Az ásványi nyersanyagok nanoanyagként való alkalmazhatósága az élelmiszeriparban és a mezőgazdaságban – áttekintés

  • Zákányiné Mészáros Renáta University of Miskolc, Reseach Institute of Applied Earth Sciences
  • Zákányi Balázs University of Miskolc, Institute of Water and Environment Management
  • Baracza Mátyás Krisztián University of Miskolc, Reseach Institute of Applied Earth Sciences

Absztrakt

Több ezer ásványi anyag létezik a Földön, és ezek egy részét az ipar különböző területein hasznosítják. A nanoanyagok egyedi alkalmazási jellemzőkkel rendelkeznek, amelyek elsősorban méretbeli tulajdonságaikhoz köthetők. Ezek az anyagok sokkal nagyobb felülettel rendelkeznek, mint ugyanezen anyagok normál méret intervallumú változata. Az agyagásványok különböző ionok adszorpcióján és deszorpcióján keresztül képesek megváltoztatni a fizikai és kémiai tulajdonságaikat. E tulajdonságok miatt a nanoanyagokat széles körben használják az iparban és a mezőgazdaságban. Az élelmiszeripar és az agrárszektor egyre nagyobb mértékben használja ezeket az anyagokat. Bentonitot, zeolitot és illitet már használnak a kozmetikai iparban és csomagolóanyagként is elterjedt. Másrészt a nanoanyagok közvetlen alkalmazása az élelmiszeriparban még nem elterjedt, inkább a feldolgozási folyamat valamely szakaszának elősegítése érdekében alkalmazzák ezeket az anyagokat. Valószínűleg a nanoanyagok, köztük az agyagásványok, fontos szerepet fognak játszani az élelmi szeripar fejlődésében. Mindezeket figyelembe véve, munkánk célja a jelenlegi alkalmazások áttekintése és összefoglalása volt. Tanulmányunk első részében összefoglaljuk a diszperz rendszerek főbb jellemzőit, továbbá az agyagásványok jellegzetes tulajdonságait, melyek az agrár és élelmiszeripari alkalmazhatóság szempontjából jelentősnek mondhatók. Bemutatjuk a nanoagyagok élelmiszerben alkalmazott főbb típusait és a jellegzetes felhasználásokat, végül összegezzük a jövőbeli lehetséges felhasználási irányokat.

Hivatkozások

EC (2011): Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/ EU). EC. (Ed.) Vol. Official Journal L 275, 38-40.

Friedriksberg, D. A. (1986): A Course in Colloid Chemistry, Mir Publisher, Moscow

Shaw, D. J. (1986): Bevezetés a kolloid és felületi kémiába (Introduction to Colloidal and Surface chemistry - a book), Budapest, Műszaki Könyvkiadó. (in Hungarian)

Szántó, F. (1987): Kolloidkémia alapjai (Basics of Colloid Chemistry), Debrecen, Gondolat. (in Hungarian)

Liang Y., Hilal N., Langston P. and Starov V. (2007): Interaction forces between colloidal particles in liquid: Theory and experiment. Advances in Colloid and Interface Science. Vol. 134-135, 151-166. https://doi.org/10.1016/j.cis.2007.04.003

Bárány, S. (2014): A kolloidkémia alapjai (Fundamentals of colloidal chemistry). II. Rákóczi Ferenc Kárpátaljai Magyar Főiskola (Rákóczi Ferenc II Transcarpathian College of Higher Education). Beregszász (Beregovo), 2014. ISBN 978-966-2303-12-4 (a book). (in Hungarian)

Hough D.B. and White L.R. (1980): The calculation of Hamaker constants from Liftshitz theory with applications to wetting phenomena. Advances in Colloid and Interface Science. Vol. 14, Issue 1., 3-41. https://doi.org/10.1016/0001-8686(80)80006-6

Bowen, R. and Jenner F. (1995): Theoretical descriptions of membrane filtration of colloids and fi ne particles: An assessment and review, Advances in Colloid and Interface Science, Vol. 56, 141-200, ISSN 0001-8686, 8686(94)00232-2. https://doi.org/10.1016/0001-8686(94)00232-2

Zapolskii A.K. and Bárány S. (1987): Koaguljantiifl okkuljantiv processah ochistki vodi, Khimiya (Coagulants and fl occulants in the process of water cleaning, Chemistry) Publisher, Leningrad. (in Russian)

