Predicting the future land-use change and evaluating the change in landscape pattern in Binh Duong province, Vietnam

  • Dang Hung Bui Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Szeged, Hungary ; Institute for Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam https://orcid.org/0000-0002-7879-6585
  • László Mucsi Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Szeged, Hungary https://orcid.org/0000-0002-5807-3742
Keywords: land-use prediction, landscape pattern, remote sensing, Land Change Modeler, FRAGSTATS, IDRISI

Abstract

The main purpose of this study is to simulate future land use up to 2030 and to evaluate the change in landscape pattern due to land-use change from 1995 to 2030 in Binh Duong province, Vietnam. Land-use maps generated from multi-temporal Landsat images from 1995 to 2020 and various physical and social driving variables were used as inputs. Markov chain and Decision Forest algorithm integrated in Land Change Modeler application of IDRISI software were used to predict quantity and location of future land-use allocation. Meanwhile, FRAGSTATS software was used to calculate landscape metrics at class and landscape levels. The simulation results showed that there will be 253.8 km2 of agricultural land urbanized in the period from 2020 to 2030. The urban areas will gradually expand from the edge of the existing zones and fill the newly planned areas from South to North and Northeast of the province. The results also revealed that the studied landscape was decreasing in dominance and increasing diversity and heterogeneity at landscape level. The processes of dispersion and aggregation were taking place at the same time in the entire landscape and in the urban class. Meanwhile, the classes of agriculture, mining, and greenspace were increasingly dispersed, but the shape of patches was becoming more regular. The water class increased the dispersion and the irregularity of the patch shape. Finally, the landscape metrics of the unused land fluctuated over time.

References

Abdolalizadeh, Z., Ebrahimi, A. and Mostafazadeh, R. 2019. Landscape pattern change in Marakan protected area, Iran. Regional Environmental Change 19. (6): 1683-1699. https://doi.org/10.1007/s10113-019-01504-9

Bui, D.H. and Mucsi, L. 2022. Land-use change and urban expansion in Binh Duong province, Vietnam, from 1995 to 2020. Geocarto International 1-23. Taylor and Francis online. https://doi.org/10.1080/10106049.2022.2123564

Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F. and Escobar, F. 2018. Geomatic Approaches for Modelling Land Change Scenarios. Cham, Springer. https://doi.org/10.1007/978-3-319-60801-3

Dadashpoor, H., Azizi, P. and Moghadasi, M. 2019. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment 655. 707-719. https://doi.org/10.1016/j.scitotenv.2018.11.267

Eastman, J.R. 2020a. TerrSet 2020 Geospatial Monitoring and Modeling System Manual. ClarkLabs, Worcester, MA, Clark University.

Eastman, J.R. 2020b. TerrSet 2020 Geospatial Monitoring and Modeling System Tutorial. ClarkLabs. Worcester, MA, Clark University.

Estoque, R.C. and Murayama, Y. 2016. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landscape Ecology 31. (7): 1481-1507. https://doi.org/10.1007/s10980-016-0341-6

Gergel, S.E. and Turner, M.G. 2017. Learning Landscape Ecology. A Practical Guide to Concepts and Techniques. New York, Springer Verlag.

Gudmann, A., Csikós, N., Szilassi, P. and Mucsi, L. 2020. Improvement in satellite image-based land cover classification with landscape metrics. Remote Sensing 12. (21): 1-21. https://doi.org/10.3390/rs12213580

Ha, T.V., Tuohy, M., Irwin, M. and Tuan, P.V. 2020. Monitoring and mapping rural urbanization and land use changes using Landsat data in the northeast subtropical region of Vietnam. Egyptian Journal of Remote Sensing and Space Science 23. (1): 11-19. https://doi.org/10.1016/j.ejrs.2018.07.001

Hagen, A. 2002. Multi-method assessment of map similarity. In Proceedings of the 5th AGILE Conference on Geographic Information Science. Eds.: Ruiz, M., Gould, M. and Ramon, J., Palma, European Commission, 171-182.

