Válogatott kézilabdázó játkosok endokrin státuszának vizsgálata

  • Fanny Zselyke Rátz-Sulyok Eötvös Loránd Tudományegyetem, TTK, Biológia Doktori Iskola
  • Csilla Jang-Kapuy Eötvös Loránd Tudományegyetem, TTK, Biológia Doktori Iskola
  • Péter Bakonyi Magyar Kézilabda Szövetség, Sporttudományi és Diagnosztikai Igazgatóság
  • Bettina Béres Magyar Kézilabda Szövetség, Sporttudományi és Diagnosztikai Igazgatóság
  • Tamás Dobronyi Magyar Kézilabda Szövetség, Sporttudományi és Diagnosztikai Igazgatóság
  • Gergő Simon Magyar Kézilabda Szövetség, Sporttudományi és Diagnosztikai Igazgatóság
  • Annamária Zsákai Eötvös Loránd Tudományegyetem, Embertani Tanszék
  • Tamás Szabó Magyar Kézilabda Szövetség, Sporttudományi és Diagnosztikai Igazgatóság
Kulcsszavak: Salivary biomarkers, Resting hormone levels, Testosterone, Oestradiol, Cortisol, Elite athletes, Handball players

Absztrakt

The changes of endocrine state of elite athletes have been mostly researched in regards of effects of strenuous training, the stress of competition, the risk of overtraining and the difference between sports. However, the baseline hormonal profile of athletes was not followed along from a young age to their adult careers. Since the selection into professional athletic institutions starts years before reaching adulthood, training influences both somatic and psychological developmental processes. A relatively novel non-invasive tool to easily follow young elite athletes’ progression on an endocrine level is the analysis of salivary biomarkers.

We set our research goal to mapping out the endocrine profile of elite athletes and compare their results to the available recommended salivary ELISA non-athlete references. In the Sport Sciences and Diagnostic Research Centre of the Hungarian Handball Federation (between 2023–2025), we analysed 507 elite handball player’s (aged 13–35 ys) salivary cortisol, testosterone, and in case of female players, 17-β-oestradiol levels.

The results of salivary resting hormone concentrations showed that adult male handball players had a high relative frequency of high testosterone levels, while female players had high prevalence of low oestradiol levels compared to non-athlete references. The cortisol concentrations showed different patterns in subadult and adult athletes, an increased level of cortisol in adult handball players was found. The detected salivary concentration in athletes and the analysis of age dependent patterns necessitates the creation of athlete-specific references and the extension of the non-athlete references into the younger, subadult age ranges.

Hivatkozások

Alexander, S.E., Pollock, A.C., Lamon, S. (2022): The effect of sex hormones on skeletal muscle adaptation in females. European Journal of Sport Science, 22(7): 1035–1045. DOI: https://doi.org/10.1080/17461391.2021.1921854

Allen, D.B. (1999): Effects of Fitness Training on Endocrine Systems in Children and Adolescents. Advances in Pediatrics, 46(1): 41–66. DOI: https://doi.org/10.1016/S0065-3101(24)00027-6

Cadegiani, F. A., Kater, C. E. (2017). Hypothalamic-Pituitary-Adrenal (HPA) Axis Functioning in Overtraining Syndrome: Findings from Endocrine and Metabolic Responses on Overtraining Syndrome (EROS) - EROS-HPA Axis. Sports Medicine - Open, 3: 45. DOI: https://doi.org/10.1186/s40798-017-0113-0

Cadegiani, F. A., Kater, C. E. (2019). Basal Hormones and Biochemical Markers as Predictors of Overtraining Syndrome in Male Athletes: The EROS-BASAL Study. Journal of Athletic Training, 54(8): 906–914. https://doi.org/10.4085/1062-6050-148-18

Cheng, A.J., Jude, B., Lanner, J.T. (2020): Intramuscular mechanisms of overtraining. Redox Biology, 35(February): 101480. DOI: https://doi.org/10.1016/j.redox.2020.101480

Chidi-Ogbolu, N., Baar, K. (2019): Effect of estrogen on musculoskeletal performance and injury risk. Frontiers in Physiology, 10(JAN): 1834. DOI: https://doi.org/10.3389/fphys.2018.01834

