult – a jelen – a jövő. Providencia Könyvnyomdai Műintézet, Cluj-Kolozsvár

TAJIMA, F. (1989): Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.

TULLY, E. (2022): Characterisation of the Sand-sheep, an inclusion breed variant of the Yellow-faced Berke in Hungary, based on mtDNA control region sequencing. Thesis. University of Veterinary Medicine Budapest, Budapest, Hungary

ULMANSKI, S. (1922): Rumska cigaja ovca. Poljoprivredni Glasnik 2(17)

Scientific papers