Safety and dynamic factors for determining the military load capacity of road bridges

Keywords: overload transport, STANAG 2021, AEP-3.12.1.5, road bridges, heavy equipment transport, load capacity

Abstract

For efficient military transport, the load capacity of bridges must be classified. This canbe done in several ways. A quick and sufficiently accurate method of classification isto compare loads (moments). The procedure requires finalising the values of the safetyand dynamic factors for different concurrency cases. This document reviews theconditions and circumstances under which these factors can be determined.

References

AEP-3.12.1.5 NATO Standard Military Load Classification of bridges, ferries, rafts and vehicles.

Edition A Version 1, September 2017.

ASHTO 1992. Standard Specification for Highway Bridges.

e-UT 07.01.12:2011 Erõtani számítás, Közúti hidak tervezése (KHT) 2. Structural Calculation Design Code

of Highway Bridges 2.

STANAG 2021 Standardization Agreement, Military Load Classifica-tion of bridges, ferries,

rafts and vehicles. Edition 8, 14 September 2017 NSO/1074 (2017) MILENG/2021;

MSZ EN 1990:2011 Eurocode: A tartószerkezetek tervezésének alapjai.

OHBDC 1983. Ontario Highway Bridge Design Code.

Deng, Lu – Yu, Yang – Zou, Qiling and Cai, C. S. 2015. State-of-the-Art Review of Dynamic Impact Factors

of Highway Bridges. Journal of Bridge Engineering, 20 (5): 04014080-1 to 04014080-14.

https://doi.org/10.1061/(ASCE)BE.1943-5592.0000672

Everitt, Antony 2019. Dynamic load effects of tracked and wheeled military vehicles from bridge load testing.

A Thesis Submitted to the Division of Graduate Studies of the Royal Military College of Canada,

MASc Thesis Document.

Hajós Bence 2023. Szempontok és javaslatok a közúti hídtervezés hasznos ideális jármû teherszintjének

meghatározásához a készülõ új Útügyi Mûszaki Elõírásban. Útügyi Lapok, 11 (18).

https://doi.org/10.36246/UL.2023.2.03

Hajós Bence 2024. Paradigmaváltás a közúti hídtervezésben a hasznos jármûterhek vonatkozásában

Katonai alapterhek helyett polgári jármûterhek bevezetésérõl. Mûszaki Katonai Közlöny,

under publishing;

Homberg, H. 1970. Berechnung von Brücken und Militärlasten. Band 1, STANAG 2021 Norm für militärische

Fahrzeuge und Brückenbelastungen, Düsseldorf: Werner-Verlag GmbH.

https://doi.org/10.21236/ADA476104

Hornbeck, Brian – Kluck, Johannes – Connor, Richard 2005. Trilateral design and test code for military

bridging and gap crossing equipment. Report: Guide Specification, OMB No. 0704-0188.

Lenner, Roman 2014. Safety Concept and Partial Factors for Military Assessment of Existing Concrete Bridges.

PhD dissertation, Universität Der Bundeswehr München, Fakultät für Bauingenieurwesen und

Umweltwissenchaften.

Lenner, Roman – Keuser,M. – Sykora, M. 2014. Safety Concept and Partial Factors for Bridge Assessment

under Military Loading. Advances in Military Technology, 9 (2): 5–20.

MacDonald, A. J. – Wight, R. Gordon – Bartlett, F. Michael 2016. Acceptable Risk in Military Bridge

Evaluation. Advances in Military Technology, 11 (2): 197–209.

https://doi.org/10.3849/aimt.01106

MacDonald, A. J. – Bartlett, F. Michael – Wight, R. Gordon 2017. Probabilistic Gross Vihicle Weights and

Associated Axle Loads for Military Vihicles in Bridge Evaluation and Code Calibration.

Advances in Military Technology, 12 (1): 129–145.

https://doi.org/10.3849/aimt.01178

MacDonald, A. J. – Bartlett, F. Michael – Wight, R. Gordon 2020. Live Load Factors for Military Traffic in

Bridge Evaluation. Canadian Journal of Civil Engineering, 48 (11): 1552–1561.

https://doi.org/10.1139/cjce-2020-0479

Mistéth, Endre 2001. Méretezéselmélet. Budapest: Akadémiai Kiadó.

Oliva, Michael G. 2012. Bridge Analysis and Evaluation of Effects Under Overload Vehicles (Phase 2).

Technical Report No. CFIRE 02-03.

Sia, Bernard 2021. Military Load Classification. U. S. Army Combat Capabilities Development Command,

Ground Vihicle Systems Center, 29. September, presentation.

Zhang, Jian-ren – Peng, Hui – Zhang, Ke-bo – Hao, Hai-xai 2009. Test study on overload and ultimate

behavior of old reinforced concrete bridge through destructive test of corroded bridge.

Engineering Mechanics, 26 (Sup. II. 12. December).

Zizi, Mattia – Chisari, Corrado – De Matteis, Gianfranco 2024. Effects of pre-existing damage on vertical

load-bearing capacity of masonry arch bridges. Engineering Srtuctures 300

https://doi.org/10.1016/j.engstruct.2023.117205

Published
2024-11-25
Section
Military Engineering