A daktiloszkópiai nyomkutatás modern módszerei I. – A fizikai módszerek

Kulcsszavak: daktiloszkópia, látens nyomok, optikai nyomkutatás, porozás

Absztrakt

Cél: A kétrészes tanulmány első fele bemutatja a daktiloszkópiai nyomkutatási módszerek közül a fizikai nyomkutatás eszközeit és eljárásait, azok csoportosítását, rövid történetét, fejlődésének tendenciáit.
Módszertan: A dolgozat az utóbbi évtizedben megjelent legjelentősebb külföldi szakkönyvek, illetve több tucat szakcikk feldolgozásával azok szintézisét végzi el. Megjelennek benne korábban publikált saját kutatási eredményeim is.
Megállapítások: Az úgynevezett fizikai nyomkutató módszerek mind a mai napig töretlenül fejlődnek. A 19. század vége óta használt porokat is mind a mai napig fejlesztik. A VMD-módszer (fémgőzölés) az utóbbi egy-két évben reneszánszát éli azt követően, hogy a hetvenes évek végére az újabb módszerek egyszer már kiszorították.
Érték: A hazai szakirodalomban ilyen alapos áttekintés régóta nem született a témában.

Hivatkozások

Adair, T. W. & Dobersen, M. (2006). Lifting Dusty Shoe Impressions from Human Skin: A Review of Experimental Research from Colorado. Journal of Forensic Identification, 56(3), 333–338.

Badiye, A. & Kapoor, N. (2015). Efficacy of Robin® powder blue for latent fingerprint development on various surfaces. Egyptian Journal of Forensic Sciences, 5(4), 166–173. https://doi.org/10.1016/j.ejfs.2015.01.001

Bodnár A. & Szabó-Nagy Zs. (2016). Az ujjnyomok állandósága és változatlansága. Belügyi Szemle, 64(7-8), 119–124. https://doi.org/10.3814/BSZ.2016.7-8.11

Bradshaw, R. & Francese, S. (2014). Matrix–assisted laser desorption ionisation tandem mass spectrometry imaging of small molecules from latent fingermarks. Spectroscopy Europe, 26(4), 6–8.

Brewer, E. R. (2019). The Capability of Forensic Vacuum Metal Deposition for Developing Latent Fingermarks on Fired Ammunition: A Preliminary Study Comparing Alternative Metal Processes. Journal of Forensic Identification, 69(3), 299–327.

Brewer, E. R. (2020). Visualization of Latent Fingermark Detail on Fired Handgun Casings Using Forensic VMD. Journal of Forensic Identification, 70(3), 323–345.

Bumbrah, G. S. (2017). Cyanoacrylate fuming method for detection of latent fingermarks: a review. Egyptian Journal of Forensic Sciences, 7(4), 2–8. https://doi.org/10.1186/s41935-017-0009-7

Cantu, A. A. (2000). Silver Physical Developers for the Visualization of Latent Prints on Paper. Forensic Science Review, 13(29), 30–64.

Carasso, A. S. (2013). Alternative Methods of Latent Fingerprint Enhancement and Metrics for Comparing Them. National Institute of Standards and Technology, 13., 1–21. https://doi.org/10.6028/NIST.IR.7910

Bandey, H., Bleay, S., Bowman, V., Downham, R., Sears, V., Gibson, A., Selway, C., Ramadani, J. & Ciuksza, T. (2018). Home Office Fingerprint Source Book. Home Office.

Champod, C., Lennard, C., Margot, P. & Stoilovic, M. (2004). Fingerprints and Other Ridge Skin Impressions. CRC Press. https://doi.org/10.1201/9780203485040

Chen, J., Wei, J.-S., Zhang, P., Niu, X.-Q., Zhao, W., Zhu, Z.-Y., Ding, H. & Xiong, H.-M. (2017). Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. ACS Applied Materials & Interfaces, 9(22), 18429–18433. https://doi.org/10.1021/acsami.7b03917

Choi, M. J., McDonagh, A. M., Maynard, P. J., Wuhrer, R., Lennard, C. & Roux, C. (2006). Preparation and Evaluation of Metal Nanopowders for the Detection of Fingermarks on Nonporous Surfaces. Journal of Forensic Identification, 56(5), 756–768.

Claveria, S. (2022). Who Actually Discovered Fingerprint Powders? Journal of Forensic Identification, 32(1), 22–32.

Claveria, S., Clares, N., Fernández, P., Heredia, R. & Godall, A. (2022). WET UCIO - New Powder Suspension Formula for Fingerprint Development on the Adhesive Side of Tape. Journal of Forensic Identification, 12(2), 174–184.

