Effects of renewable energy resources on the landscape

  • Mária Szabó Eötvös Loránd University, Faculty of Science, Institute of Geography and Earth Sciences, Department of Environmental and Landscape Geography, Budapest, Hungary
  • Ádám Kiss Eötvös Loránd University, Faculty of Science, Institute of Physics, Department of Atomic Physics
Keywords: energy utilization, solar energy, wind energy, biomass, hydropower, landscape impacts

Abstract

One of the most important prerequisites of the sustenance of modern societies is the safe energy supply. An energy supply system, which is currently based mainly on fossil energy resources cannot be maintained even in the medium-term, at least not longer than for a few decades. Therefore, the application of renewable energy resources will play a significant role in forming our energy future. Most of them except geothermal and tide energies, use directly or indirectly solar energy. In this paper, the direct use of solar energy, wind energy, biomass and hydropower will be discussed. It will be shown that the widespread application and the broad expansion of any of the renewable energy resources and the large-scale production of renewable energies are always connected with serious environmental impacts, whichever of the resources is used. They all require a relatively large area for use in the case of producing a significant amount of energy. Renewable energy production methods will be an important factor of landscape change, and will have a strong influence on landscape management. In this study, particularly, hydropower will be investigated. In the typical case of the Gabčikovo Hydropower Station on the Danube the influences on the landscape structure and functions will be demonstrated. It will be shown that intensive human use and alteration (river engineering, the constructions of dams and hydroelectric power plants) of riverine landscapes have led to enormous degradation.

References

Boeker, E. and van Grondelle, R. 1999. Environmental Physics. Chichester-New York-Weinheim-Brisbane-Singapore-Toronto, John Wiley and Sons Ltd., 191 p.

Bödők, Zs. 2008. 15 éves a bősi erőmű (The Gabčikovo Hydropower Station is 15 years old). Mérnök újság 15. (5): 23-24.

Dynesius, M. and Nilsson, C. 1994. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266. 753-762. https://doi.org/10.1126/science.266.5186.753

EIA, 2013. U.S. Energy Information Administration, www.eia.gov.

Community Research, 2003. External costs. Research results on socio-environmental damages due to electricity and transport. European Commission, EUR 20198. 3-21.

Fitzmaurice, J. 1996. Damming the Danube. Colorado and Oxford. Weastview Press, 137 p.

Gergely, A., Hahn, I., Mészáros-Draskovits, R., Simon, T., Szabó, M. and Barabás, S. 2001. Vegetation succession in a newly exposed Danube riverbed. Applied Vegetation Science 4. 122-135. https://doi.org/10.1111/j.1654-109X.2001.tb00232.x

Hohensinner, S., Jungwirth, M., Muhar, S. and Habersack, H. 2005. Historical analyses: a foundation for developing and evaluating river-type specific restoration programs. International Journal of River Basin Management 3. (2): 87-96. https://doi.org/10.1080/15715124.2005.9635248

Hemiak, J. 2011. Renewable energy World Magazine, August 25, 2011. Link

Ijjas, I., Kern, K. and Kovács, Gy. 2010. Feasibility Study: The Rehabilitation of the Szigetköz Reach of the Danube. The Hungarian Section of the Working Group for the Preparation of the Joint Hungarian-Slovak Strategic Environmental Assessment Established by the Governmental Delegations of the Gabčíkovo-Nagymaros Project (Manuscript)

Jansky, L., Murakami, M. and Pachova, N.J. 2004. The Danube. Environmental Monitoring of an International River. Tokyo, UNU Press, 260 p.

Kaldellism, J.K. and Zafirakis, D. 2011. The wind energy (r)evolution: A short review of a long history. Renewable Energy 36. (7): 1887-1901. https://doi.org/10.1016/j.renene.2011.01.002

Owen, A.D. 2004. Environmental externalities, market distortions and the economics of renewable energy technologies. The Energy Journal 25. 127-156. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol25-No3-7

Schiemer, F. 1999. Conservation of biodiversity in floodplain rivers. Archiv für Hydrobiologie Supplement 115. Large Rivers 11. 423-438. https://doi.org/10.1127/lr/11/1999/423

Simon,T., Szabó, M., Draskovits, R., Hahn, I. and Gergely, A. 1993. Ecological and Phytosociological changes in the willow woods of Szigetköz, NW Hungary, in the past 60 years. Abstracta Botanica 17. (1-2): 179-186.

Szabó, M. 2007. Tájszerkezeti változások a Felső-Szigetközben az elmúlt 20 évben (Changes in the land structure of upper-Szigetköz during the last 20 years). Földrajzi Közlemények 131 (55). (1-2): 55-74.

Szabó, M. 2011. River regulations and Hydroelectric Power Plants as geohazard. Effects of hyrogeographical Changes on Floodplain Landscape (a Hungarian case study). In Landscape Conservation. Ed. Jiun-Chuan, L. Taipei, National Taiwan University. 105-112.

Szarka, L. and Ádám, J. 2009. A megújuló energiafajták környezeti hatásainak összehasonlíthatóságáról (On the comparisons of environmental eff ects of renewable energy resources). Debrecen, Conference on Environment and Energy. May. 8-9. 2009. 7-12.

Vajda, Gy. 2009. Energia és társadalom (Energy and society). Magyarország az ezredfordulón sorozat. Budapest, MTA Társadalomtudományi Központ, 141 p.

Wagemann, H-G. and Eschrich, H. 2007. Photovoltaik. Wiesbaden, Teubner Verlag, 43 p. https://doi.org/10.1007/978-3-8351-9114-3

WFD, 2000. Water Framework Directive 2000. Directive 2000/60/EC establishing a framework for Community action in the field of water policy. In: Official Journal (OJL 327) on 22 December 2000. European Parliament and Council. 73 p.

Published
2014-04-03
How to Cite
SzabóM., & Kiss Ádám. (2014). Effects of renewable energy resources on the landscape. Hungarian Geographical Bulletin, 63(1), 5-16. https://doi.org/10.15201/hungeobull.63.1.1
Section
Studies on renewable energies, GIS and climatology