Collomp, K., Olivier, A., Castanier, C., Bonnigal, J., Bougault, V., Buisson, C., Ericsson, M., Duron, E., Favory, E., Zimmermann, M., Amiot, V., Teulier, C. (2025): Correlation between serum and saliva sex hormones in young female athletes. Journal of Sports Medicine and Physical Fitness, 65(2): 274–278. DOI: https://doi.org/10.23736/S0022-4707.24.16488-2

Cook, C.J., Kilduff, L.P., Crewther, B.T. (2018): Basal and stress-induced salivary testosterone variation across the menstrual cycle and linkage to motivation and muscle power. Scandinavian Journal of Medicine and Science in Sports, 28(4): 1345–1353. DOI: https://doi.org/10.1111/sms.13041

Crewther, B.T., Lowe, T.E., Ingram, J., Weatherby, R.P. (2010): Validating the salivary testosterone and Cortisol concentration measures in response to short high-intensity exercise. Journal of Sports Medicine and Physical Fitness, 50(1): 85–92.

Dipla, K., Kraemer, R.R., Constantini, N.W., Hackney, A.C. (2021): Relative energy deficiency in sports (RED-S): elucidation of endocrine changes affecting the health of males and females. Hormones, 20(1): 35–47. DOI: https://doi.org/10.1007/s42000-020-00214-w

Genc, A., Güven, D., Acar, H., Tutkun, E. (2019): Investigation of the endometrial thickness and estrogen level in athletes and sedentaries. Clinical and Experimental Obstetrics and Gynecology, 46(1): 123–126. https://doi.org/10.12891/ceog4531.2019

Healy, M.L., Gibney, J., Pentecost, C., Wheeler, M.J., Sonksen, P.H. (2014): Endocrine profiles in 693 elite athletes in the postcompetition setting. Clinical Endocrinology, 81(2): 294–305. DOI: https://doi.org/10.1111/cen.12445

Misra, M. (2014): Neuroendocrine mechanisms in athletes. Handbook of Clinical Neurology, 124: 373–386. DOI: https://doi.org/10.1016/B978-0-444-59602-4.00025-3

Nazem, T.G., Ackerman, K.E. (2012): The Female Athlete Triad. Sports Health, 4(4): 302–311. DOI: https://doi.org/10.1177/1941738112439685

Ostapiuk-Karolczuk, J., Kasperska, A., Dziewiecka, H., Cieslicka, M., Zawadka-Kunikowska, M., Zaleska-Posmyk, I. (2024): Changes in the hormonal and inflammatory profile of young sprint- and endurance-trained athletes following a sports camp: a nonrandomized pretest-posttest study. BMC Sports Science, Medicine and Rehabilitation, 16(1): 1–10. DOI: https://doi.org/10.1186/s13102-024-00924-3

Rátz-Sulyok, F.Zs., Jang-Kapuy, Cs., Nagy, A.S., Zsákai, A., Szabó, T. (2024) The relationship between endocrine status and body composition in elite handball players (14-21 ys). Journal of Bioanthropology, 4(2): 53. DOI: https://doi.org/10.54062.jb

Skarakis, N.S., Mastorakos, G., Georgopoulos, N., Goulis, D.G. (2021): Energy deficiency, menstrual disorders, and low bone mineral density in female athletes: a systematic review. Hormones, 20(3): 439–448. DOI: https://doi.org/10.1007/s42000-021-00288-0

Sönksen, P.H., Holt, R.I.G., Böhning, W., Guha, N., Cowan, D.A., Bartlett, C., Böhning, D. (2018): Why do endocrine profiles in elite athletes differ between sports? Clinical Diabetes and Endocrinology, 4(1): 1–16. DOI: https://doi.org/10.1186/s40842-017-0050-3

Todd, E., Elliott, N., Keay, N. (2022): Relative energy deficiency in sport (RED-S). British Journal of General Practice, 72(719): 295–297. https://doi.org/10.3399/bjgp22X719777

Walsh, N.P. (2018): Recommendations to maintain immune health in athletes. European Journal of Sport Science, 18(6): 820–831. DOI: https://doi.org/10.1080/17461391.2018.1449895

Zsákai, A., Biri, B., Utczás, K., Fehér, V.P., Bodzsár, É. (2015): A női nemi hormonok koncentrációja és a testzsírosság változókorú nőknél. Anthropologiai Közlemények, 56: 139–151. DOI: https://10.20330/AnthropKozl.2015.56.139

Megjelent
2025-12-18
Rovat
Eredeti közlemények