Spatial and temporal analysis of drought-related climate indices for Hungary for 1971–2100

  • Anna Kis ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Meteorology, Budapest, Hungary https://orcid.org/0000-0002-3227-1230
  • Péter Szabó ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Meteorology, Budapest, Hungary
  • Rita Pongrácz ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Meteorology, Budapest, Hungary https://orcid.org/0000-0001-7591-7989
Keywords: De Martonne Index, Forestry Aridity Index, climate change, summer, HuClim, precipitation

Abstract

The lack of precipitation may cause severe damage in different sectors, especially in agriculture and forestry, therefore, its analysis is a key element of adaptation strategies in the changing climate. In the present study, we selected different climate indices as important indicators for forests to investigate the current and future wet and dry conditions in summer in Hungary. For the historical period (from 1971), the observation-based HuClim dataset is used, which already shows a slight drying trend in the past 50 years, especially in June. For the future, regional climate model simulations from the EURO-CORDEX program are used, taking into account two different RCP scenarios (a business-as-usual scenario and an intermediate mitigation scenario, i.e., RCP8.5 and RCP4.5, respectively). Since mitigation starts to affect the climate system after about 20 years, results do not differ substantially for the two scenarios until 2060, however, the simulated changes highly depend on the applied RCP scenario in the late 21st century. Based on the De Martonne Index, a large expansion of semi-arid conditions is projected for the future in July and even more in August. The analysis of the Forestry Aridity Index shows that the steppe category will become dominant in 2081–2100, while the category optimal for beech may disappear entirely from Hungary according to the RCP8.5 scenario.

References

Biró, K., Szalmáné Csete, M. and Németh, B. 2021. Climate-smart agriculture: Sleeping beauty of the Hungarian agribusiness. Sustainability 13. 10269. https://doi.org/10.3390/su131810269

Buzási, A., Pálvölgyi, T. and Esses, D. 2021. Drought-related vulnerability and its policy implications in Hungary. Mitigation and Adaptation Strategies for Global Change 26. 11(2021). https://doi.org/10.1007/s11027-021-09943-8

Casanueva, A., Frías, M.D., Herrera, S., San-Martín, D., Zaninovic, K. and Gutiérrez, J.M. 2014. Statistical downscaling of climate impact indices: testing the direct approach. Climatic Change 127. 547-560. https://doi.org/10.1007/s10584-014-1270-5

Christensen, J.H., Boberg, F., Christensen, O.B. and Lucas-Picher, P. 2008. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophysical Research Letters 35. L20709. https://doi.org/10.1029/2008GL035694

Copernicus Climate Change 2022. Seasonal review: Europe's record-breaking summer. Climate Change Service, ECMWF. Available at https://climate.copernicus.eu/seasonal-review-europes-record-breaking-summer

Führer, E., Horváth, L., Jagodics, A., Machon, A. and Szabados, I. 2011. Application of a new aridity index in Hungarian forestry practice. Időjárás 115. (3): 205-216.

Führer, E., Gálos, B., Rasztovits, E., Jagodics, A. and Mátyás, Cs. 2017. Erdészeti klímaosztályok területének várható változása (Expectable changes in the area of forest climate classes). Erdészeti Lapok 152. (6): 174-177.

Führer, E. 2017. Az erdészeti klímaosztályok új lehatárolása öko-fiziológiai alapon (New way of separation of forest climate classes on eco-physiological basis). Erdészeti Lapok 152. (6): 173-174.

Gavrilov, M.B., Lukic, T., Janc, N., Basarin, B. and Markovic, S.B. 2019. Forestry Aridity Index in Vojvodina, North Serbia. De Gruyter, Open Geosciences 11. 367-377. https://doi.org/10.1515/geo-2019-0029

Hansel, S., Hoy, A., Brendel, C. and Maugeri, M. 2022. Record summers in Europe: Variations in drought and heavy precipitation during 1901-2018. International Journal of Climatology 42. (12): 6235-6257. https://doi.org/10.1002/joc.7587

Hawkins, E. and Sutton, R. 2009. The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society 90. (8): 1095-1108. https://doi.org/10.1175/2009BAMS2607.1

Hlásny, T., Mátyás, Cs., Seidl, R., Kulla, L., Merganicová, K., Trombik, J., Dobor, L., Barcza, Z. and Konopka, B. 2014. Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesnicky Casopis / Forestry Journal 60. 5-18. https://doi.org/10.2478/forj-2014-0001

IPCC 2021. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B., Cambridge, UK and New York, USA, Cambridge University Press, 3−32.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O.B., Bouwer, L.M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B. and Yiou, P. 2014. EUROCORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change 14. 563-578. https://doi.org/10.1007/s10113-013-0499-2

Jankó, F., Bertalan, L., Pappné Vancsó, J., Németh, N., Hoschek, M., Lakatos, M. and Móricz, N. 2022. Seeing, believing, acting: Climate change attitudes and adaptation of Hungarian forest managers. iForest 15. (6): 509-518. https://doi.org/10.3832/ifor3958-015