Pascoli, M., de Lima, R. and Fraceto L. F. (2018): Zein Nanoparticles and Strategies to Improve Colloidal Stability: A Mini-Review. Frontiers in Chemistry. Volume 6, Article 6. DOI: 10.3389/fchem.2018.00006. https://doi.org/10.3389/fchem.2018.00006

Pujara, N., Jambhrunkar, S., Wong, K. Y., McGuckin, M. A. and Popat, A. (2017): Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. Journal of Colloid and Interface Science 488, 303-308. https://doi.org/10.1016/j.jcis.2016.11.015

von Staszewski, M., Rosa, J. and Pilosof, A. (2011): Influence of green tea polyphenols on the colloidal stability and gelation of WPC, Food Hydrocolloids. 25 (5), 1077-1084. https://doi.org/10.1016/j.foodhyd.2010.10.004

Sampathkumar K., Tan, X. T., Loo and S. C. J. (2020): Developing Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers. iScience, Volume 23, Issue 5. https://doi.org/10.1016/j.isci.2020.101055

Raviadaran, R., Ng, M. H., Manickam, S. and Chandran, D. (2019): Ultrasound-assisted water-in-palm oil nanoemulsion: Influence of polyglycerol polyricinoleate and NaCl on its stability. Ultrasonics Sonochemistry. Vol. 52., 353-363. https://doi.org/10.1016/j.ultsonch.2018.12.012

Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A. and Castle, L. (2008): Applications and implications of nanotechnologies for the food sector. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 25, 241-258. https://doi.org/10.1080/02652030701744538

Duran, N., and Marcato, P. D. (2013): Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science and Technology, 48, 1127-1134. https://doi.org/10.1111/ijfs.12027

Bouwmeester, H., Brandhoff , P., Marvin, H.J.P., Weigel, S. and Peters, R.J.B. (2014): State of the safety assessment and current use of nanomaterials in food and food production. Trends Food Sci. Technol. 40(2):200-210 https://doi.org/10.1016/j.tifs.2014.08.009

Rezic, I., Haramina, T. and Rezic, T. (2017): Metal nanoparticles and carbon nanotubes-perfect antimicrobial nano-fillers in polymer-based food packaging materials. In: Food Packaging (a book). Academic Press. 497-532. https://doi.org/10.1016/B978-0-12-804302-8.00015-7

Jafarzadeh, S., Salehabadi, A. and Jafari, S. M. (2020): Metal nanoparticles as antimicrobial agents in food packaging. In: Handbook of Food Nanotechnology. Applications and Approaches (a book). Academic Press. 379-414. https://doi.org/10.1016/B978-0-12-815866-1.00010-8

Nikolic, M. V., Vasiljevic, Z. Z., Auger, S. and Vidic, J. (2021): Metal oxide nanoparticles for safe active and intelligent food packaging. Trends in Food Science & Technology, Vol 116, 655-668. https://doi.org/10.1016/j.tifs.2021.08.019

Perlatti, B., Luısa de Souza Bergo, P., Fatima das Graças, M., da Silva, F., Batista Fernandes, J. and Rossi Forim, M. (2012): Polymeric nanoparticle-based insecticides: A controlled release purpose for agrochemicals. Tech Publisher. https://doi.org/10.5772/53355

Zambrano-Zaragoza, M. L., Mercado-Silva, E., Gutiérrez-Cortez, E., Castaño-Tostado, E. and Quintanar-Guerrero, D. (2011): Optimization of nanocapsules preparation by the emulsion-diff usion method for food applications. LWT - Food Science and Technology, Vol. 44, Issue 6, 1362-1368. https://doi.org/10.1016/j.lwt.2010.10.004

Sotelo-Boyás, M. E., Correa-Pacheco, Z. N., Bautista-Bañosa, S. and Corona-Rangela, M. L. (2017): Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT - Food Science and Technology, Vol. 77, 15-20. https://doi.org/10.1016/j.lwt.2016.11.022

Granata, G., Stracquadanio, S., Leonardi, M., Napoli, E., Consoli, G. M. L., Cafi so, V., Stefani, S., Geraci, C. (2018): Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chemistry, Vol. 269, 286-292. https://doi.org/10.1016/j.foodchem.2018.06.140

de Kruif, C. G. and Huppertz, T. (2012): Casein micelles: size distribution in milks from individual cows. Journal of Agricultural and Food Chemistry, 60, 4649-4655. https://doi.org/10.1021/jf301397w

