Az akvatikus poloskák (Heteroptera: Nepomorpha) testhosszá-nak és élőhelyének kapcsolata

  • Bakonyi Gábor Magyar Agrár- és Élettudományi Egyetem, Vadgazdálkodási és Természetvédelmi Intézet, Állattani és Ökológiai Tanszék
Kulcsszavak: vízipoloska, életmód, testnagyság, élőhelytípus

Absztrakt

A testnagyság a rovarok egyik legfontosabb jellemzője, mivel sok élettani, életmódbeli és ökológiai tulajdonság erősen összefügg vele. Megfordítva: a méretek alapján következtetni lehet az említett tulajdonságokra, tehát ekképpen részben kiválthatók az említett tulajdonságok bonyolult vizsgálatai. Az akvatikus poloskák (Hemiptera: Heteroptera: Nepomorpha) testhosszára vonatkozóan elég sok adat áll rendelkezésünkre. Kíváncsi voltam arra, hogy a testhossz és a fajok élőhelye között van-e valamilyen kapcsolat? Azt találtam, hogy a litorális területeken élő fajok testhossza lényegesen nagyobb, mint másik öt (bentikus, pelagikus, nektonikus, vízparti, medence/gázló) élőhelyen találhatóké. A bentikus élőhelyek fajai viszont lényegesen kisebbek, mint a többi élőhelyeké. A mintázat egyértelmű, a kiváltó okok azonban sokfélék lehetnek. Mivel az akvatikus poloskák ökológiájával kapcsolatban aránylag kevés információ áll rendelkezésre, a mintázat magyarázatára pillanatnyilag főleg csupán feltevések tehetők.

Hivatkozások

Alcantara, M. J. M., Fontanilla, A. M., Ashton, L. A., Burwell, C. J., Cao, M., Han, H., Huang, H., Kitching, R. L., Reshchikov, A., Shen, X., Tang, Y., Wan, Y., Xu, Z., & Nakamura, A. (2024). Bugs and Bergmann’s rule: a cross-taxon large-scale study reveals idiosyncratic altitudinal and latitudinal body size patterns for different insect taxa. Entomologia Generalis, 44(3), 715–725. https://doi.org/10.1127/entomologia/2024/2246

Allan, J. D. (1978). Trout predation and the size composition of stream drift. Limnology and Oceanography, 23(6), 1231–1237. https://doi.org/10.4319/lo.1978.23.6.1231

Bakonyi, G. (1978). Contribution to the knowledge of the feeding habits of some water boatmen: Sigara spp. (Heteroptera: Corixidae). Folia Entomologica Hungarica, 31(2), 19–24.

Bakonyi, G. (1984). On the morphology of the palar pegs of some Corixidae (Heteroptera). Acta Zoologica Hungarica, 30(3–4), 249–255.

Bakonyi, G., & Seres, A. (2025). Sex on the Beach: Sexual Size Dimorphism Among Aquatic Bugs (Nepomorpha) Inhabiting Different Habitats. Ecology and Evolution, 15(6). https://doi.org/10.1002/ece3.71501

Blackburn, T. M., & Gaston, K. J. (1994). Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology and Evolution, 9(12), 471–474. https://doi.org/10.1016/0169-5347(94)90311-5

Blake, S., Foster, G. N., Eyre, M. D., & Luff, M. L. (1994). Effects of habitat type and grassland management practices on the body size distribution of carabid beetles. Pedobiologia, 38(6), 502–512. https://doi.org/10.1016/s0031-4056(24)00151-3

Blanckenhorn, W. U. (2000). The evolution of body size: What keeps organisms small? The Quarterly Review of Biology, 75(4), 385–407. https://doi.org/10.1086/393620

Borthagaray, A. I., Arim, M., & Marquet, P. A. (2014). Inferring species roles in metacommunity structure from species co-occurrence networks. Proceedings of the Royal Society B: Biological Sciences, 281(1792), 1–7. https://doi.org/10.1098/rspb.2014.1425

Brown, J. H., Marquet, P. A., & Taper, M. L. (1993). Evolution of body size: consequences of an energetic definition of fitness. The American Naturalist, 142(4), 573–584. https://doi.org/10.1086/285558

Butler, M. A., Schoener, T. W., & Losos, J. B. (2000). The relationship between sexual size dimorphism and habitat use in Greater Antillean anolis lizards. Evolution, 54(1), 259–272. https://doi.org/10.1111/j.0014-3820.2000.tb00026.x

Callier, V., & Nijhout, H. F. (2013). Body size determination in insects: A review and synthesis of size- and brain-dependent and independent mechanisms. Biological Reviews, 88(4), 944–954. https://doi.org/10.1111/brv.12033

