Spatial analysis of changes and anomalies of intense rainfalls in Hungary
Abstract
Extreme precipitation events can trigger flash flood, mass movements, pluvial flood and accelerated soil erosion. As soil structures are highly degraded due to intensive improper cultivation water infiltration can considerably decrease during the vegetation period. Additional changes in canopy coverage on the soil surface cause relevant variability in infiltration and hence vulnerability against runoff related disasters. Most researchers agree that the frequency of extreme precipitations increases, however, in the Carpathian Basin the uncertainties are quite high. This study aims to compare daily maximum mean precipitation amounts (MMPA) predicted by the Goda-method for June and August as the most probable months of extremities. We used the CarpatClim database as input and predicted MMPAs for two periods, 1960–1985 and 1986–2010. The Goda-method uses monthly data and calculates daily results on given probability. A general increase was found between the first and second half of the period regarding daily maximum precipitation amount in both investigated months. For August the 1-day precipitation amount increased from 56.1 mm to 61.8 mm, whereas 6-days amount from 93.8 mm to 103.2 mm at 1 per cent probability (r = 0.53; p < 0.001). Beyond this change, relevant spatial differences were found. Comparing the macro regions plains had lower increase compared to the mountains, whereas the highest increase was at the. The most endangered location is the southern part of the Transdanubian Hills where parallel with the intensive increase in MMPA both in June and August the environmental conditions such as loose parent material and the high percentage of crop fields also emphasize the potential hazard.
References
Balázs, B., Bíró, T., Dyke, G.J., Singh, S.K. and Szabó, Sz. 2018. Extracting water-related features using reflectance data and principal component analysis of Landsat images. Hydrological Sciences Journal 63. (2): 269-284. https://doi.org/10.1080/02626667.2018.1425802
Ballabio, C., Borelli, P., Spinoni, J., Meusburger, K., Michaelides, S., Begueria, S., Klik, A., Petan, S., Janeček, M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Perčec Tadić, M., Diodato, M., Kostalova, J., Rousseva, S., Banasik, K., Alewell, C. and Panagos, P. 2017. Mapping monthly rainfall erosivity in Europe. Science of the Total Environment 579. 1298-1315. https://doi.org/10.1016/j.scitotenv.2016.11.123
Bartholy, J. and Pongrácz, R. 2007. Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Global and Planetary Change 57. (1-2): 83-95. https://doi.org/10.1016/j.gloplacha.2006.11.002
Cheval, S., Dumitrescu, A.M. and Birsan, V. 2016. Variability of the aridity in the South Eastern Europe over 1961-2050. Catena 151. 74-86 https://doi.org/10.1016/j.catena.2016.11.029
Czigány, Sz., Pirkhoffer, E. and Geresdi, I. 2010. Impact of extreme rainfall and soil moisture on flash flood generation. Időjárás 114. (1-2): 79-100.
Dövényi, Z. (ed.) 2010. Magyarország kistájainak katasztere (Inventory of microregions in Hungary). Budapest, MTA Földrajztudományi Kutatóintézet.
Eekhout, J.P.C., Hunink, J.E., Terink, W., De Vente, J. and San Diego, C. 2018. Why increased extreme precipitation under climate change negatively affects water security. Hydrology and Earth System Sciences 22. 5935-5946. https://doi.org/10.5194/hess-22-5935-2018
Field, A. 2009. Discovering statistics. London, SAGE Publications.
Fowler, H.J. and Kilsby, C.G. 2003. Implications of changes in seasonal and annual extreme rainfall. Geophysical Research Letters 30. (13): 17-20. https://doi.org/10.1029/2003GL017327
Gelybó, Gy., Tóth, E., Farkas, Cs., Horel, Á., Kása, I. and Bakacsi, Zs. 2018. Potential impacts of climate change on soil properties. Agrokémia és Talajtan 67. (1): 121-141. https://doi.org/10.1556/0088.2018.67.1.9
Goda, L. 1966. Frequency of several days long precipitations. Tanulmányok és kutatási eredmények 20. Budapest, VITUKI, 6-15. (in Hungarian)
Hothorn, T., Hornik, K., Van de Wiel, M.A. and Zeileis, A. 2008. Implementing a class of permutation tests: The coin package. Journal of Statistical Software 28. (8): 1-23. URL http://www.jstatsoft.org/v28/i08/ https://doi.org/10.18637/jss.v028.i08
Ihász, I., Mátrai, A., Szintai, B., Szűcs, M. and Bonta, I. 2018. Application of European numerical weather prediction models for hydrological purposes. Időjárás 122. (1): 59-79. Doi:10.28974/idojaras.2018.1.5 https://doi.org/10.28974/idojaras.2018.1.5
Jakab, G., Madarász, B., Szabó, J.A., Tóth, A., Zacháry, D., Szalai, Z., Kertész, Á. and Dyson, J. 2017. Infiltration and soil loss changes during the growing season under ploughing and conservation tillage. Sustainability 9. (1726): 1-13. https://doi.org/10.3390/su9101726
Jakab, G., Szabó, J. and Szalai, Z. 2015. A review on sheet erosion measurements in Hungary. Journal of Landscape Ecology 13. (1): 89-103.
