Az ember általi környezet-átalakítás és az ivarváltás evolúciós ökológiája kétéltűeknél

  • Bókony Veronika HUN-REN Agrártudományi Kutatóközpont, Növényvédelmi Intézet, Evolúciós Ökológiai Osztály
Kulcsszavak: adaptáció, antropogén környezeti változások, fenotípusos plaszticitás, ivarmeghatározás

Absztrakt

Napjainkban az ökológia, az evolúcióbiológia és a természetvédelem számára kiemelkedően fontos azoknak a biológiai változásoknak a megértése, amelyek révén az élőlények megbirkóznak az ember általi környezet-átalakítás kihívásaival. Dolgozatom ezt a kérdéskört vizsgálja a változó testhőmérsékletű gerinces állatok, azon belül is elsősorban a kétéltűek szempontjából, melyeknek számos faja veszélyeztetett. A dolgozatban áttekintett kísérletek és terepi megfigyelések sora igazolta, hogy a kémiai környezetszennyezésnek kitett területeken élő barnavarangy-populációk az ember által átalakított környezetre számos élettani változással reagálnak, melyek hatékonyabb védekezést tesznek lehetővé a környezeti stresszhatásokkal szemben. Kiderült továbbá, hogy az erdei béka hazai populációiban, különösen a városi és mezőgazdasági területeken gyakori az ivarváltás, azaz a genetikailag nőstény egyedek egy része hím fenotípusú. Ennek oka részben a hőhullámokban keresendő, és a hőség által indukált ivarváltás a rátermettség csökkenésével jár együtt. Emellett az elméleti modellezéssel végzett vizsgálataink kimutatták, hogy az ivarváltás bekövetkezésének esélye, valamint populációdinamikai és evolúciós következményei függenek az ivari kromoszómák típusától és a párválasztási preferenciáktól. Ezek az eredmények rávilágítanak a kémiai környezetszennyezés, a klímaváltozás és a városi hősziget-effektus potenciális következményeinek sokrétűségére, amelyek különös mértékben fenyegetik a környezeti hatásokra érzékeny ivari fejlődésű állatfajok fennmaradását.

Hivatkozások

ALBERTI M., MARZLUFF J. & HUNT V.M. 2017. Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philosophical Transactions of the Royal Society B: Biological Sciences, 372: 20160029. https://doi.org/10.1098/rstb.2016.0029

ATWELL J.W., CARDOSO G.C., WHITTAKER D.J., CAMPBELL-NELSON S., ROBERTSON K.W. & KETTERSON E.D. 2012. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behavioral Ecology, 23: 960–969. https://doi.org/10.1093/beheco/ars059

BAROILLER J.-F. & D’COTTA H. 2016. The reversible sex of gonochoristic fish: insights and consequences. Sexual Development, 10: 242–266. https://doi.org/10.1159/000452362

BÓKONY V., MIKÓ Z., MÓRICZ Á.M., KRÜZSELYI D. & HETTYEY A. 2017a. Chronic exposure to a glyphosate-based herbicide makes toad larvae more toxic. Proceedings of the Royal Society B: Biological Sciences, 284: 20170493. https://doi.org/10.1098/rspb.2017.0493

BÓKONY V., KÖVÉR S., NEMESHÁZI E., LIKER A. & SZÉKELY T. 2017b. Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters. Philosophical Transactions of the Royal Society B: Biological Sciences, 372: 20160325. https://doi.org/10.1098/rstb.2016.0325

BÓKONY V., UJHEGYI N., HAMOW K., BOSCH J., THUMSOVÁ B., VÖRÖS J., ASPBURY A.S. & GABOR C.R. 2021a. Stressed tadpoles mount more efficient glucocorticoid negative feedback in anthropogenic habitats due to phenotypic plasticity. Science of The Total Environment, 753: 141896. https://doi.org/10.1016/J.SCITOTENV.2020.141896

BÓKONY V., UJHEGYI N., MIKÓ Z., ERÖS R., HETTYEY A., VILI N., GÁL Z., HOFFMANN O.I. & NEMESHÁZI E. 2021b. Sex reversal and performance in fitness-related traits during early life in agile frogs. Frontiers in Ecology and Evolution, 9: 745752.