Carter, S. K., Vodopich, D., & Crumrine, P. W. (2018). Heterogeneity in body size and habitat complexity influence community structure. Journal of Freshwater Ecology, 33(1), 239–249. https://doi.org/10.1080/02705060.2018.1435429

Chen, P. P., & Lapidin, J. (2015). A review of Bornean Micronectidae (Hemiptera, Heteroptera, Nepo-morpha) with descriptions of two new species from Sabah, Malaysia. ZooKeys, 62(501), 27–62. https://doi.org/10.3897/zookeys.501.9416

Chown, S. L., & Gaston, K. J. (2010). Body size variation in insects: A macroecological perspective. Biological Reviews, 85(1), 139–169. https://doi.org/10.1111/j.1469-185X.2009.00097.x

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge. https://doi.org/https://doi.org/10.4324/9780203771587

De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L., Vanhecke, L., Van der Gucht, K., Van Wichelen, J., Vyverman, W., & Declerck, S. A. J. (2012). Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters, 15(7), 740–747. https://doi.org/10.1111/j.1461-0248.2012.01794.x

Dévai, G., Nagy, S., Wittner, I., Aradi, C., Csabai, Z., & Tóth, A. (1998). A vízi és a vizes élőhelyek sajátosságai és tipológiája (G. Dévai (ed.)), Debrecen, 66 pp.

Edgar, B. A. (2006). How flies get their size: Genetics meets physiology. Nature Reviews Genetics, 7(12), 907–916. https://doi.org/10.1038/nrg1989

Ehnes, R. B., Rall, B. C., & Brose, U. (2011). Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecology Letters, 14(10), 993–1000. https://doi.org/10.1111/j.1461-0248.2011.01660.x

Farmer, K. J., & Sohal, R. S. (1987). Effects of ambient temperature on free radical generation, antioxidant defenses and life span in the adult housefly, Musca domestica. Experimental Gerontology, 22(1), 59–65. https://doi.org/10.1016/0531-5565(87)90015-5

Gotthard, K. (2000). Increased risk of predation as a cost of high growth rate: An experimental test in a butterfly. Journal of Animal Ecology, 69(5), 896–902. https://doi.org/10.1046/j.1365-2656.2000.00432.x

Gu, Y., Liu, Z., Li, J., Meng, D., Yuan, H., Zhang, M., Zhang, H., Yin, H., Cong, J., & Xiao, N. (2022). Body size as key trait determining aquatic metacommunity assemblies in benthonic and planktonic habitats of Dongting Lake, China. Ecological Indicators, 143(June), 109355. https://doi.org/10.1016/j.ecolind.2022.109355

Hädicke, C. W., Rédei, D., & Kment, P. (2017). The diversity of feeding habits recorded for water boatmen (Heteroptera: Corixoidea) world-wide with implications for evaluating information on the diet of aquatic insects. European Journal of Entomology, 114, 147–159. https://doi.org/10.14411/eje.2017.020

Hall, R. O., Koch, B. J., Marshall, M. C., Taylor, B. W., & Tronstad, L. M. (2009). How body size mediates the role of animals in nutrient cycling in aquatic ecosystems. In Body Size: The Structure and Function of Aquatic Ecosystems (pp. 286–305). https://doi.org/10.1017/cbo9780511611223.016

Jacob, U., Thierry, A., Brose, U., Arntz, W. E., Berg, S., Brey, T., Fetzer, I., Jonsson, T., Mintenbeck, K., Möllmann, C., Petchey, O. L., Riede, J. O., & Dunne, J. A. (2011). The role of body size in complex food webs. A cold case. In Advances in Ecological Research (Vol. 45). https://doi.org/10.1016/B978-0-12-386475-8.00005-8

Kalinkat, G., Jochum, M., Brose, U., & Dell, A. I. (2015). Body size and the behavioral ecology of insects: Linking individuals to ecological communities. Current Opinion in Insect Science, 9, 24–30. https://doi.org/10.1016/j.cois.2015.04.017

Kingsolver, J. G., & Huey, R. B. (2008). Size, temperature, and fitness: Three rules. Evolutionary Ecology Research, 10(2), 251–268.

