The effect of ivermectin as an antihelminthic drug on the feeding acti-vity and growth of common rough woodlouse (Porcellio scaber) (Crus-tacea: Isopoda)

  • Dénes Eszter Magyar Agrár és Élettudományi Egyetem
  • Kiss Lola Virág Magyar Agrár- és Élettudományi Egyetem
  • Nagy Péter István
  • Anikó Seres Magyar Agrár- és Élettudományi Egyetem
Keywords: soilecotoxicology, ecosystem services, macrodecomposer, side effect, contaminated food

Abstract

The effective control of parasites in farm animals is an essential aspect of agricultural practice. Nevertheless, little is known about the effects of the pesticides involved on non-target soil organisms, such as macrodecomposer isopods. In this study, we examined the impact of consuming leaves contaminated with ivermectin on body weight gain in the common rough woodlouse (Porcellio scaber). Within the tested concentration range (1, 10, 100, and 500 μg/L of pure ivermectin), significant decreases in body weight and faecal output were observed only at the highest concentration tested (500 μg/L) compared to the control.

 The decomposition of organic matter is one of the most critical ecosystem services provided by soil. Consequently, damage to the organisms involved in this process can have serious ecological consequences. The environmentally realistic levels of ivermectin are close to the two lowest doses we tested (1 and 10 μg/L), which did not show significant adverse effects on growth or faecal output.

 In conclusion, our results suggest that ivermectin, at concentrations likely to occur in the environment, does not pose a significant threat to the feeding activity or development of isopods.

References

Burg R. W., Miller B. M., Baker E. E., Birnbaum J., Currie S. A., Hartman R., Kong Y., Monaghan R. L., Olson G., Putter I., Tunac J. B., Wallick H., Stapley E. O., Oiwa R. & Ōmura S. (1979). Aver-mectins, New Family of Potent Anthelmintic Agents: Producing Organism and Fermen¬tation. Anti-microbial Agents and Chemotherapy, 15(3), 361–367. https://doi.org/10.1128/aac.15.3.361

Chabala, J. C., Mrozik, H., Tolman, R. L., Eskola, P., Lusi, A., Peterson, L. H., Woods, M. F., Fisher, M. H., Campbell, W. C., Egerton, J. R. & Ostlind, D. A. (1980). Ivermectin, a new broad-spectrum antiparasitic agent. Journal of Medicinal Chemistry, 23, 1134–1136.

Ding, J., Drewes, C. D. & Hsu, W. H. (2001). Behavioural effects of ivermectin in a freshwater oligo-cheate, Lumbriculus variegatus. Environmental Toxicology and Chemistry, 20(7), 1584–1590. https://doi.org/10.1002/etc.5620200724

Donker, M. H. (1992). Energy reserves and distribution of metals in populations of the isopod Porcellio scaber from metal contaminated sites. Functional Ecology, 6, 445–454. https://doi.org/10.2307/2389282

Donker, M. H., Van Capelleveen, E. & Van Straalen, N. M. (1993). Metal contamination affects size-structure and life-history dynamics in isopod field populations. In Dallinger, R. & Rainbow, P. S. (eds.): Ecotoxicology of Metals in Invertebrates. (pp. 383–399). Lewis.

Drobne, D. (1997). Terrestrial isopods – a good choice for toxicity testing of pollutants in the terrestrial environment. Environmental Toxicology and Chemistry, 16(6), 1159–1164. https://doi.org/10.1002/etc.5620160610

Egerton, J. R., Ostlind, D. A., Blair, L. S., Eary, C. H., Suhayda, D., Cifelli, S., Riek, R. F. & Camp-bell, W. C. (1979). Avermectins, a new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrobial Agents and Chemotherapy, 15(3), 372–378. https://doi.org/10.1128/aac.15.3.372

Farkas, S. & Vilisics, F. (2013). Magyarország szárazföldi ászkarák faunájának határozója (Isopoda: Oniscidea). Natura Somogyiensis, 23, 89–124.

Fischer, E., Farkas, S., Hornung, E. & Past, T. (1997). Sublethal Effects of an Organophosphorous Insecticide, Dimethoate, on the Isopod Porcellio scaber Latr. Comparative Biochemistry and Phy-siology Part C: Pharmacology, Toxicology and Endocrinology, 116, 161–166. https://doi.org/10.1016/S0742-8413(96)00164-8

Gál, J., Markiewicz-Patkowska, J., Hursthouse, A. & Tatner, P. (2008). Metal uptake by woodlice in urban soils. Ecotoxicology and Environmental Safety, 69(1), 139–149. https://doi.org/10.1016/j.ecoenv.2007.01.002

Gospodarek, J., Petryszak, P., Kołoczek, H. & Rusin, M. (2018). The effect of soil pollution with pet-roleum-derived substances on Porcellio scaber Latr. (Crustacea, Isopoda). Environmental Monitor-ing and Assessment, 191, 38. https://doi.org/10.1007/s10661-018-7181-6

Halley, B. A., Jacob, T. A. & Lu, A. Y. H. (1989). The environmental impact of the use of iver-mectin—environmental effects and fate. Chemosphere, 18, 1543–1563. https://doi.org/10.1016/0045-6535(89)90045-3

Halling-Sørensen, B., Jensen, J., Tjornelund, J. & Montforts, M. H. M. M. (2001). Worst-case esti-mates of predicted environmental soil concentrations (PEC) of selected veterinary antibiotics and re-sidues used in Danish agriculture. In Kummerer, K. (ed.): Pharmaceuticals in the Environment. (pp. 143–157). Springer Verlag.