https://doi.org/10.3389/fevo.2021.745752

BÓKONY V., ÜVEGES B., UJHEGYI N., VEREBÉLYI V., NEMESHÁZI E., CSÍKVÁRI O. & HETTYEY A. 2018. Endocrine disruptors in breeding ponds and reproductive health of toads in agricultural, urban and natural landscapes. Science of The Total Environment, 634: 1335–1345. https://doi.org/10.1016/j.scitotenv.2018.03.363

BÓKONY V., ÜVEGES B., VEREBÉLYI V., UJHEGYI N. & MÓRICZ Á.M. 2019. Toads phenotypically adjust their chemical defences to anthropogenic habitat change. Scientific Reports, 9: 3163. https://doi.org/10.1038/s41598-019-39587-3

BONIER F. 2012. Hormones in the city: Endocrine ecology of urban birds. Hormones and Behavior, 61: 763–772. https://doi.org/10.1016/j.yhbeh.2012.03.016

BRADSHAW A.D. & HARDWICK K. 1989. Evolution and stress—genotypic and phenotypic components. Biological Journal of the Linnean Society, 37: 137–155. https://doi.org/10.1111/j.1095-8312.1989.tb02099.x

BRANS K.I., STOKS R. & DE MEESTER L. 2018. Urbanization drives genetic differentiation in physiology and structures the evolution of pace-of-life syndromes in the water flea Daphnia magna. Proceedings of the Royal Society B: Biological Sciences, 285: 20180169. https://doi.org/10.1098/rspb.2018.0169

CAMPBELL GRANT E.H., MILLER D.A.W., SCHMIDT B.R., ADAMS M.J., AMBURGEY S.M., CHAMBERT T., CRUICKSHANK S.S. et al. 2016. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Scientific Reports, 6: 25625. https://doi.org/10.1038/srep25625

COTHRAN R.D., BROWN J.M. & RELYEA R.A. 2013. Proximity to agriculture is correlated with pesticide tolerance: Evidence for the evolution of amphibian resistance to modern pesticides. Evolutionary Applications, 6: 832–841. https://doi.org/10.1111/eva.12069

FALCÓN J., TORRIGLIA A., ATTIA D., VIÉNOT F., GRONFIER C., BEHAR-COHEN F., MARTINSONS C. & HICKS D. 2020. Exposure to artificial light at night and the consequences for flora, fauna, and ecosystems. Frontiers in Neuroscience, 14: 602796. https://doi.org/10.3389/fnins.2020.602796

FLAMENT S. 2016. Sex reversal in amphibians. Sexual Development, 10: 267–278. https://doi.org/10.1159/000448797

FORD A.T. 2012. Intersexuality in Crustacea: An environmental issue? Aquatic Toxicology, 108: 125–129. https://doi.org/10.1016/j.aquatox.2011.08.016

GROSSEN C., NEUENSCHWANDER S. & PERRIN N. 2011. Temperature-dependent turnovers in sex-determination mechanisms: A quantitative model. Evolution, 65: 64–78.

https://doi.org/10.1111/j.1558-5646.2010.01098.x

HAMER A.J. & MCDONNELL M.J. 2008. Amphibian ecology and conservation in the urbanising world: A review. Biological Conservation, 141: 2432–2449. https://doi.org/10.1016/j.biocon.2008.07.020

HOFFMAN D., RATTNER B., BURTON G.J. & CAIRNS J.J. (eds.) 2003. Handbook of Ecotoxicology. CRC Press, Boca Raton, Florida, 1290 pp.

