Examining inter-relationships between bone age, somatic age, and morphological age
Abstract
Our study investigated the growth patterns, bone structure indicators, and changes in absolute and relative body components used to characterize the bone structure of average Hungarian children aged 7–18 years based on a cross-sectional sample (N: 1678). After exploring the age-related patterns of various lengths, widths, bone diameters, circumferences, and skinfolds, we analysed the relationships of the most commonly used methods for characterizing biological development, examining their correlations with chronological age and with each other.
According to the results of the Second National Growth Study, we found no statistical difference between the body dimensions of children measured almost 20 years ago and children examined in 2013–2014. However, similarly to a trend observed in several countries, a positive secular trend was observed also in our study raising the need for a Third National Growth Study. Among the bone structure indicators, percentile samples constructed from the BUA (broadband ultrasound attenuation) and SOS (speed of ultrasound) indicators determined with the DTU-one ultrasonic osteometer provide (unpublished so far) reference data in children aged 7–18.
By examining the relationship between biological ages and chronological age, we found that after the age of 14 in girls and after the age of 16 in boys, deceleration of developmental processes may influence the accuracy of the assessment of biological maturity. The strong correlations between bone age, morphological age, and somatic age allowed us to develop a regression model based only on body measures to estimate bone age. However, it must be noted that the applicability of methods based on growth and maturation is population specific and needs periodic modification.
The analysis of age-related patterns in body measurements and the relationships of biological ages characterizing biological development enabled us to develop bone age estimation equations based solely on anthropometric body dimensions, which can be quickly and reliably applied in screening tests in schools and paediatric clinics.
References
Albaladejo-Saura, M., Vaquero-Cristóbal, R., Esparza-Ros, F. (2021): Relationship between biological maturation, physical fitness, and kinanthropometric variables of young athletes. International Journal of Environmental Research, 18(1): 328. DOI: https://doi.org/10.3390/ijerph18010328
Bodzsár, É. (2006): Humánbiológia. Fejlődés: növekedés, érés. Egyetemi Tankönyv. ELTE Eötvös Kiadó, Budapest.
Bodzsár, É., Zsákai, A. (2012): Magyar gyermekek és serdülők testfejlettségi állapota. Országos Növekedésvizsgálat 2003–2006. Plantin Kiadó, Budapest.
Bodzsár, É., Zsákai, A., Utczás, K., Tausz, K. (2013): Hátrányos helyzetű kistérségek gyermekei nemi érésének mintázata. Anthropologiai Közlemények, 54: 3–13.
Boyce, A.M., Gafni, R.I. (2011): Approach to the child with fractures. Journal of Clinical Endocrinology & Metabolism, 96(7): 1943–1952. DOI: https://doi.org/10.1210/jc.2010-2546
Drinkwater, D.T., Ross, W.D. (1980): Anthropometric fractionation of body mass. In: Ostyn, M., Beunen, G., Simons, J. (Eds) Kinanthropometry II. pp. 179–189. University Press, Baltimore.
Greulich, W.W., Pyle, S.I. (1959): Radiographic atlas of skeletal development of hand and wrist. Stanford University Press, Stanford.
Kovács, I., Kovács, K., Gerván, P., Utczás, K., Oláh, G., Tróznai, Z., Berencsi, A., Szakály, H., Gombos, F. (2022): Ultrasonic bone age fractionates cognitive abilities in adolescence. Scientific Reports, 12(1): 5311. DOI: https://doi.org/10.1038/s41598-022-09329-z
Maggio, A., Flavel, A., Hart, R., Franklin, D. (2016): Skeletal age estimation in a contemporary Western Australian population using the Tanner–Whitehouse method. Forensic Science International, 263: e1–8. DOI: https://doi.org/10.1016/j.forsciint.2016.03.042
Malina, R.M., Coelho-e-Silva, M.J., Figueiredo, A.J., Philippaerts, R.M., Hirose, N., Pena Reyes, M.E., Gilli, G., Benso, A., Vaeyenes, R., Deprez, D., Gugliemlo, L.F. Buranarugsa, R. (2018): Tanner–Whitehouse skeletal ages in male youth soccer players: TW2 or TW3?. Sports Medicine, 48: 991–1008. DOI: https://doi.org/10.1007/s40279-017-0799-7
Mészáros, J., Mohácsi, J. (1983): A biológiai fejlettség meghatározása és a felnőtt termet előrejelzése a városi fiatalok fejlődésmenete alapján. Kandidátusi disszertáció. Magyar Tudományos Akadémia, Budapest.
Mirwald, R.L., Baxter-Jones, A.D., Bailey, D.A., Beunen, G.P. (2002): An assessment of maturity from anthropometric measurements. Medicine & Science in Sports & Exercise, 34(4): 689–694. DOI: https://doi.org/10.1097/00005768-200204000-00020
Pápai, J., Szmodis, I., Bodzsár, É.B. (1992): Growth, maturation and performance. Anthropologiai Közlemények, 34: 75–82.
Tanner, J.M., Whitehouse, R.H., Cameron, N., Marshall, W.A., Healy, M.J.R., Goldstein, H. (1983): Assessment of skeletal maturity and prediction of adult height (TW2 method). 2nd edition. Academic Press, London.
Tanner, J.M., Healy, M., Goldstein, H., Cameron, N. (2001): Assessment of skeletal maturity and prediction of adult height (TW3 method). 3rd edition. WB Saunders, Harcourt Publishers Ltd, London.
Utczás, K., Muzsnai, Á., Cameron, N., Zsákai, A., Bodzsár, É. (2017): A comparison of skeletal maturity assessed by radiological and ultrasonic methods. American Journal of Human Biology, 29(4): e22966. DOI: https://doi.org/10.1002/ajhb.22966
Vitályos, G.Á. (2014): A testforma és a fizikai aktivitás. A magyar gyermekek testformájának, testi fejlődésének alakulása a szabadidő eltöltésének függvényében. Anthropologiai Közlemények, 55: 71–78.