Hornung, E., Farkas, S. & Fischer, E. (1998). Tests on the Isopod Parcellio scaber. In Lokke, H. & van Gestel, C. A. M. (eds.): Handbook of Soil lnvertebrate Toxicity Tests. (pp. 207–226). John Wiley & Sons Ltd.

Jones, D. T. & Hopkin, S. P. (1998). Reduced survival and body size in the terrestrial isopod Porcellio scaber from a metal-polluted environment. Environmental Pollution, 99, 215–223. https://doi.org/10.1016/S0269-7491(97)00188-7

Kiss, L. V., Hrács, K., Nagy, P. I. & Seres, A. (2018). Effects of Zinc Oxide Nanoparticles on Panag-rellus redivivus (Nematoda) and Folsomia candida (Collembola) in Various Test Media. Interna-tional Journal of Environmental Research, 12, 233–243. https://doi.org/10.1007/s41742-018-0086-y

Kolar, L., Jemec, A., van Gestel, C. A. M., Valant, J., Hrženjak, R., Eržen, N. K. & Zidar, P. (2010). Toxicity of abamectin to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Ecotoxicology, 19(5), 917–927. https://doi.org/10.1007/s10646-010-0473-4

McKellar, Q. A. & Jackson, F. (2004). Veterinary anthelmintics: old and new. TRENDS in Parasito-logy, 20(10), 456–461. https://doi.org/10.1016/j.pt.2004.08.002

Õmura, S. & Crump, A. (2004). The life and times of ivermectin - a success story. Nature Reviews| Microbiology, 2, 984–989. https://doi.org/10.1038/nrmicro1048

Otártics, M. Zs., Juhász, N., Üst, N. & Farkas, S. (2014). Egy heterogén erdőállomány avarlakó száraz-földi ászkarák-közösségeinek (Isopoda: Oniscidea) összehasonlítása. Natura Somogyiensis, 24, 61–70. https://doi.org/10.24394/NatSom.2014.24.61

Petrikovszki, R. & Boros, G. (2025). The first blush of tasting: Porcellio scaber isopod and Enchytrae-us albidus enchytraeid prefer the leaf litter of invasive over native plant species. The European Zoo-logical Journal, 92, 328–336. https://doi.org/10.1080/24750263.2025.2456615

R Core Team (2025). R: A language and environment for statistical computing. R Foundation for Sta-tistical Computing, Vienna, Austria. Verzió: 4.4.3 (2025-02-28) http://www.R-project.org/.

Römbke, J., Coors, A., Fernández, Á. A., Förster, B., Fernández, C., Jensend, J., Lumaret, J-P., Cots, M. Á. P. & Liebig, M. (2010). Effects of the parasiticide ivermectin on the structure and function of dung and soil invertebrate communities in the field (Madrid, Spain). Applied Soil Ecology, 45, 284–292. https://doi.org/10.1016/j.apsoil.2010.05.004

Sommer, C. & Bibby, B. M. (2002). The influence of veterinary medicines on the decomposition of dung organic matter in soil. European Journey of Soil Biology, 38(2), 155–159. https://doi.org/10.1016/S1164-5563(02)01138-X

Tanaka, K. & Udawaga, T. (1993). Cold adaptation of the terrestrial isopod Porcellio scaber to subnive-an environments. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 163(6), 439–444.

Thain, J. E., Davies, I. M., Rae, G.H. & Allen, Y. T. (1997). Acute toxicity of ivermectin to the lug-worm, Arenicola marina. Aquaculture, 159(1–2), 47–52. https://doi.org/10.1016/S0044-8486(97)00210-X

Thylefors, B. (2004). Eliminating onchocerciasis as a public health problem. Tropical Medicine and International Health, 9(4), A1–A3. https://doi.org/10.1111/j.1365-3156.2004.01226.x

Vilisics, F. & Hornung, E. (2010). Újabb adatok Magyarország szárazföldi ászkarákfaunájához (Crus-tacea, Isopoda, Oniscidea). Állattani Közlemények, 95, 87–120.

Zödl, B. & Wittmann, K. J. (2003). Effects of sampling, preparation and defecation on metal concent-rations in selected invertebrates at urban sites. Chemosphere, 52(7), 1095–1103. https://doi.org/10.1016/S0045-6535(03)00442-9

Published
2025-09-08
Section
eredeti közlemények