HOLLELEY C.E., SARRE S.D., O’MEALLY D. & GEORGES A. 2016. Sex reversal in reptiles: Reproductive oddity or powerful driver of evolutionary change? Sexual Development, 10: 279–287. https://doi.org/10.1159/000450972

JOHNSON M.T.J. & MUNSHI-SOUTH J. 2017. Evolution of life in urban environments. Science, 358: eaam8327. https://doi.org/10.1126/science.aam8327

LAMBERT M.R., TRAN T., KILIAN A., EZAZ T. & SKELLY D.K. 2019. Molecular evidence for sex reversal in wild populations of green frogs (Rana clamitans). PeerJ, 7: e6449. https://doi.org/10.7717/peerj.6449

LI D. & BOU-ZEID E. 2013. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52: 2051–2064. https://doi.org/10.1175/JAMC-D-13-02.1

LIKER A. 2020. Biologia Futura: adaptive changes in urban populations. Biologia Futura, 71: 1–8. https://doi.org/10.1007/s42977-020-00005-9

LUEDTKE J.A., CHANSON J., NEAM K., HOBIN L., MACIEL A.O., CATENAZZI A., BORZÉE A. et al. 2023. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature, 622: 308–314. https://doi.org/10.1038/s41586-023-06578-4

MANN R.M., HYNE R.V., CHOUNG C.B. & WILSON S.P. 2009. Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environmental Pollution, 157: 2903–2927. https://doi.org/10.1016/j.envpol.2009.05.015

MIKÓ Z., NEMESHÁZI E., UJHEGYI N., VEREBÉLYI V., UJSZEGI J., KÁSLER A., BERTALAN R. et al. 2021. Sex reversal and ontogeny under climate change and chemical pollution: are there interactions between the effects of elevated temperature and a xenoestrogen on early development in agile frogs? Environmental Pollution, 285: 117464. https://doi.org/10.1016/j.envpol.2021.117464

MIRANDA A.C., SCHIELZETH H., SONNTAG T. & PARTECKE J. 2013. Urbanization and its effects on personality traits: A result of microevolution or phenotypic plasticity? Global Change Biology, 19: 2634–2644. https://doi.org/10.1111/gcb.12258

MORAN N.A. 1992. The evolutionary maintenance of alternative phenotypes. American Naturalist, 139: 971–989. https://doi.org/10.1086/285369

NEMESHÁZI E. & BÓKONY V. 2022. Asymmetrical sex reversal: Does the type of heterogamety predict propensity for sex reversal? BioEssays, 44: 2200039. https://doi.org/10.1002/bies.202200039

NEMESHÁZI E., GÁL Z., UJHEGYI N., VEREBÉLYI V., MIKÓ Z., ÜVEGES B., KATALIN K. et al. 2020. Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog (Rana dalmatina) associated with anthropogenic land use. Molecular Ecology, 29: 3607–3621. https://doi.org/10.1111/mec.15596

NEMESHÁZI E., KÖVÉR S. & BÓKONY V. 2021. Evolutionary and demographic consequences of temperature-induced masculinization under climate warming: the effects of mate choice. BMC Ecology and Evolution, 21: 16. https://doi.org/10.1186/s12862-021-01747-3

NEMESHÁZI E., SRAMKÓ G., LACZKÓ L., BALOGH E., SZATMÁRI L., VILI N., UJHEGYI N., ÜVEGES B. & BÓKONY V. 2022. Novel genetic sex markers reveal unexpected lack of, and similar susceptibility to, sex reversal in free-living common toads in both natural and anthropogenic habitats. Molecular Ecology, 31: 2032–2043. https://doi.org/10.1111/mec.16388

OETKEN M., BACHMANN J., SCHULTE-OEHLMANN U. & OEHLMANN J. 2004. Evidence for endocrine disruption in invertebrates. International Review of Cytology, 236: 1–44.

https://doi.org/10.1016/S0074-7696(04)36001-8

ORTON F. & TYLER C.R. 2015. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians? Biological Reviews, 90: 1100–1117. https://doi.org/10.1111/brv.12147

PARTECKE J., SCHWABL I. & GWINNER E. 2006. Stress and the city: Urbanization and its effects on the stress physiology in European Blackbirds. Ecology, 87: 1945–1952. https://doi.org/10.1890/0012-9658(2006)87[1945:SATCUA]2.0.CO;2

