Climate change, extreme heat, and outdoor thermal comfort in urban areas: Case of İzmir, Turkey
Abstract
Recently, environmental problems, urban population growth, the expansion of urban areas, and climate-insensitive planning practices have significantly increased the effects of the climate crisis in urban areas. As cities’ population increases, cities’ vulnerability to disasters also increases. The negative effects of the climate crisis and global warming on both socio-economic and socio-ecological ecosystems vary at different scales. On the other hand, urbanization practices and the current spatial structure of Turkish cities reduce the resilience capacity of cities against the climate crisis and increase their vulnerability. When the environmental and social pressures of the climate crisis rise, hazards such as floods, extreme heat, and urban heat island (UHI) effects turn into disasters in cities. To prevent this, the effects of the climate crisis and the resilience capacity of existing urban structures should be well understood. This study focuses on extreme heat and the UHI effect, which is a critical socio-spatial problem. It is seen that the recent literature on climate change and extreme heat mostly focuses on UHI as an urban vulnerability and an effect of urban morphology, but previous studies partially cover morphological indicators. This study differs from many studies by relating local climate zone mapping with site-based study design and a comprehensive morphological dataset. The case study focuses on İzmir, Turkey; the relationship between outdoor temperature recordings and urban typo-morphological features is examined by using multivariate regression analysis. The findings correspond to the detection of the effective size of greening and the importance of ventilation for cooling in relatively high temperature climatic zones.
References
AHMED, I., VAN ESCH, M. and VAN DER HOEVEN, F. 2023. Heatwave vulnerability across different spatial scales: Insights from the Dutch built environment. Urban Climate 51. 1–15. 101614. https://doi.org/10.1016/j.uclim.2023.101614
AKBABA, S. 2020. Yerleşme formu ve enerjı verımlılığı ılışkısı Ankara-Çankaya örneğı (Relationship between settlement form and energy efficiency on the example of Ankara-Çankaya). In Enerji Etkin Kent Tasarımı / Energy Efficient Urban Design. Ed.: YALÇINER ERCOŞKUN, Ö., Ankara, Turkey, Iksad Publications, 103–151.
AMANI-BENI, M., ZHANG, B., XIE, G. and XU, J. 2018. Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. Urban Forestry & Urban Greening 32. 1–6. https://doi.org/10.1016/j.ufug.2018.03.016
ASFOUR, O. 2022. The impact of housing densification on shading potential of open spaces: A case study. Sustainability 14. (3): 1294. https://doi.org/10.3390/su14031294
BIBRI, S.E. and KROGSTIE, J. 2021. A novel model for data-driven smart sustainable cities of the future: A strategic roadmap to transformational change in the era of big data. Future Cities and Environment 7. (1). (3): 1–25. https://doi.org/10.5334/fce.116
BUO, I., SAGRIS, V., BURDUN, I. and UUEMAA, E. 2021. Estimating the expansion of urban areas and urban heat islands (UHI) in Ghana: A case study. Natural Hazards 105. 1299–1321. https://doi.org/10.1007/s11069-020-04355-4
ČEH, M., KILIBARDA, M., LISEC, A. and BAJAT, B. 2018. Estimating the performance of random forest versus multiple regression for predicting prices of the apartments. ISPRS International Journal of Geo-Information 7. (5): 168. https://doi.org/10.3390/ijgi7050168