Kendon, E.J., Roberts, N.M., Fowler, H.J., Roberts, M.J., Chan, S.C. and Senior, C.A. 2014. Heavier summer downpours with climate change revealed by weather forecast resolution model. Natural Climate Change 4. (7): 570-576. https://doi.org/10.1038/nclimate2258
Kertész, Á. and Centeri, Cs. 2006. Hungary. In Soil erosion in Europe. Eds.: Boardman, J. and Poesen, J., Chichester, John Wiley & Sons, 139-153. https://doi.org/10.1002/0470859202.ch12
Knapp, A.K., Beier, C., Briske, D.D., Classen, A.T., Luo, Y., Reichstein, M., Smith, M.D., Smith, S.D., Bell, J.E., Fay, P.A., Heisler, J.L., Leawitt, S.V., Sherry, R., Smith, B. and Weng, E. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58. (9): 811-821. https://doi.org/10.1641/B580908
Kristóf, E., Pongrácz, R. and Bartholy, J. 2017. Távkapcsolati rendszerek hatása a Kárpát-medence térségére (Impact of distant connection systems on the surroundings of the Carpathian Basin). In HUNGEO 2017. Bányászat és környezet - harmóniában. Eds.: Cserny, T. and Alpek, B.L., Budapest, Magyarhoni Földtani Társulat, 75-76.
Lakatos, M. and Hoffmann, L. 2018. Növekvő csapadékintenzitás, magasabb mértékadó csapadékok a változó klímában (Increasing precipitation intensity, higher standard precipitations in changing climate). In Országos Települési Csapadékvíz-gazdálkodási Konferencia Tanulmányai. Ed.: Bíró, T., Budapest, Dialóg Campus Kiadó, 8-16.
László, E. and Salavec, P. 2018. Relationship between weather conditions advantageous for the development of urban heat island and atmospheric macro-circulation changes. International Journal of Climatology 38. 3224-3232. https://doi.org/10.1002/joc.5496
László, E., Bottyán, Z. and Szegedi, S. 2016. Longterm changes of meteorological conditions of urban heat island development in the region of Debrecen, Hungary. Theoretical and Applied Climatology 124. (1): 365-373. https://doi.org/10.1007/s00704-015-1427-9
Lóczy, D., Czigány, Sz. and Pirkhoffer, E. 2012. Flash flood hazards. In Studies on Water Management Issues. Ed.: Kumarasamy, M., Rijeka, InTech, 57-72. https://doi.org/10.5772/28775
Lóki, J. 2010. Agriculture: Crop Cultivation and Horticulture. In Anthropogenic Geomorphology: A Guide to Man-Made Landforms. Eds.: Szabó, J., Dávid, L. and Lóczy, D., Dordrecht-Heidelberg-New York, Springer, 55-71. https://doi.org/10.1007/978-90-481-3058-0_5
Love, J. and Mair, P. 2017. Walrus: Robust Statistical Methods. (R package version 1.0.1.). Available at https://cran.r-project.org/package=walrus
Maheras, P., Tolika, K., Anagnostopoulou, C., Makra, L., Szpirosz, K. and Károssy, Cs. 2018. Relationship between mean and extreme precipitation and circulation types over Hungary. International Journal of Climatology 38. (12): 4518-4532. https://doi.org/10.1002/joc.5684
Mezősi, G., Meyer, B.C., Loibl, W., Aubrecht, C., Csorba, P. and Bata, T. 2013. Assessment of regional climate change impacts on Hungarian landscapes. Regional Environmental Change 13. (4): 797-811. https://doi.org/10.1007/s10113-012-0326-1
Mika, J. and Farkas, A. 2017. Sensitivity of inland water bodies, natural vegetation and agriculture to weather extremes and to climate change. Tájökológiai Lapok 15. (2): 85-90. (in Hungarian with English abstract)
Milosevic, D. and Savic, S. 2013. Analysis of precipitation quantities and trends from Pannonian and Peripannonian parts of Serbia. Dela 39. 125-139. https://doi.org/10.4312/dela.39.7.125-139