Peters, R. J. B., Bouwmeester, H., Gottardo, S., Amenta, V., Arena, M., Brandhoff , P., Marvin, H. J. P., Mech, A., Moniz, F. B., Pesudo, L. Q., Rauscher, H., Schoonjans, R., Undas, A. K., Vettori, M. V., Weigel, S. and Aschberger, K. (2016): Nanomaterials for products and application in agriculture, feed and food, Trends. Food Science & Technology, Vol. 54, 155-164, ISSN 0924-2244. https://doi.org/10.1016/j.tifs.2016.06.008

Egerer, F. (1999): Ásványtan II. Miskolci Egyetemi Kiadó. (in Hungarian)

Zákányiné Mészáros, R. (2010): Agyagásvány szuszpenziók flokkuláltatása hidrolizáló sókkal, tenzidekkel, polimerekkel, ezek elegyeivel, és a képződött aggregátumok szilárdsága (Flocculation of clay mineral suspensions with hydrolyzing salts, tensides, polymers and their mixture, strength of the formed f l ocs). University of Miskolc. (Doctoral Dissertation, In Hungarian)

Tombácz, E. and Szekeres, M. (2004): Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27, 75. https://doi.org/10.1016/j.clay.2004.01.001

Tombácz, E., Nyilas, T., Libor, Zs. and Csanaki, Cs. (2004): Surface charge heterogeneity and aggregation of clay lamellae in aqueous suspensions. Progress in Colloid and Polymer Science, 125, 206. https://doi.org/10.1007/978-3-540-45119-8_35

Tombácz, E. and Szekeres, M. (2006): Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Applied Clay Science, 34, 105. https://doi.org/10.1016/j.clay.2006.05.009

Bárány, S. and Mészáros, R. (2006): Alumíniumsók hidrolízis termékeinek nanoré szecskéi és alkalmazásuk a víztisztításban (Hydrolysis product nanoparticles of aluminium salts and their application in water treatment). Magyar Kémiai Folyóirat, 112, 65. (in Hungarian)

Bárány, S. (1987): Vízközegű diszperz rendszerek f l okkuláltatása polimerekkel (Flocculation of aqueous dispersions by polymers). Magyar Kémikusok Lapja., XLII., 410. (in Hungarian)

Gogos, A., Knauer, K. and Bucheli, T. D. (2012): Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60, 9781-9792. https://doi.org/10.1021/jf302154y

Frederiksen, H. K., Kristensen, H. G. and Pedersen, M. (2003): Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrine incompatibility of the lipid and the pyrethroid and biological properties of the formulations. Journal of Controlled Release, 86, 243-252 https://doi.org/10.1016/S0168-3659(02)00406-6

Campos, E. V. R., De Oliveira, J. L., Da Silva, C. M. G., Pascoli, M., Pasquoto, T. and Lima, R. (2015): Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Scientific Reports, 5, 13809. https://doi.org/10.1038/srep13809

Wang, L. J., Li, X. F., Zhang, G. Y., Dong, J. F. and Eastoe, J. (2007): Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science. 314, 230-235. https://doi.org/10.1016/j.jcis.2007.04.079

Martí nez-Fernandez, D., Barroso, D. and Komarek, M. (2016): Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environmental Science and Pollution Research, 23, 1732-1741. https://doi.org/10.1007/s11356-015-5423-5

Pineda, L., Chwalibog, A., Sawosz, E., Lauridsen, C., Engberg, R. and Elnif, J. (2012): Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of Animal Nutrition, 66, 416-429. https://doi.org/10.1080/1745039X.2012.710081

Kuzma, J., Romanchek, J. and Kokotovich, A. (2008): Upstream oversight assessment for agrifood nanotechnology: A case studies approach. Risk Analysis, 28, 1081-1098. https://doi.org/10.1111/j.1539-6924.2008.01071.x

Mahler, G. J., Esch, M. B., Tako, E., Southard, T. L., Archer, S. D. and Glahn, R. P. (2012): Oral exposure to polystyrene nanoparticles affects iron absorption. Nature Nanotechnology, 7, 264-271. https://doi.org/10.1038/nnano.2012.3

Sarkar, B., Bhattacharjee, S., Daware, A., Tribedi, P., Krishnani, K. K., and Minhas, P. S. (2015): Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Research Letters, 10, 1-14. https://doi.org/10.1186/s11671-015-1073-2

