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1. A szerkezeti biologia fejlédése az elmult évtizedben

A sejtben 1évé makromolekulak szerkezetének pontos
ismerete elengedhetetlen a miikodésiik megértéséhez.
A szerkezeti biologia nagyszamu kisérletes és szamita-
sos eljarast kinal a biomolekuldk szerkezeti megismeré-
séhez, mely kapcsolodd kisérletes vizsgalatokkal egyiitt
az €16 szervezetek mikodésének jobb megértését célozza.
Az elmult évtized sordn a szerkezeti biologiai mddszerek
kiemelkedd fejlodésének lehettiink tanui. A kisérletes mod-
szerek, valamint neuralis halézatok altal vezérelt, mester-
séges intelligencian alapulod adatelemzési és szamitasi in-
novaciok uj tavlatokat biztositottak Osszetettebb biologiai
folyamatok szerkezeti alapti megértésében, és rendkiviil
megnovelték a szerkezetmeghatdrozas folyamatainak haté-
konysagat. Erdemes szamba venniink e fejlédési folyamat
néhany lényeges mérfoldkdvét, a rontgenkrisztallografia, a
kriogenikus elektron-mikroszkopia és mesterséges intelli-
gencia alapu szerkezeti modellezés terén.

A rontgenkrisztallografia, a biomolekuldk és rontgen-
sugarak diffrakciés kolcsonhatasan alapuléo képalkotd
eljaras mar hagyomanyos szerkezeti biologiai technika-
nak tekinthetd. A krio-EM ¢és a mesterséges intelligencia
alapu szerkezetmodellezés ugrasszerli fejlédése ellenére
a szinkrotron rontgenkrisztallografia tovabbra is a nagy
felbontasu szerkezetmeghatarozas fontos modszere. Ez
utobbi modszer széles korben vald elterjedését a kozel-
mult technologiai fejlesztései is eldsegitették, amik no-
velték az ateresztoképességet, a felbontast, megoldast
kinaltak a kihivast jelentd kristalyok mérésére, valamint
felhasznalobaratabba tették a szerkezetmeghatarozast.
Az 1j, negyedik generacids szinkrotronok nagyobb in-
tenzitdsu és koherencidju rontgen sugarzast biztositanak
a kisérletes vizsgalatokhoz.! Mindez, a mikrofokusz su-
garforrasok fejlédésével,” valamint a korabbinal gyor-
sabb adatkiolvasast és alacsonyabb zajszintet biztositd
hibrid pixel detektorok (EIGER, PILATUS) alkalmaza-
saval® egyiittesen teszi lehetévé az eredményes adatgytij-

tést a korabban kihivast jelentd mikrokristalyok, inho-
mogén egykristalyok, valamint rosszabbul diffraktalo
kristalyok esetén is. A rontgen szabadelektron-lézerek
fejlodése (X-ray Free Electron Laser, XFEL) hatékonyabb
id6felbontas elérését, valamint a sorozatos femtoszekun-
dumos krisztallografia (SFX) révén sugarzas okozta ka-
rosodas nélkiili szerkezeti vizsgalatokat tett lehetdvé.
A szinktrotron forrasoknal elterjed6 automatizalt valos-ide-
jU adatfeldolgozasi és modellépitési szoftvercsomagok (pl.
DIALS, xia2 3dii, AutoPROC) jelentésen csokkentették a
kristalytol a szerkezetig jutdshoz sziikséges id6t. Szintén
a szerkezeti biologusok munkajat egyszertisitheti, hogy a
kozelmultban a Diamond szinkrotron bevezette a teljesen
feligyelet nélkiili adatgyijtési modot (Unattended Data
Collection, UDC), amely a helyszini, illetve tavoli kap-
csolat soran a felhasznalok altal vezérelt adatgyiijtési mo-
dot valthatja ki. A szerkezetmegoldo szoftvercsomagok
fejlddése emellett a rontgenkrisztallografia, krio-EM ¢és
Alphafold szerkezeti modellezés modszereinek integralasat
is biztositja.*¢

