A 54-year record of changes at Chalaati and Zopkhito glaciers, Georgian Caucasus, observed from archival maps, satellite imagery, drone survey and ground-based investigation
Abstract
Individual glacier changes are still poorly documented in the Georgian Caucasus. In this paper, the change of Chalaati and Zopkhito glaciers in Georgian Caucasus has been studied between 1960 and 2014. Glacier geometries are reconstructed from archival topographic maps, Corona and Landsat images, along with modern field surveys. For the first time in the Georgian Caucasus aerial photogrammetric survey of both glacier termini was performed (2014) using a drone or Unmanned Aerial Vehicle, where high-resolution orthomosaics and digital elevation models were produced. We show that both glaciers have experienced area loss since 1960: 16.2±4.9 per cent for Chalaati Glacier and 14.6±5.1 per cent for Zopkhito Glacier with corresponding respective terminus retreat by ~675 m and ~720 m. These were accompanied by a rise in the equilibrium line altitudes of ~35 m and ~30 m, respectively. The glacier changes are a response to regional warming in surface air temperature over the last half century. We used a long-term temperature record from the town of Mestia and short-term meteorological observations at Chalaati and Zopkhito glaciers to estimate a longer-term air temperature record for both glaciers. This analysis suggests an increase in the duration of the melt season over the 54-year period, indicating the importance of summertime air temperature trends in controlling glacier loss in the Georgian Caucasus. We also observed supra-glacial debris cover increase for both glaciers over the last half century: from 6.16±6.9 per cent to 8.01±6.8 per cent for Chalaati Glacier and from 2.80±6.3 per cent to 8.53±5.7 per cent for Zopkhito Glacier.
References
Bhambri, R., Bolch, T. and Chaujar, R.K. 2012. Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965-2006, measured through high resolution remote sensing data. Current Science 102. 489-494.
Blatter, J. and Ingram, H.M. (eds.) 2001. Reflections on Water: New Approaches to Transboundary Conflicts and Cooperation. Cambridge, MA, MIT Press. https://doi.org/10.7551/mitpress/5844.001.0001
Bolch, T., Menounos, B. and Wheate, R.D. 2010. Landsat-based inventory of glaciers in western Canada, 1985-2005. Remote Sensing of Environment 114. 127-137. https://doi.org/10.1016/j.rse.2009.08.015
Frey, H., Paul, F. and Strozzi, T. 2012. Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results. Remote Sensing of Environment 124. 832-843. https://doi.org/10.1016/j.rse.2012.06.020
Gardner, A.S., Moholdt, G., Cogley, J.G., Wouters, B., Arendt, A.A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W.T., Kaser, G., Ligtenberg, S.R.M., Bolch, T., Sharp, M.J., Hagen, J.O., van den Broeke, M.R. and Paul, F. 2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340. (6134): 852-857. https://doi.org/10.1126/science.1234532
Gobejishvili, R.G. 1995. Present day glaciers of Georgia and evolution of glaciation in the mountains of Eurasia in late Pleistocene and Holocene. Thesis for a Doctor's degree. Tbilisi. (in Russian)
Grunewald, K. and Scheithauer. J. 2010. Europe's southernmost glaciers: response and adaptation to climate change. Journal of Glaciology, 56. (195): 129-143. https://doi.org/10.3189/002214310791190947
Hock, R. 1999. A distributed temperature-index iceand snowmelt model including potential direct solar radiation. Journal of Glaciology 45. (149): 101-111. https://doi.org/10.3189/S0022143000003087
Jacobsen, D., Milner, A.M., Brown, L.E. and Dangles, O. 2012. Biodiversity under threat in glacier-fed river systems. Nature Climate Change 2. (5): 361-364. https://doi.org/10.1038/nclimate1435
Jincharadze, Z. 2011. Climate Change Scenarios over South Caucasus Region. Climate Change Impact for the South Caucasus. Report to Environment and Security Initiative. United Nations Development Programme, Vienna, UNIS.
Kaltenborn, B.P., Nellemann, C. and Vistnes, I.I. (eds.) 2010. High Mountain Glaciers and Climate Change - Challenges to Human Livelihoods and Adaptation. United Nations Environment Programme. Oslo, GRID-Arendal. Available at http://www.grida.no.