Liao, W., Zanca, T., & Niemelä, J. (2024). Predation risk modifies habitat use and habitat selection of diving beetles (Coleoptera: Dytiscidae) in an Urban Pondscape. Global Ecology and Conservation, 49, e02801. https://doi.org/10.1016/j.gecco.2024.e02801

Lighton, J. R. B., & Fielden, L. J. (1995). Mass Scaling of Standard Metabolism in Ticks: A Valid Case of Low Metabolic Rates in Sit-and-Wait Strategists. Physiological Zoology, 68(1), 43–62. https://doi.org/10.1086/physzool.68.1.30163917

Lövei, G. L., & Magura, T. (2022). Body size and the urban heat island effect modulate the temperature–size relationship in ground beetles. Journal of Biogeography, 49(9), 1618–1628. https://doi.org/10.1111/jbi.14458

Maia-Barbosa, P. M., Peixoto, R. S., & Guimarães, A. S. (2008). Zooplankton in littoral waters of a tropical lake: A revisited biodiversity. Brazilian Journal of Biology, 68(4 SUPPL.), 1069–1078. https://doi.org/10.1590/S1519-69842008000500014

McAbendroth, L., Ramsay, P. M., Foggo, A., Rundle, S. D., & Bilton, D. T. (2005). Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos, 111(2), 279–290. https://doi.org/10.1111/j.0030-1299.2005.13804.x

Menke, A. S. (1979). The Semiaquatic and Aquatic Hemiptera of California (Heteroptera: Hemiptera). In Bulletin of the California Insect Survey (Vol. 21), 166 pp.

Merckx, T., Souffreau, C., Kaiser, A., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., Debortoli, N., De Wolf, K., Engelen, J. M. T., Fontaneto, D., Gianuca, A. T., Govaert, L., Hendrickx, F., Higuti, J., Lens, L., Martens, K., … Van Dyck, H. (2018). Body-size shifts in aquatic and terrestrial urban communities. Nature, 558(7708), 113–116. https://doi.org/10.1038/s41586-018-0140-0

Montgomery, D. R., & Buffington, J. M. (1997). Channel-reach morphology in mountain drainage basins. Bulletin of the Geological Society of America, 109(5), pp. 596–611. https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2

Montoya, J. M., Pimm, S. L., & Solé, R. V. (2006). Ecological networks and their fragility. Nature, 442(7100), 259–264. https://doi.org/10.1038/nature04927

Morse, D. R., Lawton, J. H., Dodson, M. M., & Williamson, M. H. (1985). Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature, 314(6013), 731–733. https://doi.org/10.1038/314731a0

Nieser, N., & Lopez Ruf, M. (2012). A review of Limnocoris Stål (Heteroptera: Naucoridae) in southern South America east of the Andes. Tijdschrift Voor Entomologie, 144(2), 261–328. https://doi.org/10.1163/22119434-900000091

Nijhout, H. F. (2003). The control of body size in insects. Developmental Biology, 261(1), 1–9. https://doi.org/10.1016/S0012-1606(03)00276-8

Nolte, D., Boutaud, E., Kotze, D. J., Schuldt, A., & Assmann, T. (2019). Habitat specialization, distribution range size and body size drive extinction risk in carabid beetles. Biodiversity and Conservation, 28(5), 1267–1283. https://doi.org/10.1007/s10531-019-01724-9

Paetzold, A., & Tockner, K. (2005). Effects of riparian arthropod predation on the biomass and abundance of aquatic insect emergence. Journal of the North American Benthological Society, 24(2), 395–402. https://doi.org/10.1899/04-049.1

Petry, P., Bayley, P. B., & Markle, D. F. (2003). Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. Journal of Fish Biology, 63(3), 547–579. https://doi.org/10.1046/j.1095-8649.2003.00169.x

Polhemus, J. T. (2009). Hemiptera (True Bugs). Encyclopedia of Inland Waters, 323–334. https://doi.org/10.1016/B978-012370626-3.00175-7

Polhemus, J. T., & Polhemus, D. A. (2008). Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia, 595(1), 379–391. https://doi.org/10.1007/s10750-007-9033-1

Ramey, T. L., & Richardson, J. S. (2017). Terrestrial Invertebrates in the Riparian Zone: Mechanisms Underlying Their Unique Diversity. BioScience, 67(9), 808–819. https://doi.org/10.1093/biosci/bix078

Richardson, J. T. E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135–147. https://doi.org/10.1016/j.edurev.2010.12.001

Sagnes, P., Mérigoux, S., & Péru, N. (2008). Hydraulic habitat use with respect to body size of aquatic insect larvae: Case of six species from a French Mediterranean type stream. Limnologica, 38(1), 23–33. https://doi.org/10.1016/j.limno.2007.09.002

Sagrario, G., De Los Ángeles, M., Balseiro, E., Ituarte, R., & Spivak, E. (2009). Macrophytes as refuge or risky area for zooplankton: A balance set by littoral predacious macroinvertebrates. Freshwater Biology, 54(5), 1042–1053. https://doi.org/10.1111/j.1365-2427.2008.02152.x

Schuh, R. T., & Weirauch, C. (2020). True Bugs of the World (Hemiptera: Heteroptera): Classification and Natural History. Siri Scientific Press, 800 pp.