A kriogén elektronmikroszkopia (krio-EM) a biomole-
vé a mintak gyors lefagyasztasat kovetd elektronszorodas
kolcsonhatas nagy felbontast szerkezetelemzése révén. A
mddszer az elmilt évtizedben rendkiviil jelentds fejlodésen
ment keresztiil és mostanra a szerkezeti biologiai k6zosség
egyik, ha nem leghatékonyabb médszerének tekinthetd. A
krio-EM ateresztéképessége, és az elérhetd felbontas javu-
lasa egyarant rendkiviil latvanyos, koszonhetden a hardver,
a mintael6készités, az adatgytijtés és a szamitogépes elem-
z¢s terén elért szinergikus fejlesztéseknek. A hardver olda-
lardl érdemes megemliteni az ugynevezett direkt elektron
detektorokat, melyek forradalmasitottak a technikat. Ezek
segitségével ,,filmeket” tudunk rogziteni, amelyek alkal-
masak arra, hogy szamitasosan kikiiszoboljiikk a moleku-
lak mozgasabol eredé homalyossagot’. A felbontoképesség
robbanasszerli fejlddésének (an. resolution revolution)® és
a technika széles korii elérhetdségének’ koszonhetben a jo
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felbontasu szerkezetek krio-EM-mel torténé meghataroza-
sa rutinszertivé valt a szerkezeti bioldgusok széles kdzos-
ségének. Az egyrészecske kriogén elektron-mikroszkopia
soran eddig elért legnagyobb felbontas 1,09 A, ami valo-
di atomi szintl feloldoképességet jelez. Az egész sejtekrol
valo krio-EM képalkotas és az in situ szerkezeti vizsgalato-
kat célz6 krio-elektrontomografia (krio-ET) szintén rendki-
viili fejlédésen ment keresztiil és varhatdan tovabbi attorés
kiiszobén all, lehetdve téve a komplex biologiai rendszerek
miikodésének szerkezeti alapii megismerését."

A kisérletes  szerkezeti  modszercket — kiegészit-
ve meghatarozd szerepet nyert a szerkezetbecslés is.
A DeepMind 2020-ban bemutatott AlphaFold szerkezeti
modellezés az ismert szekvencia és szerkezeti informaci-
okra tamaszkodva mesterséges intelligencia segitségével
kozel kisérleti pontossagot ért el a szerkezet eldrejelzésé-
ben.”? Jelenleg szamos tovabbfejlesztett, felhasznalok sza-
mara elérheté szerkezeti modellezé algoritmus, valamint
a tobb, mint kétszazmillid szerkezeti modellt tartalmazo
AlphaFold DataBase konyvtar'® a szerkezeti alapt hipoté-
zisek széleskorli bazisat biztositja, ami jelentds segitséget
jelent orvosbiologiai kutatasok felgyorsitasahoz.

A fenti bevezetdben bemutatott modszerek a szerkezeti
bioldgiai kutatasok fontos részét képzik, amelyek egy-
mast kiegészitve alkalmazhatok a felmeriilé élettudoma-
nyi kérdések szerkezeti alapon valé6 megvalaszolasara.
A tovabbiakban a kutatdcsoportunkban folyd szerteagazo
tudomanyos munkak eredményeit bemutatva szemléltetjiik
ezen modszerek széleskorli felhasznalhatdsagat.

2. A Genom metabolizmus és Biostruct csoport

A Biostruct laboratérium 2011 6ta miikddik a Budapesti
Miszaki és Gazdasagtudomanyi Egyetem Alkalmazott
Biotechnologia és  Elelmiszertudomanyi — Tanszékén.
A fehérjekristalyositas kisérleteket nagy ateresztoképeségii
kristalyositd screenek alkalmazasaval egy Mosquito nano-
literes folyadékkezeld robot (TTP Labtech) segiti, mig az
Osszeallitott kristalyositd talcak tarolasat és automatikus
fotozasat egy Rock Imager kristaly talca ‘hotel’ rendszer
végzi (Formulatrix). A labor SuperNova egykristaly ront-
gendiffraktométer (Agilent Oxford Diffraction) hazi ront-
gen sugarforrassal is rendelkezik, mely egykristalyok ront-
gendiffrakcio tesztjét, valamint teljes adatkészlet felvételét
teszi lehetdvé. A labor kordbban mar bemutatasra keriilt
a Magyar Kémiai Folyoirat 124. évfolyam kiadasaban', a
jelen tanulmany az azota tortént szerkezeti biologiai kuta-
tasokat mutatja be. Megjegyzendd, hogy a Biostruct labor
e kutatasok mellett a szerkezeti biologiai oktatas fontos pil-
lére is, kiilonféle egyetemi kurzusok (pl.: Analitika labor,
Modern szerkezetfelderitési modszerek, Projekt feladatok)
valamint rendszeresen szolgalt tudomanynépszerisitd
programok (Kutatok Ejszakaja, Lanyok Napja, BME Nyilt
Nap) helyszineként.