Källén, Ε., Crafoord, C. and Ghil, M. 1979. Free oscillation in a climate model with ice-sheet dynamics. Journal of the Atmospheric Sciences 36. (12): 2292- 2303. https://doi.org/10.1175/1520-0469(1979)036<2292:FOIACM>2.0.CO;2
Lambrecht, A., Mayer, C., Hagg, W., Popovnin, V., Rezepkin, A., Lomidze, N. and Svanadze, D. 2011. A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus. The Cryosphere 5. 525-538. https://doi.org/10.5194/tc-5-525-2011
Leclercq, P.W., Oerlemans, J., Basagic, H.J., Bushueva, I., Cook, A.J. and Le Bris, R. 2014. A data set of worldwide glacier length fluctuations. The Cryosphere 8. 659-672. https://doi.org/10.5194/tc-8-659-2014
Majeed, Z., Mukhtar, M.A., Mir, R.A., Kumar, P. and Krishna, K. 2020. Sonapani Glacier Recession over a Century from 1906-2016, Chandra Basin, Himachal Himalaya. Journal of Geological Society of India 95. 36-44. https://doi.org/10.1007/s12594-020-1384-5
Oerlemans, J. and Van der Veen, C.J. 1984. Ice Sheets and Climate. Dordrecht-Boston-Lancaster, D. Reidel Publishing Company. https://doi.org/10.1007/978-94-009-6325-2
Ohmura, A., Kasser, P. and Funk, M. 1992. Climate at the equilibrium line of glaciers. Journal of Glaciology 38. (130): 397-411. https://doi.org/10.3189/S0022143000002276
Paul, F., Barrand, N.E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S.P., Konovalov, V., Le Bris, R., Mölg, N. Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S. and Winsvold, S. 2013. On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology 54. 171-182. https://doi.org/10.3189/2013AoG63A296
Raup, B., Kaeaeb, A., Kargel, J., Bishop, M.P., Hamilton, G.S., Lee, E., Rau, F., Paul, F., Soltesz, D., Singh Khalsa, S.J., Beedle, M. and Helm, C. 2007. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers and Geoscience 33. 104-125. https://doi.org/10.1016/j.cageo.2006.05.015
Raup, B.H., Singh Khalsa, S.J., Armstrong, R.L., Sneed, W.A., Hamilton, G.S., Paul, F., Cawkwell, F., Beedle, M.J., Menounos, B.P., Wheate, R.D., Rott, H., Shiyin, L., Xin, L., Donghui, S., Guodong, C., Kargel, J.S., Larsen, C.F., Molnia, B.F., Kincaid, J.L., Klein, A. and Konovalov, V. 2014. Quality in the GLIMS glacier database. In Global Land Ice Measurements from Space. Eds.: Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A. and Raup, B.H., Berlin-Heidelberg, Springer, 163-182. https://doi.org/10.1007/978-3-540-79818-7_7
Sarıkaya, M.A. 2012. Recession of the ice cap on Mount Ararat, Turkey, from 1976 to 2011 and its climatic significance. Journal of Asian Earth Sciences 46. 190-194. https://doi.org/10.1016/j.jseaes.2011.12.009
Shahgedanova, M., Nosenko, G., Kutuzov, S., Rototaeva, O. and Khromova, T. 2014. Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography. The Cryosphere 8. 2367-2379. https://doi.org/10.5194/tc-8-2367-2014
Solomina, O., Bushueva, I., Dolgova, E., Jomelli, V., Alexandrin, M., Mikhalenko, V. and Matskovsky, V. 2016. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Global and Planetary Change 140. (1): 28-58. https://doi.org/10.1016/j.gloplacha.2016.02.008
Stokes, C.R., Gurney, S.D., Popovnin, V. and Shahgedanova, M. 2006. Late-20th-century changes in glacier extent in the Caucasus Mountains, Russia/ Georgia. Journal of Glaciology 52. (176): 99-109. https://doi.org/10.3189/172756506781828827
Tielidze, L.G. 2016. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery. The Cryosphere 10. 713-725. https://doi.org/10.5194/tc-10-713-2016
Tielidze, L.G. and Wheate, R.D. 2018. The Greater Caucasus glacier inventory (Russia, Georgia and Azerbaijan). The Cryosphere 12. 81-94. https://doi.org/10.5194/tc-12-81-2018
Tielidze, L.G., Gobejishvili, R., Maruashvili, L. andAstakhov, N. 2019a. Central Greater Caucasus. In Geomorphology of Georgia. Geography of the Physical Environment. Ed.: Tielidze, L.G., Cham, Springer. https://doi.org/10.1007/978-3-319-77764-1_9
Tielidze, L.G., Kumladze, R.M., Wheate, R.D. and Gamkrelidze, M. 2019b. The Devdoraki Glacier catastrophes, Georgian Caucasus. Hungarian Geographical Bulletin 68. (1): 21-36. https://doi.org/10.15201/hungeobull.68.1.2
Tielidze, L.G., Bolch, T., Wheate, R.D., Kutuzov, S.S., Lavrentiev, I.I. and Zemp, M. 2020. Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014. The Cryosphere 14. 585-598. https://doi.org/10.5194/tc-14-585-2020
Vaughan, D.G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K. and Zhang, T. 2013. Observations: Cryosphere. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Cambridge, UK, and New York, Cambridge University Press, 317-382.
Zumbühl, H.J., Steiner, D. and Nussbaumer, S.U. 2008. 19th century glacier representations and fluctuations in the central and western European Alps: An interdisciplinary approach. Global and Planetary Change 60. (1): 42-57. https://doi.org/10.1016/j.gloplacha.2006.08.005
Copyright (c) 2020 Levan G. Tielidze, David Svanadze, Lela Gadrani, Lasha Asanidze, Roger D. Wheate, Gordon S. Hamilton
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.