Selim, N. A., Radwan, N. L., Youssef, S. F., Salah Eldin, T. A. and Abo Elwafa, S. (2015): Eff ect of inclusion inorganic, organic or nano selenium forms in broiler diets on: 2-Physiological, immunological and toxicity statuses of broiler chicks. International Journal of Poultry Science, 14, 144-155. https://doi.org/10.3923/ijps.2015.144.155

Mroczek-Sosnowska, N., Łukasiewicz, M., Wnuk, A., Sawosz, E., Niemiec, J. and Skot, A. (2015): In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. Journal of the Science of Food and Agriculture, 1-5. https://doi.org/10.1002/jsfa.7477

Verma, A. K., Singh, V. P. and Vikas, P. (2012): Application of nanotechnology as a tool in animal products processing and marketing: An overview. American Journal of Food Technology. 7, 445-451. https://doi.org/10.3923/ajft.2012.445.451

Dekkers, S., Krystek, P., Peters, R. J. B., Lankveld, D. P. K., Bokkers, B. G. H. and Van Hoeven-Arentzen, P. H. (2011): Presence and risks of nanosilica in food products. Nanotoxicology, 5, 393-405. https://doi.org/10.3109/17435390.2010.519836

Peters, R.J.B., Van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P. F. G., Marvin, H. J. P. and Weigel, S. (2014a): Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. Journal of Agricultural and Food Chemistry, 62 (27), 6285-6293. https://doi.org/10.1021/jf5011885

Weir, A., Westerhoff , P., Fabricius, L., Hristovski, K. and Von Goetz, N. (2012): Titanium dioxide nanoparticles in food and personal care products. Environmental Science and Technology. 46, 2242-2250. https://doi.org/10.1021/es204168d

Amna, T., Hassan, M. S., Yousef, A., Mishra, A., Barakat, N. A. M. and Khil, M. S. (2013): Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system. Food and Bio process Technology, 6, 988-996. https://doi.org/10.1007/s11947-011-0741-1

Zimmermann, M. B. and Hilty, F. M. (2011): Nanocompounds of iron and zinc: Their potential in nutrition. Nanoscale, 3, 2390-2398. https://doi.org/10.1039/c0nr00858c

Donatella, D., Clara, S., Marilena, P., Sossio, C. and Antonella, M. (2013): Polypropylene and polyethylene-based nanocomposites for food packaging applications. Ecosustainable polymer nanomaterials for food packaging. CRC Press, 143-168.

Silvestre, C. and Cimmino, S. (2013): Ecosustainable polymer nanomaterials for food packaging. New York: CRC Press. https://doi.org/10.1201/b13754

Brody, A. L., Bugusu, B., Han, J. H., Sand, C. K. and McHugh, T. H. (2008): Innovative food packaging solutions e scientific status summary. Journal of Food Science, 73, pp. 107-116. https://doi.org/10.1111/j.1750-3841.2008.00933.x

Johnston, J. H., Grindrod, J. E., Dodds, M., and Schimitschek, K. (2008): Composite nanostructured calcium silicate phase change materials for thermal buffering in food packaging. Current Applied Physics, 8, 508-511. https://doi.org/10.1016/j.cap.2007.10.059

Shemesh, R., Krepker, M., Goldman, D., Danin-Poleg, Y., Kashi, Y. and Nitzan, N. (2015): Antibacterial and antifungal LDPE films for active packaging. Polymers for Advanced Technologies. 26, 110-116. https://doi.org/10.1002/pat.3434

Nanocor (2016): URL: http://www.nanocor.com/ Access date: 16 February 2016.

Peters, R. J., Brandhof, P., Weigel, S., Marvin, H., Bouwmeester, H. and Aschberger, K. (2014b): RIKILT and JRC. Inventory of Nanotechnology applications in the agricultural, feed and food sector. EFSA supporting publication EN-621. (pp. 125). https://doi.org/10.2903/sp.efsa.2014.EN-621

EFSA. (2016): European food safety authority panel on food contact materials, Enzymes, flavourings and processing aids), 2016. Scientific opinion on the safety assessment of the substance zinc oxide, nanoparticles, for use in food contact materials. EFSA Journal, 14 (3), 4408-4416. https://doi.org/10.2903/j.efsa.2016.4408

Megjelent
2024-09-11
Rovat
Cikkek