RADCHUK V., REED T., TEPLITSKY C., VAN DE POL M., CHARMANTIER A., HASSALL C., ADAMÍK P. et al. 2019. Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 10: 3109. https://doi.org/10.1038/s41467-019-10924-4

RIZVI S.H., ALAM K. & IQBAL M.J. 2019. Spatio-temporal variations in urban heat island and its interaction with heat wave. Journal of Atmospheric and Solar-Terrestrial Physics, 185: 50–57. https://doi.org/10.1016/j.jastp.2019.02.001

SCHWANZ L.E., GEORGES A., HOLLELEY C.E. & SARRE S.D. 2020. Climate change, sex reversal and lability of sex-determining systems. Journal of Evolutionary Biology, 33: 270–281. https://doi.org/10.1111/jeb.13587

SERESS G. & LIKER A. 2015. Habitat urbanization and its effects on birds. Acta Zoologica Academiae Scientiarum Hungaricae, 61: 373–408. https://doi.org/10.17109/AZH.61.4.373.2015

SORDELLO R., RATEL O., DE LACHAPELLE F.F., LEGER C., DAMBRY A. & VANPEENE S. 2020. Evidence of the impact of noise pollution on biodiversity: A systematic map. Environmental Evidence, 9: 20. https://doi.org/10.1186/s13750-020-00202-y

SPINONI J., LAKATOS M., SZENTIMREY T., BIHARI Z., SZALAI S., VOGT J. & ANTOFIE T. 2015. Heat and cold waves trends in the Carpathian Region from 1961 to 2010. International Journal of Climatology, 35: 4197–4209. https://doi.org/10.1002/joc.4279

SULTAN S.E. & SPENCER H.G. 2002. Metapopulation structure favors plasticity over local adaptation. American Naturalist, 160: 271–283. https://doi.org/10.2307/3079143

TOMCZYK A.M. & BEDNORZ E. 2019. Heat waves in Central Europe and tropospheric anomalies of temperature and geopotential heights. International Journal of Climatology, 39: 4189–4205. https://doi.org/10.1002/joc.6067

TURCOTTE M.M., ARAKI H., KARP D.S., POVEDA K. & WHITEHEAD S.R. 2017. The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philosophical Transactions of the Royal Society B: Biological Sciences, 372: 20160033..https://doi.org/10.1098/rstb.2016.0033

UJSZEGI J., BERTALAN R., UJHEGYI N., VEREBÉLYI V., NEMESHÁZI E., MIKÓ Z., KÁSLER A. et al. 2022. “Heat waves” experienced during larval life have species-specific consequences on life-history traits and sexual development in anuran amphibians. Science of the Total Environment, 835: 155297. https://doi.org/10.1016/j.scitotenv.2022.155297

URBAN M.C., RICHARDSON J.L. & FREIDENFELDS N.A. 2014. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evolutionary Applications, 7: 88–103. https://doi.org/10.1111/eva.12114

DE VILLEMEREUIL P., GAGGIOTTI O.E., MOUTERDE M. & TILL-BOTTRAUD I. 2016. Common garden experiments in the genomic era: New perspectives and opportunities. Heredity, 116: 249–254. https://doi.org/10.1038/hdy.2015.93

WATSON J.E.M., ALLAN J.R., VENTER O., LEE J., JONES K.R., ROBINSON J.G. & POSSINGHAM H.P. 2018. Protect the last of the wild. Nature, 563: 27–30.

WHITEHEAD A., PILCHER W., CHAMPLIN D. & NACCI D. 2012. Common mechanism underlies repeated evolution of extreme pollution tolerance. Proceedings of the Royal Society B: Biological Sciences, 279: 427–433. https://doi.org/10.1098/rspb.2011.0847

WHITELEY S.L., CASTELLI M.A., DISSANAYAKE D.S.B., HOLLELEY C.E. & GEORGES A. 2021. Temperature-induced sex reversal in reptiles: prevalence, discovery, and evolutionary implications. Sexual Development, 15: 148–156. https://doi.org/10.1159/000515687

Megjelent
2024-12-13
Rovat
krónika