Hagen, A. 2003. Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science17. (3): 235-249. https://doi.org/10.1080/13658810210157822

Hagen-Zanker, A., Straatman, B. and Uljee, I. 2005. Further developments of a fuzzy set map comparison approach. International Journal of Geographical Information Science 19. (7): 769-785. https://doi.org/10.1080/13658810500072137

Islam, K., Rahman, M.F. and Jashimuddin, M. 2018. Modeling land use change using cellular automata and artificial neural network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators 88. (4): 439-453. https://doi.org/10.1016/j.ecolind.2018.01.047

Kertész, Á. and Křeček, J. 2019. Landscape degradation in the world and in Hungary. Hungarian Geographical Bulletin 68. (3): 201-221. https://doi.org/10.15201/hungeobull.68.3.1

Lambin, E.F. and Meyfroidt, P. 2010. Land use transitions: Socio-ecological feedback versus socioeconomic change. Land Use Policy 27. (2): 108-118. https://doi.org/10.1016/j.landusepol.2009.09.003

Le, V.H. 2019. The Process of Urbanization in Binh Duong Province, 1986-2010. Ho Chi Minh City, Vietnam National University - University of Social Sciences and Humanities. (in Vietnamese)

Le, V.N., Truong, H.T., Ton Nu, Q.T., Le, V.H. and Nguyen, N.K. 2019. Binh Duong Urbanization in the Period 1997-2017. Binh Duong, Vietnam. (in Vietnamese).

Lin, T., Xue, X., Shi, L. and Gao, L. 2013. Urban spatial expansion and its impacts on island ecosystem services and landscape pattern: A case study of the island city of Xiamen, Southeast China. Ocean and Coastal Management 81. 90-96. https://doi.org/10.1016/j.ocecoaman.2012.06.014

Mas, J.F. 2018. Receiver Operating Characteristic (ROC) analysis. In Geomatic Approaches for Modeling Land Change Scenarios. Eds.: Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F. and Escobar, F., Cham, Springer International Publishing, 465-467. https://doi.org/10.1007/978-3-319-60801-3_30

McGarigal, K., Cushman, S.A. and Ene, E. 2012. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors. Amherst, University of Massachusetts.

Megahed, Y., Cabral, P., Silva, J. and Caetano, M. 2015. Land cover mapping analysis and urban growth modelling using remote sensing techniques in greater Cairo region, Egypt. ISPRS International Journal of GeoInformation 4. (3): 1750-1769. https://doi.org/10.3390/ijgi4031750

Mishra, V.N., Rai, P.K., Prasad, R., Punia, M. and Nistor, M.M. 2018. Prediction of spatio-temporal land use/land cover dynamics in rapidly developing Varanasi district of Uttar Pradesh, India, using geospatial approach: a comparison of hybrid models. Applied Geomatics 10. (3): 257-276. https://doi.org/10.1007/s12518-018-0223-5

Nguyen, Q. and Kim, D.-C. 2020. Reconsidering rural land use and livelihood transition under the pressure of urbanization in Vietnam: A case study of Hanoi. Land Use Policy 99. 104896. https://doi.org/10.1016/j.landusepol.2020.104896

Nor, A.N.M., Corstanje, R., Harris, J.A. and Brewer, T. 2017. Impact of rapid urban expansion on green space structure. Ecological Indicators 81. (September 2016). 274-284. https://doi.org/10.1016/j.ecolind.2017.05.031

Nourqolipour, R., Shariff, A.R.B.M., Balasundram, S.K., Ahmad, N.B., Sood, A.M. and Buyong, T. 2016. Predicting the effects of urban development on land transition and spatial patterns of land use in Western peninsular Malaysia. Applied Spatial Analysis and Policy 9. (1): 1-19. https://doi.org/10.1007/s12061-014-9128-9

Peng, K., Jiang, W., Deng, Y., Liu, Y., Wu, Z. and Chen, Z. 2020. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecological Indicators 117. (July) 106671. https://doi.org/10.1016/j.ecolind.2020.106671

Pontius, R.G. 2000. Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing 66. (8): 1011-1016.