Crane, N. J., Bartick, E. G., Schwartz-Perlman, R. & Huffman, S. (2007). Infrared Spectroscopic Imaging of Noninvasive Detection of Latent Fingerprints. Journal of Forensic Science, 52(1), 48–53. https://doi.org/10.1111/j.1556-4029.2006.00330.x

Daluz, H. M. (2015). Fundamentals of Fingerprint Analysis. CRC Press.

Drabarek, B., Siejca, A., Moszczyński, J. & Konior, B. (2012). Applying Anti-Stokes Phosphors in Development of Fingerprints on Surfaces Characterized by Strong Luminescence. Journal of Forensic Identification, 17(1), 28–35.

Fabiszak, M. (2021). Cyanoacrylate Fuming and White Powder Suspension Together in One Sequence for Nonporous Surfaces. Journal of Forensic Identification, 8(3), 217–225.

Farrugia, K. J., Fraser, J. Calder, N. & Deacon, P. (2014). Pseudo-Operational Trials of Lumicyano Solution and Lumicyano Powder for the Detection of Latent Fingermarks on Various Substrates. Journal of Forensic Identification, 64(6), 556–582.

Galton, F. (1893). Fingerprints. The Journal of the Anthropological Institute of Great Britain and Ireland, 22(3), 276–277. https://doi.org/10.2307/2842054

Garcia, M. & Gokool, V. (2020). Latent Print Development on the Adhesive Side of Tape. Journal of Forensic Identification, (1), 103–123.

Garg, R. K. (2014). Application of a new commonly available substance for the visualization of latent finger marks: White cement. Problems of Forensic Science, 97(1), 5–13. Garner, G. E., Fontan, C. R. & Hobson, D. W. (1975). Visualization of Fingerprints in the Scanning

Electron Microscope. Journal of the Forensic Science Society, 15(4), 281–288. https://doi.org/10.1016/S0015-7368(75)71000-9

Hahn, W. & Ramotowski, R. (2012). Evaluation of a Novel One-Step Fluorescent Cyanoacrylate Fuming Process for Latent Print. Visualization, 62(3), 279–298.

Hinder, S. J. & Watts, J. F. (2010). SIMS fingerprint analysis on organic substrates. Surface and Interface Analysis, 42(6-7), 826–829. https://doi.org/10.1002/sia.3497

Horvath, A. (2022). Visualization of Latent Fingerprints on Fabrics Using Vacuum Metal Deposition. Journal of Forensic Identification, 72(3), 339–370.

Huang, M. & Peng, D. (2021). A rapid and dual-mode visualization of latent and bloody fingermarks using Cr- and Sb-codoped titanium dioxide nanoparticles. Journal of Materials Science, 56(3), 1–12. https://doi.org/10.1007/s10853-020-05651-x

Ifa, D. R., Manicke, N. E., Dill, L. A. & Cooks, R. G. (2008). Latent fingerprint chemical imaging by mass spectrometry. Science, 321(805), 805–811.

Illston-Baggs, G., Deacon, P., Nichols-Drew, L. & Farrugia, K. J. (2022). Using Vacuum Metal Deposition to Detect Latent Fingermarks on Thermal Paper: A Pseudo-operational Trial. Journal of Forensic Identification, (2), 185–199.

Jaber, N., Lesniewski, A., Gabizon, H., Shenawi, S., Mandler, D. & Almog, J. (2012). Visualization of Latent Fingermarks by Nanotechnology: Reversed Development on Paper – A Remedy to the Variation in Sweat Composition. Angewandte Chemie, 51(49), 12224–12227. https://doi.org/10.1002/anie.201205259

Jasuja, O. P., Singh, G. D. & Sodhi, G. S. (2007). Small Particle Reagent: A Saponin-Based Modification. Journal of Forensic Identification, 57(2), 244–251.

King, R. S. P., Hallett, P. M. & Foster, D. (2015). Seeing into the infrared: A novel IR fluorescent fingerprint powder. Forensic Science International, 249(4), e21–e26. https://doi.org/10.101/j.forsciint.2015.01.020

Kołek-Kaczanowska, E., Rogoża, E. & Drzewiecka, K. (2013). Application of Ardrox, Safranin O and Basic Yellow 40 for contrasting latent fingerprints on both sides of adhesive tapes. Problemy Kriminalistiky, 281(3), 58–61.

Lail, H. & Youker, G. (1975). Fingerprinting by Electronography. Forensic Science, 5(2), 145–146. https://doi.org/10.1016/0300-9432(75)90361-1

Lee, H. C. & Gaensslen, R. E. (1984). Cyanoacrylate Fuming. Identification News, 34(6), 8–14.

Lee, H. C. & Gaennslen, R. E. (Eds.) (2001). Advances in Fingerprint Technology. CRC Press.