Milosevic, D., Savic, S., Pantelic, M., Stankov, U., Ziberna, I., Dolinaj, D. and Lescesen, I. 2017. Variability of seasonal and annual precipitation in Slovenia and its correlation with large-scale atmospheric circulation. Open Geosciences 8. (1): 593-605. https://doi.org/10.1515/geo-2016-0041
Müller, M., Kašpar, M. and Matschullat, J. 2009. Heavy rains and extreme rainfall-runoff events in Central Europe from 1951 to 2002. Natural Hazards and Earth System Sciences 9. 441-450. https://doi.org/10.5194/nhess-9-441-2009
Négyesi, G. 2018. Surveying the spatiotemporal changes of afforestation in the Nyírség - from the aspect of wind erosion. Tájökológiai Lapok 16. (2): 113-128. (in Hungarian with English abstract)
Négyesi, G., Lóki, J., Buró, B. and Szabó, Sz. 2016. Effect of soil parameters on the threshold wind velocity and maximum eroded mass in a dry environment. Arabian Journal of Geosciences 9. 588-599. https://doi.org/10.1007/s12517-016-2626-0
Négyesi, G., Lóki, J., Buró, B., Szabó, J., Bakacsi, Zs. and Pásztor, L. 2015. The potential wind erosion map of an area covered by sandy and loamy soils - based on wind tunnel measurements. Zeitschrift für Geomorphologie 59. (1): 59-77. https://doi.org/10.1127/0372-8854/2014/0131
Panagos, P., Ballabio, C., Borelli, P., Meusburger, K., Klik, A., Rousseva, S., Perčec Tadić, M., Michaelides, S., Hrabalíková, M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Begueria, S. and Alewell, C. 2015. Rainfall erosivitym in Europe. Science of the Total Environment 511. 801-814. https://doi.org/10.1016/j.scitotenv.2015.01.008
Pásztor, L., Körösparti, J., Bozán, Cs., Laborczi, A. and Takács, K. 2015. Spatial risk assessment of hydrological extremities: Inland excess water hazard, Szabolcs-Szatmár-Bereg county, Hungary. Journal of Maps 11. (4): 636-644. https://doi.org/10.1080/17445647.2014.954647
Pásztor, L., Négyesi, G., Laborczi, A., Kovács, T., László, E. and Bihari, Z. 2016a. Integrated spatial assessment of wind erosion risk in Hungary. Natural Hazards and Earth System Sciences 16. 2421-2432. https://doi.org/10.5194/nhess-16-2421-2016
Pásztor, L., Laborczi, A., Takács, K., Szatmári, G., Illés, G., Fodor, N., Négyesi, G., Bakacsi, Zs. and Szabó, J. 2016b. Spatial distribution of selected soil features in Hajdú-Bihar county represented by digital soil maps. Acta Geographica Debrecina. Landscape and Environment 10. (3-4): 203-213. https://doi.org/10.21120/LE/10/3-4/14
Pásztor, L., Waltner, I., Centeri, Cs., Belényesi, M. and Takács, K. 2016c. Soil erosion of Hungary assessed by spatially explicit modelling. Journal of Maps 12. (1): 407-414. https://doi.org/10.1080/17445647.2016.1233913
Pieczka, I., Pongrácz, R. and Bartholy, J. 2011. Expected trends of regional climate change for the Carpathian Basin for the 21st century. International Journal of Environment and Pollution 46. (1-2): 6-17. https://doi.org/10.1504/IJEP.2011.042605
Pirkhoffer, E., Czigány, Sz. and Geresdi, I. 2009. Impact of rainfall pattern on the occurrence of flash floods in Hungary. Zeistschrift für Geomorphologie N. F. 53. Supplement 2. 139-157. https://doi.org/10.1127/0372-8854/2009/0053S3-0139
Pongrácz, R., Bartholy, J. and Kis, A. 2014. Estimation of future precipitation conditions for Hungary with special focus on dry periods. Időjárás 118. (4): 305-321.