ÇUBUKÇU, K.M. and ŞENTÜRK, Y. 2022. Kentsel soğuk alan soğıutma kapasıtesının araştirilmasi, Izmır örneğı (Investigating cooling capacity of urban cool areas, the case of Ismir). Çevre Şehir ve İklim Dergisi 1. (1): 106–126. https://dergipark.org.tr/en/download/article-file/2369637
CUI, F., HAMDI, R., YUAN, X., HE, H., YANG, T., KUANG, W., TERMONIA, P. and DE MAEYER, P. 2021. Quantifying the response of surface urban heat island to urban greening in global north megacities. Science of the Total Environment 801. 149553. https://doi.org/10.1016/j.scitotenv.2021.149553
GADEKAR, K., PANDE, C.B., RAJESH, J., GORANTIWAR, S.D. and ATRE, A.A. 2023. Estimation of land surface temperature and urban heat island by using Google Earth engine and remote sensing data. In Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems. Eds.: PANDE, C.B., MOHARIR, K.N., SINGH, S.K., PHAM, Q.B. and ELBELTAGI, A., Cham, Springer International Publishing, 367–389. https://doi.org/10.1007/978-3-031-19059-9_14
GALDIES, C. and LAU, H.S. 2020. Urban heat island effect, extreme temperatures and climate change: A case study of Hong Kong SAR. In Climate Change, Hazards and Adaptation Options: Handling the Impacts of a Changing Climate.: Eds.: LEAL FILHO, W., NAGY, G.J., BORGA, M., CHÁVEZ MUÑOZ, P.D. and MAGNUSZEWSKI, A., Cham, Springer International Publishing, 369–388. https://doi.org/10.1007/978-3-030-37425-9_20
GELETIČ, J., LEHNERT, M. and DOBROVOLNÝ, P. 2016. Modelled spatio-temporal variability of air temperature in an urban climate and its validation: A case study of Brno, Czech Republic. Hungarian Geographical Bulletin 65. (2): 169–180. https://doi.org/10.15201/hungeobull.65.2.7
GONZALEZ-TREVIZO, M.E., MARTINEZ-TORRES, K.E., ARMENDARIZ-LOPEZ, J.F., SANTAMOURIS, M., BOJORQUEZ-MORALES, G. and LUNA-LEON, A. 2021. Research trends on environmental, energy and vulnerability impacts of urban heat islands: An overview. Energy and Buildings 246. 111051. https://doi.org/10.1016/j.enbuild.2021.111051
HAN, D., ZHANG, T., QIN, Y., TAN, Y. and LIU, J. 2023. A comparative review on the mitigation strategies of urban heat island (UHI): a pathway for sustainable urban development. Climate and Development 15. (1): 1–25. https://doi.org/10.1080/17565529.2022.2092051
IPCC, 2021. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. IPCC, New York, Cambridge University Press, 3–32. https://doi.org/10.1017/9781009157896.001
JAIN, S., SANNIGRAHI, S., SEN, S., BHATT, S., CHAKRABORTI, S. and RAHMAT, S. 2020. Urban heat island intensity and its mitigation strategies in the fast-growing urban area. Journal of Urban Management 9. 54–66. https://doi.org/10.1016/j.jum.2019.09.004
KARDINAL JUSUF, S., WONG, N.H., HAGEN, E., ANGGORO, R. and HONG, Y. 2007. The influence of land use on the urban heat island in Singapore. Habitat International 31. (2): 232–242. https://doi.org/10.1016/j.habitatint.2007.02.006
KARIMI, A., MOHAMMAD, P., GARCÍA-MARTÍNEZ, A., MORENO-RANGEL, D., GACHKAR, D. and GACHKAR, S. 2023. New developments and future challenges in reducing and controlling heat island effect in urban areas. Environmental Development and Sustainability 25. (1): 10485–10531. https://doi.org/10.1007/s10668-022-02530-0
KAYA, Y. 2018. İklım değışıklığıne karşi kentsel kirilganlik: İstanbul ıçın bır değerlendırme (Urban vulnerability to climate change: An assessment on Istanbul). International Journal of Social Inquiry 11. (2): 219–257. https://dergipark.org.tr/tr/download/article-file/606756
KOLOKOTSA, D., LILLI, K., GOBAKIS, K., MAVRIGIANNAKI, A., HADDAD, S., GARSHASBI, S., MOHAJER, H.R.H., PAOLINI, R., VASILAKOPULOU, K. BARTESAGHI, C., PRASAD, D. and SANTAMOURIS, M. 2022. Analyzing the impact of urban planning and building typologies in urban heat island mitigation. Buildings 12. (5): 537. https://doi.org/10.3390/buildings12050537