Loewenhagen, C. (2013). A Comparison of Usable Latent Fingerprints in Dust: Electrostatic Dust Print Lifter Versus Magna Powder. Journal of Forensic Identification, 63(3), 263–273.

McRoberts, A. (Ed.) (2011). The Fingerprint Sourcebook. US DoJ National Institute of Justice.

Menzel, R. E. (1989). Detection of Latent Fingerprints by Laser-Excited Luminescence. Analytical Chemistry, 61(8), 557A–561A. https://doi.org/10.1021/ac00183a746

Milenkovica, I., Algarra, M., Alcoholado, C., Cifuentes, M., Lázaro-Martínez, J. M., Rodrígez-Castellón, E., Mutavdžić, D., Radotića, K. & Bandosz, T. J. (2019). Fingerprint imaging using N-doped carbon dots. Carbon, 144, 791–797. https://doi.org/10.1016/j.carbon.2018.12.102

Milne, R. (2012). The Development of a Wireless Electrostatic Mark Lifting Method and its use at Crime Scenes. Journal of Forensic Identification, 62(2), 154–164.

Munroe, R. G. (1994). Latent Fingerprint Development on a Cement Matrix. Canadian Society of Forensic Science Journal, 27(1), 1–4. https://doi.org/10.1080/00085030.1994.10757019

Omar, M. Y. & Ellsworth, L. (2012). Possibility of using fingerprint powders for development of old fingerprints. Sains Malays, 41(4), 499–504.

Petrétei D. (2014). Daktiloszkópiai nyomok. In Gárdonyi G. (Szerk.), Módszertani útmutató bűnügyi technikusoknak (pp. 50–56). Nemzeti Közszolgálati Egyetem.

Petrétei D. (2015). Ujjnyomok rögzítése emberi bőrről. Belügyi Szemle, 63(11), 163–179. https://doi.org/10.38146/BSZ.2015.11.11

Philipson, D. & Bleay, S. (2007). Alternative Metal Processes for Vacuum Metal Deposition. Journal of Forensic Identification, 57(2), 252–273.

Plese, C. A., Exline, D. L. & Stewart, S. D. (2010). Improved Methods of Visible Hyperspectral Imaging Provide Enhanced Visualization of Untreated Latent Fingerprints. Journal of Forensic Identification, 60(6), 603–618.

Poletti, T., Berneira, L. M., Bueno, D. T., da Silva, C. C., da Silva, R. & Pereira, C. M. P. (2022). Chemical evaluation and application of cinnamaldehyde-derived curcumins as potential fingerprint development agents. Talanta Open, 6(3), 1–9. https://doi.org/10.1016/j.talo.2022.100133

Prabakaran, E. & Pillay, K. (2020). Synthesis and characterization of fluorescent N-CDs/ZnONPs nanocomposite for latent fingerprint detection by using powder brushing method. Arabian Journal of Chemistry, 13(2), 3817–3835. https://doi.org/10.1016/j.arabjc.2019.01.004

Prabakaran, E. & Pillay, K. (2021). Nanomaterials for latent fingerprint detection: a review. Journal of Material Research and Technology, 12(3), 1856–1885. https://doi.org/10.1016/j.jmrt.2021.03.110

Qiu, Z., Hao, B., Gu, X., Wang, Z., Xie, N., Lam, J. W. Y., Hao, H. & Tang, B. Z. (2018). A general powder dusting method for latent fingerprint development based on AIEgens. Science China Chemistry, 61(8), 966–970. https://doi.org/10.1007/s11426-018-9280-1

Ricci, C., Phiriyavityopas, P., Curum, N. C., Chan, K. L. A., Jickells, S. & Kazarian, S. G. (2007). Chemical Imaging of Latent Fingerprint Residues. Applied Spectroscopy, 61(5), 514–522.

Richards, D. A. & Thomas, J. R. (2014). Nonporous Fluorescent Dye Stains: A Comparative Analysis. Journal of Forensic Identification, 64(3), 239–254.

Robb, K., Deacon, P., Fordyce, L., Fennessy, R. & Farrugia, K. J. (2020). Evaluation of a Hot Print System for the development of latent fingermarks on thermal paper: A pseudo-operational trial. Science & Justice, 60(1), 72–78. https://doi.org/10.1016/j.scijus.2019.08.003

Romanek J., Solymosi J.né & Tauszik N. (2004). Daktiloszkópia 1904–2004. BM Duna Palota és Kiadó.

Salares, V. R., Eves, C. R. & Carey, P. R. (1979). On the Detection of Fingerprints by Laser Excited Luminescence. Forensic Science International, 14(3), 229–237. https://doi.org/10.101 /0379-0738(79)90142-7

Sampson, W. C. & Sampson, K. L. (2005). Recovery of Latent Prints from Human Skin. Journal of Forensic Identification, 55(3), 362–385.