Kis, A. and Pongrácz, R. 2023. Analyzing the influences of the selection of the RCP scenario and the reference period on the evaluation results of EUROCORDEX simulations for Hungary. International Journal of Climatology 1-19. https://doi.org/10.1002/joc.8184

Milovanovic, B., Schubert, S., Radovanovic, M., Vakanjac, V.R. and Schneider, C. 2022. Projected changes in air temperature, precipitation and aridity in Serbia in the 21st century. International Journal of Climatology 42. (1): 1985-2003. https://doi.org/10.1002/joc.7348

Móricz, N., Rasztovits, E., Gálos, B., Berki, I., Eredics, A. and Loibl, W. 2013. Modelling the potential distribution of three climate zonal tree species for present and future climate in Hungary. Acta Silvatica & Lignaria Hungarica 9. (1): 85-96. https://doi.org/10.2478/aslh-2013-0007

Paltineanu, Cr., Tanasescu, N., Chitu, E. and Mihailescu, I.F. 2007. Relationships between the De Martonne aridity index and water requirements of some representative crops: A case study from Romania. International Agrophysics 21. (1): 81-93.

Polade, S.D., Pierce, D.W., Cavan, D.R., Gerchunov, A. and Dettinger, M.D. 2014. The key role of dry days in changing regional climate and precipitation regimes. Scientific Reports 4. 4364. https://doi.org/10.1038/srep04364

Raev, I., Alexandrov, V. and Tinchev, G. 2015. Assessment of drought-related climate change impacts on forests in Bulgaria. Silva Balcanica 16. (1): 5-24.

Rocheta, E., Evans, J.P. and Sharma, A. 2014. Assessing atmospheric bias correction for dynamical consistency using potential vorticity. Environmental Research Letters 9. 124010. https://doi.org/10.1088/1748-9326/9/12/124010

Satmari, A. 2010. Lucrări Practice de Biogeografie (Practical applications of biogeography). Timişoara, Eurobit. Available at: http://www.academia.edu/9909429/05_indici_ecometrici

Sousa-Silva, R., Verbist, B., Lomba, A., Valent, P., Suskevics, M., Picard, O., Hoogstra-Klein, M.A., Cosofret, V-C., Bouriaud, L., Ponette, Q., Verheyen, K. and Muys, B. 2018. Adapting forest management to climate change in Europe: Linking perceptions to adaptive responses. Forest Policy and Economics 90. (5): 22-30. https://doi.org/10.1016/j.forpol.2018.01.004

Stojanovic, D.B., Matovic, B., Orlovic, S., Krzic, A., Trudic, B., Galic, Z., Stojnic, S. and Pekec, S. 2014. Future of the main important forest tree species in Serbia from the climate change perspective. Southeast European Forestry 5. (2): 117-124. https://doi.org/10.15177/seefor.14-16

Szabó, P. and Szépszó, G. 2016. Quantifying sources of uncertainty in temperature and precipitation projections over different parts of Europe. In Mathematical Problems in Meteorological Modelling: Mathematics in Industry. Eds.: Bátkai, A., Csomós, P., Faragó, I., Horányi, A. and Szépszó, G., Cham, CH, Springer International Publishing, 207-237. https://doi.org/10.1007/978-3-319-40157-7_12

Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J. and Rose, S.K. 2011. The representative concentration pathways: An overview. Climatic Change 109. (5): 5-31. https://doi.org/10.1007/s10584-011-0148-z

Vilá-Cabrera, A., Coll, L., Martínez-Vilalta, J. and Retana, J. 2018. Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence. Forest Ecology and Management 407. 16-22. https://doi.org/10.1016/j.foreco.2017.10.021

Wilks, D.S. and Livezey, R.E. 2013. Performance of alternative "normals" for tracking climate changes, using homogenized and non-homogenized seasonal U.S. surface temperatures. Journal of Applied Meteorology and Climatology 52. 1677-1687. https://doi.org/10.1175/JAMC-D-13-026.1

WMO 2021. 2021 State of Climate Services. Water. WMONo. 1278. Geneva, CH, World Meteorological Organization. Available at https://library.wmo.int/doc_num.php?explnum_id=10826

WMO 2022. WMO Provisional State of the Global Climate 2022. Geneva, CH, World Meteorological Organization. Available at https://library.wmo.int/doc_num.php?explnum_id=11359

Zhuang, Y., Fu, R. and Wang, H. 2020. Large-scale atmospheric circulation patterns associated with U.S. great plains warm season droughts revealed by self-organising maps. Journal of Geophysical Research: Atmospheres. 125. e2019JD031460. https://doi.org/10.1029/2019JD031460

Published
2023-09-30
How to Cite
KisA., SzabóP., & PongráczR. (2023). Spatial and temporal analysis of drought-related climate indices for Hungary for 1971–2100. Hungarian Geographical Bulletin, 72(3), 223-238. https://doi.org/10.15201/hungeobull.72.3.2
Section
Articles