KUANG, W. 2020. Seasonal variation in air temperature and relative humidity on building areas and in green spaces in Beijing, China. Chinese Geographical Science 30. (1): 75–88. https://doi.org/10.1007/s11769-020-1097-0
LEMONSU, A., DE MUNCK, C., KOUNKOU-ARNAUD, R., MASSON, V. and VIGUIÉ, V. 2021. What alternatives does Paris have to adapt to future heat waves? In Urban Climate Science for Planning Healthy Cities. Eds.: REN, C. and MCGREGOR, G., Cham, Springer International Publishing, 239–258. https://doi.org/10.1007/978-3-030-87598-5_11
LEMONSU, A., ALESSANDRINI, J.M., CAPO, J., CLAEYS, M., CORDEAU, E., DE MUNCK, C., DAHECH, S., DUPONT, J.C., DUGAY, F., DUPUIS, V., FORCEVILLE, G., GARRIGOU, S., GARROUSTE, O., GORET, M., GORIA, S., HAEFFELIN, M., JOLY, C., KERAVEC, P., KOTTHAUS, S., LARUELLE, N., MADELIN, M., MASSON, V., MAUCLAIR, C., NAGEL, T., PASCAL, M., RIBAUD, J.F., ROBERTS, G., ROSSO, A., ROY, A., SABRE, M., SANCHEZ, O., STEMPFELET, M., WEI, W., WILSON, R. and WURTZ, J. 2024. The heat and health in cities (H2C) project to support the prevention of extreme heat in cities. Climate Services 34. 100472. https://doi.org/10.1016/j.cliser.2024.100472
LING, T.-Y. 2022. Rethinking greening the building façade under extreme climate: Attributes consideration for typo-morphological green envelope retrofit. Cleaner and Circular Bio-economy 3. 100024. https://doi.org/10.1016/j.clcb.2022.100024
LIU, H.-Y., SKANDALOS, N., BRASLINA, L., KAPSALIS, V. and KARAMANIS, D. 2023. Integrating solar energy and nature-based solutions for climate-neutral urban environments. Solar 3. (3): 382–415. https://doi.org/10.3390/solar3030022
MAIULLARI, D., PIJPERS-VAN ESCH, M. and VAN TIMMEREN, A. 2021. A quantitative morphological method for mapping local climate types. Urban Planning 6. (3): 240–257. https://doi.org/10.17645/up.v6i3.4223
MANSUROĞLU, S., DAĞ, V. and KALAYCI ÖNAÇ, A. 2021. Attitudes of people toward climate change regarding the bioclimatic comfort level in tourism cities; evidence from Antalya, Turkey. Environmental Monitoring and Assessment 193. (7): 420. https://doi.org/10.1007/s10661-021-09205-9
MARANDO, F., HERIS, M.P., ZULIAN, G., UDÍAS, A., MENTASCHI, L., CHRYSOULAKIS, N., PARASTATIDIS, D. and MAES, J. 2022. Urban heat island mitigation by green infrastructure in European functional urban areas. Sustainable Cities and Society 77. 103564. https://doi.org/10.1016/j.scs.2021.103564
MARQUEZ-BALLESTEROS, M.J., MORA-LÓPEZ, L., LLORET-GALLEGO, P., SUMPER, A. and SIDRACH-DE-CARDONA, M. 2019. Measuring urban energy sustainability and its application to two Spanish cities: Malaga and Barcelona. Sustainable Cities and Society 45. (February), 335–347. https://doi.org/10.1016/j.scs.2018.10.044
MARTILLI, A., KRAYENHOFF, E.S. and NAZARIAN, N. 2020. Is the Urban Heat Island intensity relevant for heat mitigation studies? Urban Climate 31. 100541. https://doi.org/10.1016/j.uclim.2019.100541
MILOŠEVIĆ, D.D., SAVIĆ, S.M., MARKOVIĆ, V., ARSENOVIĆ, D. and ŠEĆEROV, I. 2016. Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hungarian Geographical Bulletin 65. (2): 129–137. https://doi.org/10.15201/hungeobull.65.2.4
OZILI, P.K. 2022. The acceptable R-Square in empirical modelling for social science research. Social research methodology and publishing results. SSRN online publication. https://doi.org/10.2139/ssrn.4128165
ÖZTÜRK, S.P. and TIKIK, M. 2022. İzmir enerji etkinlik kapasitesi ve kentsel Isı adası etkisi tespiti (Detection of energy efficiency capacity and urban heat island effect in Izmir). Ege Mimarlık 32. 58–66.