Sanfilippo, P., Richards, A. R. & Nichols, H. (2010). Reflected Ultraviolet Digital Photography: The Part Someone Forgot to Mention. Journal of Forensic Identification, 62(2), 181–198.

Saroa, J. S., Sodhi, G. S. & Garg, R. K. (2006). Evaluation of Fingerprint Powders. Journal of Forensic Identification, 56(2), 186–197.

Schultheiss, E., Kreuter, N. & Boni, V. (2020). High-Resolution Medium Infrared Imaging in Forensics – Operation Principles and First Results in Dactyloscopy. Journal of Forensic Identification, 70(2), 186–204.

Shipman, J. (2021). Evaluation of Vacuum Metal Deposition: Fingerprint Development on Plastic, Gloves, Handguns, and Live Ammo. Journal of Forensic Identification, 71(2), 119–141.

Siegel, S. D. (2007). A Modified Iodine-Fuming Method. Journal of Forensic Identification, 57(3), 378–382.

Singh, S. P. (2020). Development of Latent Fingerprints on Human Skin: A Review. International Journal of Engineering Research & Technology (IJERT), 9(6), 1192–1198.

Singlaa, N., Kaurb, M. & Sofatc, S. (2020). Latent Fingerprint Database Using Reflected Ultra

Violet Imaging System. Procedia Computer Science, 167, 942–951. https://doi.org/10.1016/j.procs.2020.03.393

Solymosi J.né & Tauszik N. (2006). A daktiloszkópia változatlan hatékonyságáról. Belügyi Szemle, 54(5), 91–99.

Spedding, D. (1971). Detection of Latent Fingerprints with 35SO2. Nature, 229, 123–124. https://doi.org/10.1038/229123a0

Steele, C. A., Hines, M., Rutheford, L. & Wheeler, A. W. (2012). Forced Condensation of Cyanoacrylate with Temperature Control of the Evidence Surface to Modify Polymer Formation and Improve Fingerprint Visualization. Journal of Forensic Identification, 62(4), 335–348.

Swofford, H. J. & Kovalchick, A. T. (2012). Fingerprint Powders: Aerosolized Application Revisited. Journal of Forensic Identification, 62(2), 109–128.

Tahtouh, M., Kalman, J. R., Roux, C., Lennard, C. & Reedy, B. J. (2005). The Detection and Enhancement of Latent Fingermarks Using Infrared Chemical Imaging. Journal of Forensic Science, 50(1), 1–9. https://doi.org/10.1520/JFS2004213

Tovar, R. M. (2004). The Use of Electrostatic Equipment to Retrieve Impressions from the Human Body. Journal of Forensic Identification, 54(5), 530–533.

Vadivela, R., Nirmalab, M. & Anbukumaranc, K. (2021). Commonly available, everyday materials as non-conventional powders for the visualization of latent fingerprints. Forensic Chemistry, 24, 100339. https://doi.org/10.1016/j.forc.2021.100339

Warner, G. C. (2002). Evaluation of a Solid State “Shoe Box” Laser: The Spectra-Physics Millennia 532nm Laser. Journal of Forensic Identification, 52(1), 1–27.

Williams, G., Mcmurray, H. & Worsley, D. A. (2001). Latent Fingerprint Detection Using a Scanning Kelvin Microprobe. Journal of Forensic Sciences, 46(5), 1085–10892. https://doi.org/10.1520/JFS15103J

Williams, N. H. & Elliott, K. T. (2005). Development of Latent Prints using Titanium Dioxide (TiO2) in Small Particle Reagent, White (SPR-W) on Adhesives. Journal of Forensic Identification, 55(3), 292–305.

Worley, C. G., Wiltshire, S. S., Miller, T. C., Havrilla, G. J. & Majidi, V. (2006). Detection of

Visible and Latent Fingerprints Using Micro-X-Ray Fluorescence Elemental Imaging. Journal of Forensic Science, 51(1), 57–63. https://doi.org/10.1111/j.1556-4029.2005.00006.x

Zamirl, A., Oz, C., Leifer, A. & Geller, B. (2002). The Effect of Small Particle Reagent Employed as a Fingerprint Enhancement Technique on Subsequent STR Typing from Bloodstains. Journal of Forensic Identification, 52(6), 691–695.

Megjelent
2023-04-14
Hogyan kell idézni
Petrétei D. (2023). A daktiloszkópiai nyomkutatás modern módszerei I. – A fizikai módszerek. Belügyi Szemle , 71(4), 585-601. https://doi.org/10.38146/BSZ.2023.4.2
Folyóirat szám
Rovat
Tanulmányok