Shelomi, M. (2012). Where are we now? Bergmann’s rule Sensu Lato in insects. American Naturalist, 180(4), 511–519. https://doi.org/10.1086/667595

Sites, R. W. (2022). Phylogeny and revised classification of the saucer bugs (Hemiptera: Nepomorpha: Naucoridae). Zoological Journal of the Linnean Society, 195(4), 1245–1286. https://doi.org/10.1093/zoolinnean/zlab105

Sites, R. W., & Polhemus, J. T. (2014). Nepidae ( Hemiptera ) of the United States and Canada Nepidae ( Hemiptera) of the United States and Canada. Annales of the Entomological Society of America, 87(1), 27–42.

Sites, R. W., & Willig, M. R. (1991). Microhabitat associations of three sympatric species of Naucoridae (Insecta: Hemiptera). Environmental Entomology, 20(1), 127–134. https://doi.org/10.1093/ee/20.1.127

Smock, L. A. (1980). Relationships between body size and biomass of aquatic insects. Freshwater Biology, 10, 375–383. https://doi.org/10.1111/j.1365-2427.1980.tb01211.x

Speakman, J. R. (2005). Body size, energy metabolism and lifespan. Journal of Experimental Biology, 208(9), 1717–1730. https://doi.org/10.1242/jeb.01556

Stańska, M., & Stański, T. (2017). Body Size Distribution of Spider Species in Various Forest Habitats. Polish Journal of Ecology, 65(4), 359–370. https://doi.org/10.3161/15052249PJE2017.65.4.005

Stillwell, C. Blanckenhorn, W.U. Teder, T. Davidowitz, G., & Fox, C. W. (2010). Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annual Review of Entomology, 55, 227–245. https://doi.org/10.1146/annurev-ento-112408-085500

Taniguchi, H., Nakano, S., & Tokeshi, M. (2003). Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology, 48(4), 718–728. https://doi.org/10.1046/j.1365-2427.2003.01047.x

Taniguchi, H., & Tokeshi, M. (2004). Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology, 49(9), 1164–1178. https://doi.org/10.1111/j.1365-2427.2004.01257.x

Thomaz, S. M., & Cunha, E. R. da (2010). The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia, 22(02), 218–236. https://doi.org/10.4322/actalb.02202011

Townsend, C. R., & Hildrew, A. G. (1994). Species traits in relation to a habitat templet for river systems. Freshwater Biology, 31(3), 265–275. https://doi.org/10.1111/j.1365-2427.1994.tb01740.x

Truxal, F. S. (1949). A study of the genus Martarega (Hemiptera, Notonectidae). Journal of the Kansas Entomological Society, 22(1), 1–24.

Walseng, B., Hessen, D. O., Halvorsen, G., & Schartau, A. K. (2006). Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnology and Oceanography, 51(6), 2600–2606. https://doi.org/10.4319/lo.2006.51.6.2600

Walters, A. W., & Post, D. M. (2011). How low can you go? Impacts of a low-flow disturbance on aquatic insect communities. Ecological Applications, 21(1), 163–174. https://doi.org/10.1890/09-2323.1

Wang, Y., Moreira, F. F. F., Rédei, D., Chen, P., Kuechler, S. M., Luo, J., Men, Y., Wu, H., & Xie, Q. (2020). Diversification of true water bugs revealed by transcriptome-based phylogenomics. Systematic Entomology, 46(2), 339–356. https://doi.org/10.1111/syen.12465

Weirauch, C., Schuh, R. T., Cassis, G., & Wheeler, W. C. (2019). Revisiting habitat and lifestyle transitions in Heteroptera (Insecta: Hemiptera): insights from a combined morphological and molecular phylogeny. Cladistics, 35(1), 67–105. https://doi.org/10.1111/cla.12233

Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. (2005). Body size in ecological networks. Trends in Ecology and Evolution, 20(7), 402–409. https://doi.org/10.1016/j.tree.2005.04.005

Ye, Z., Damgaard, J., Yang, H., Hebsgaard, M. B., Weir, T., & Bu, W. (2020). Phylogeny and diversification of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha). Cladistics, 36(1), 72–87. https://doi.org/10.1111/cla.12383

Megjelent
2025-09-15
Rovat
eredeti közlemények