Pontius, R.G., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., Kok, K., Koomen, E., Lippitt, C.D., McConnell, W., Mohd Sood, A., Pijanowski, B., Pithadia, S., Sweeney, S., Trung, T.N., Veldkamp, A.T. and Verburg, P.H. 2008. Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science 42. (1): 11-37. https://doi.org/10.1007/s00168-007-0138-2

Rahman, M.T. 2016. Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: An analysis of multi-temporal remote sensing data. ISPRSInternational Journal of Geo-Information 5. (2): 15. https://doi.org/10.3390/ijgi5020015

Saxena, A. and Jat, M.K. 2019. Capturing heterogeneous urban growth using SLEUTH model. Remote Sensing Applications: Society and Environment 13. (December 2018) 426-434. https://doi.org/10.1016/j.rsase.2018.12.012

Singh, S.K., Laari, P.B., Mustak, S., Srivastava, P.K. and Szabó, S. 2018. Modelling of land use land cover change using earth observation data-sets of https://doi.org/10.1080/10106049.2017.1343390

Tons River Basin, Madhya Pradesh, India. Geocarto International 33. (11): 1202-1222.

Su, S., Wang, Y., Luo, F., Mai, G. and Pu, J. 2014. Periurban vegetated landscape pattern changes in relation to socioeconomic development. Ecological Indicators 46. 477-486. https://doi.org/10.1016/j.ecolind.2014.06.044

Tang, J., Li, Y., Cui, S., Xu, L., Ding, S. and Nie, W. 2020. Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of southeastern China. Global Ecology and Conservation23. e01177. https://doi.org/10.1016/j.gecco.2020.e01177

Tolessa, T., Senbeta, F. and Kidane, M. 2017. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosystem Services 23. (June 2016) 47-54. https://doi.org/10.1016/j.ecoser.2016.11.010

Truong, N.C.Q., Nguyen, H.Q. and Kondoh, A. 2018. Land use and land cover changes and their effect on the flow regime in the upstream Dong Nai River Basin, Vietnam. Water 10. (9): 1206. https://doi.org/10.3390/w10091206

Turner, M.G. and Gardner, R.H. 2015. Landscape Ecology in Theory and Practice: Pattern and Process.Second edition. New York, Springer Verlag.

Vaz, E., de Noronha, T. and Nijkamp, P. 2014. Exploratory landscape metrics for agricultural sustainability. Agroecology and Sustainable Food Systems 38. (1): 92-108. https://doi.org/10.1080/21683565.2013.825829

Weng, Y.C. 2007. Spatio-temporal changes of landscape pattern in response to urbanization. Landscape and Urban Planning 81. (4): 341-353. https://doi.org/10.1016/j.landurbplan.2007.01.009

Yin, L., Dai, E., Xie, G. and Zhang, B. 2021. Effects of land-use intensity and land management policies on evolution of regional land system: A case study in the Hengduan Mountain region. Land 10. (5): 528. https://doi.org/10.3390/land10050528

Zhang, B., Zhang, Q., Feng, C., Feng, Q. and Zhang, S. 2017. Understanding land use and land cover dynamics from 1976 to 2014 in Yellow River Delta. Land 6 (1): 1-20. https://doi.org/10.3390/land6010020

Zheng, H.W., Shen, G.Q., Wang, H. and Hong, J. 2015. Simulating land use change in urban renewal areas: A case study in Hong Kong. Habitat International 46. 23-34. https://doi.org/10.1016/j.habitatint.2014.10.008

Published
2022-12-21
How to Cite
BuiD. H., & MucsiL. (2022). Predicting the future land-use change and evaluating the change in landscape pattern in Binh Duong province, Vietnam. Hungarian Geographical Bulletin, 71(4), 349-364. https://doi.org/10.15201/hungeobull.71.4.3
Section
Articles