3. A dUTPaz fehérje tipusiu inhibicioja

A dUTPaz fehérje a dUTP nukleotid hidrolizisét katalizalja,
ezaltal a dUTP/ATTP szintet alacsonyan tartja. Mivel osz-
t6do sejtekben a polimerazok altal DNS-be beépitett uracil
mennyiségét ezen nukleotidok sejtbéli aranya hatarozza
meg, igy a dUTP4z a dUTP lebontasaval megelézi az ura-
cil esetleges beépiilését a genomba, ezaltal fontos szerepet
jatszik az orokitdanyag preventiv védelmében.” ¢ A dUT-
Paz fehérje hianya 6rvény-és fonalférgekben, ecetmuslica-
ban és egérben egyarant letalisnak bizonyult.”?° A human
dUTPaz fehérje Y54C mutécioja pedig dsszefiiggésbe hoz-
hato diabétesz és csontveld elégtelenség kialakulasaval.?!
Kimutattuk, hogy a mutacio kovetkeztében a szubsztrat
kotddése és az enzimaktivitas valtozatlan azonban a fehérje
héstabilitasa jelentésen csokken, ami magyarazhatja, hogy
miért tapasztaltak a mutans fehérje mennyiségének csokke-
nését nyal modellben.?* %

A dUTPaz inhibitorok fejlesztése a patogén mikroorganiz-
musok elleni kiizdelemben és a human daganat terapiaban
is kutatasok fokuszaban all.>* 2010-ben azonositottak egy
olyan Staphylococcus aureus patogenitasi szigetek (SaPI)
életciklusat vezérld fehérjét (Stl), amelynek mukodését a
f11 bakteriofdag dUTPazzal valoé kdlcsonhatas szabalyoz-
za.® Ez a bakteriofag dUTPaz szekvencidja alapjan ha-
sonld mas bakterialis és eukariota dUTPazokhoz, viszont
tartalmaz egy fagokra jellemzd szekvencidba beékel6dd
szegmenst, igy az elsé megkozelitésben a kélcsonhatast eh-
hez a szegmenshez kototték. A fag dUTPaz szerkezetének
meghatarozasaval megmutattuk, hogy ez az inszert egy a
dUTPazokra jellemz6 mag szerkezetbdl kinyulo, elkiiloniilt
mini domént alkot®® (1. Abra) és tovabbi vizsgalataink ki-
mutattak, hogy nincs esszencialis szerepe az Stl fehérjével
valo kélcsonhatasban.?’

1. Abra. A f11 bakteriofag dUTPaz szerkezete (PDB ID:4GV8)%.

A trimer fehérje harom alegysége a sziirke szin kiilonb6z6 arnyalataival
lett szinezve, a kristalyositashoz hasznalt szubsztratanalog (AUPNPP)
fekete palcikaként, mig a kofaktor magnézium ion sziirke gémbként
van megjelenitve. A fagra jellemz6, Stl kolcsonhatas specificitasaért
felelds inszert fekete szalagmodellként lathato, ezen régi6 evoluciésan
konzervalt dUTPaz szerkezetbdl (térkitoltd modell) nyulik ki, mintegy
6nallé minidomént alkotva. Jol lathato, hogy a kép kozepén talalhato
szubsztratkoto zseb két alegység kozos felszinén helyezkedik el.

A zsebet a harmadik alegység karboxi terminalis régidja zarja.