PEKER, E. 2021. Bir şehircilik problemi: Değişen ıklimde termal konforu sağlamak (An urbanism problem: Providing thermal comfort in a changing climate. Planlama 31. (1): 108–119. https://doi.org/10.14744/planlama.2020.92679
PRIVITERA, R., PALERMO, V., MARTINICO, F., FICHERA, A. and LA ROSA, D. 2018. Towards lower carbon cities: urban morphology contribution in climate change adaptation strategies. European Planning Studies 26. 812–837. https://doi.org/10.1080/09654313.2018.1426735
RAJAGOPAL, P., PRIYA, R.S. and SENTHIL, R. 2023. A review of recent developments in the impact of environmental measures on urban heat island. Sustainable Cities and Society 88. 104279. https://doi.org/10.1016/j.scs.2022.104279
RAKOTO, P.Y., DEILAMI, K., HURLEY, J., AMATI, M. and SUN, Ch. 2021. Revisiting the cooling effects of urban greening: Planning implications of vegetation types and spatial configuration. Urban Forestry & Urban Greening 64. (2): 127266. https://doi.org/10.1016/j.ufug.2021.127266
REN, C., WANG, K., SHI, Y., KWOK, Y.T., MORAKINYO, T.E., LEE, T. and LI, Y. 2021. Investigating the urban heat and cool island effects during extreme heat events in high-density cities: A case study of Hong Kong from 2000 to 2018. International Journal of Climatology 41. (15): 6736–6754. https://doi.org/10.1002/joc.7222
SAKAR, B. and ÇALIŞKAN, O. 2019. Design for mitigating urban heat island: Proposal of a parametric model. ICONARP International Journal of Architecture and Planning 7. 158–181. https://doi.org/10.15320/ICONARP.2019.84
SHI, Y., XIANG, Y. and ZHANG, Y. 2019. Urban design factors influencing surface urban heat island in the high-density city of Guangzhou based on the local climate zone. Sensors 19. (16): 3459. https://doi.org/10.3390/s19163459
TAPIA, C., ABAJO, B., FELIU, E., MENDIZABAL, M., MARTINEZ, J.A., FERNÁNDEZ, J.G., LABURU, T. and LEJARAZU, A. 2017. Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities. Ecological Indicators 78. 142–155. https://doi.org/10.1016/j.ecolind.2017.02.040
TODESCHI, V. and PAPPALARDO, S.E. 2022. Climate justice in the city: Mapping heat-related risk for climate change mitigation of the urban and peri-urban area of Padua (Italy). International Journal of Geo-Information 11. (9): 490. https://doi.org/10.3390/ijgi11090490
URQUIZO, J., CALDERÓN, C. and JAMES, P. 2017. Metrics of urban morphology and their impact on energy consumption: A case study in the United Kingdom. Energy Research & Social Science 32. 193–206. https://doi.org/10.1016/j.erss.2017.03.011
WANG, Y., NI, Z., HU, M., CHEN, S. and XIA, B. 2021. A practical approach of urban green infrastructure planning to mitigate urban overheating: A case study of Guangzhou. Journal of Cleaner Production 287. 124995. https://doi.org/10.1016/j.jclepro.2020.124995
WANG, Q., WANG, X., ZHOU, Y., LIU, D. and WANG, H. 2022. The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm. Sustainable Cities and Society 79. 103722. https://doi.org/10.1016/j.scs.2022.103722
WEIS, S.W.M., AGOSTINI, V.N., ROTH, L.M., GILMER, B., SCHILL, S.R., KNOWLES, J.E. and BLYTHER, R. 2016. Assessing vulnerability: an integrated approach for mapping adaptive capacity, sensitivity, and exposure. Climatic Change 136. (3–4): 615–629. https://doi.org/10.1007/s10584-016-1642-0
XU, L., WANG, X., LIU, J., HE, Y., TANG, J., NGUYEN, M. and CUI, S. 2019. Identifying the trade-offs between climate change mitigation and adaptation in urban land use planning: An empirical study in a coastal city. Environmental International 133. (B): 105162. https://doi.org/10.1016/j.envint.2019.105162
XU, D., ZHANG, Q., ZHOU, D., YANG, Y., WANG, Y. and ROGORA, A. 2023. Local climate zone in Xi’an city: A novel classification approach employing spatial indicators and supervised classification. Buildings 13. (11): 2806. https://doi.org/10.3390/buildings13112806
YAN, H., WU, F. and DONG, L. 2018. Influence of a large urban park on the local urban thermal environment. Science of the Total Environment 622. 882–891. https://doi.org/10.1016/j.scitotenv.2017.11.327
YU, Z., CHEN, S., WONG, N.H., IGNATIUS, M., DENG, J., HE, Y. and HII, D.J.C. 2020. Dependence between urban morphology and outdoor air temperature: A tropical campus study using random forests algorithm. Sustainable Cities and Society 61. 102200. https://doi.org/10.1016/j.scs.2020.102200
ZHOU, W., HUANG, G. and CADENASSO, M.L. 2011. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning 102. (1): 54–63. https://doi.org/10.1016/j.landurbplan.2011.03.009
ZHOU, L., YUAN, B., HU, F., WEI, C., DANG, X. and SUN, D. 2022. Understanding the effects of 2D/3D urban morphology on land surface temperature based on local climate zones. Building and Environment 208. 108578. https://doi.org/10.1016/j.buildenv.2021.108578
Copyright (c) 2025 Sevim Pelin Öztürk, Pelin Özden, Müge Tikik

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.