R. Core Team 2017. R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at https://www.R-project.org/
Renard, K.G. and Freimund, J.R. 1994. Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology 157. (1-4): 287-306. https://doi.org/10.1016/0022-1694(94)90110-4
Rodrigo-Comino, J., Neumann, M., Remke, A. and Ries, J.B. 2019. Assessing environmental changes in abandoned German vineyards. Understanding key issues for restoration management plans. Hungarian Geographical Bulletin 67. (4): 319-332. https://doi.org/10.15201/hungeobull.67.4.2
Spinoni, J., Lakatos, M., Szentimrey, T., Bihari, Z., Szalai, S., Vogt, J. and Antofie, T. 2015. Heat and cold waves trends in the Carpathian Region from 1961 to 2010. International Journal of Climatology 35. (14): 4197-4209. Doi:10.1002/joc.4279 https://doi.org/10.1002/joc.4279
Sullivan, G.M. and Feinn, R. 2012. Using effect size - or why the P value is not enough. Journal of Graduate Medical Education 4. (3): 279-282. https://doi.org/10.4300/JGME-D-12-00156.1
Szalai, S., Auer, I., Hiebl, J., Milkovich, J., Radim, T., Stepanek, P., Zahradnicek, P., Bihari, Z., Lakatos, M., Szentimrey, T., Limanowka, D., Kilar, P., Cheval, S., Deák, Gy., Mihic, D., Antolovic, I., Nejedlik, P., Stastny, P., Mikulova, K., Nabyvanets, I., Skyryk, O. and Krakovskaya, S. 2013. Climate of the Greater Carpathian Region. Final technical report. Available at http://www.carpatclim-eu.org
Szentimrey, T. 2011. Manual of homogenization software MASHv3. 03. Budapest, Hungarian Meteorological Service.
Szentimrey, T. and Bihari, Z. 2007. Mathematical background of spatial interpolation, Meteorological interpolation based on surface homogenized data bases (MISH). In COST Action 719. Budapest, COST Office, 17-27.
Szentimrey, T., Lakatos, M., Bihari, Z., Kovacs, T., Szalai, S., Auer, I., Hiebl, J., Milkovic, J., Stepanek, P. and Zahradnicek, P. 2012. Final Report on Quality Control and Data Homogenization Measures Applied per Country, Including QC Protocols and Measures to Determine the Achieved Increase in Data Quality. 12. CARPATCLIM Project Deliverable D1. Available at http://www.CARPATCLIM-eu.org/docs/ deliverables/D1_12.pdf
Szűcs, P., Csepinszky, B., Sisák, I. and Jakab, G. 2006. Rainfall simulation in wheat culture at harvest. Cereal Research Communications 34. (1): 81-84.
Újvári, G., Mentes, Gy., Bányai, L., Kraft, J., Gyimóthy, A. and Kovács, J. 2009. Evolution of a bank failure along the River Danube at Dunaszekcső, Hungary. Geomorphology 109. 197-209. https://doi.org/10.1016/j.geomorph.2009.03.002
Van Leeuwen, B., Henits, L., Mészáros, M., Szatmári, J., Tobak, Z., Pavić, D., Savić, S. and Dolinaj, D. 2013. RapidEye satellite imagery for inland excess water identification. Hidrológiai Közlöny 93. (3): 17-24. (in Hungarian with English abstract)
Waltner, I., Pásztor, L., Centeri, Cs., Takács, K., Pirkó, B., Koós, S. and László, P. 2018. Evaluating the new soil erosion map of Hungary - a semi‐quantitative approach. Land Degradation & Development 29. (4): 1295-1302. https://doi.org/10.1002/ldr.2916
Wickham, H. and Henry, L. 2018. Tidyr: Easily tidy data with 'spread ()' and 'gather ()' functions. R package version 0.8.0. Available at https://CRAN.R-project.org/package=tidyr
Wischmeier, W.H. and Smith, D.D. 1978. Predicting rainfall erosion losses: A guide to conservation planning. USDA Agricultural Handbook 537. Washington D. C., US Government Printing Office.
Zhang, F., Odins, A.M. and Nielsen-Gammon, J.W. 2006. Mesoscale predictability of an extreme warm-season precipitation event. Weather and Forecasting 21. 149-166. https://doi.org/10.1175/WAF909.1
Copyright (c) 2019 Gergely Jakab, Tibor Bíró, Zoltán Kovács, Ádám Papp, Ninsawat Sarawut, Zoltán Szalai, Balázs Madarász, Szilárd Szabó
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.