Ezen szakasz elhelyezkedését konformacios flexibilitasa miatt a
kristalyszerkezetben nem lehetett meghatarozni.
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Emellett fluoreszcens stopped-flow gyorskinetikai mod-
szerrel kimutattuk, hogy az Stl fehérje a fl11 fag dUTPaz
lassan, de erésen kotédé kompetitiv inhibitora,”® igy az
els6 ismert fehérje tipusu dUTPaz inhibitor. Eredményeink
alapjan a fag dUTPaz csak azutan képes kolcsonhatasba
1épni az Stl fehérjével, miutan elhidrolizalta a sejtbéli dUTP
nagy részét. Ez a modell ramutat a kdlcsonhatas esetleges
evolucids eldnyére, hiszen a patogenitdsi sziget csak ura-
cil-mentes kdrnyezetben replikalddik, ami biztositja gene-

sy

zontalis transzferét.

Erdekes modon az Stl fehérje ugyan nem minden fajta fig
dUTPazzal 1ép kolcsonhatasba, azonban a mikobakteridlis
dUTPaz aktivitasat otodére csokkenti.?” Emellett az Stl-t
Mycobacterium smegmatis sejtben expresszalva a sejtbeli
dUTP szint megemelkedését figyeltik meg, amely zavart
okozott a mikobaktérium koloniaképzésében is. Tovabba
az Stl fehérje kiillonb6z6 mértékben gatolja az Escherichia
coli, ecetmuslica (Drosophila melanogaster) és a human
dUTPazokat, a legerésebb kdlcsonhatast és teljes mértéki
inhibiciot azonban a f11 bakteriofag dUTPaz esetében ta-
pasztaltuk 28 30-32

A fent bemutatott trimer dUTPazok aktiv zsebét két alegy-
ség alkotja, amelyet a harmadik alegység karboxi-termi-
nalis régidja zar le katalizis soran. Ez a zar6déas-nyilas a
karboxi terminalis régid flexibilitasatol fiiggden kiillonb6zo
mértékll konformacio valtozast jelent az enzim szerkezeté-
ben.? Az E. coli dUTPaz fehérje esetében ezen atlapold un.
kar régié flexibilitasanak csokkenését eredményezé pont-
mutéci6 novelte mind az Stl inhibitorhoz val6 kotédés erds-
ségét, mind az aktivitas gatlas mértékét.?! gy feltehetéleg
a dUTPaz-Stl kolcsonhatas erdssége mellett, az aktiv hely
zarddasa soran bekovetkezd konformaciovaltozas kinetika-
ja is modulalja az Stl altal kifejtett inhibicié mértékét.

A Kardos Jozsef kutatdcsoportjaval egyiittmikodésben
(ELTE, Budapest) végzett szinkrotron radiacids cirkularis
dikroizmus vizsgalataink kimutattak, hogy az Stl fehérje
foként alfa helikalis térszerkezetii. A fehérje amino és kar-
boxi terminalis szegmenseit vizsgalva kimutattuk, hogy a
DNS koétésért az amino terminalison talalhatd hélix-csa-
var-hélix motivum felelds, azonban ez a motivum nem
sziikséges a dUTPéazzal vald kolcsonhatashoz.** Tovabba
igazoltuk, hogy a fehérje dimereket képez, és a dimerizaci-
6s felszin a karboxi terminalis részen talalhato.*

2017-ben Hill és munkatarsai felfedezték, hogy az alta-
lunk vizsgalt Stl fehérje a foként b-redds szerkezetii tri-
mer dUTPazoktdl szerkezetiikben teljesen kiilonbozo,
a-helikalis, dimer dUTPazokkal is kolcsonhatasba 1ép.*
Ez alapjan feltételezhetd volt, hogy az Stl egy a szubsztratot
mimikalo szegmenssel rendelkezik, amivel kapcsolodik a
dUTPazokhoz. Azonban Antoni J. Borysik (King’s College,
London) csoportjaval egyiittmtikodésben HDX-MS (hid-
rogén-deutérium cserés tomegspektrometria) modszerrel
kimutattuk, hogy az Stl fehérje két kiillonbozo szegmense

1ép kdlcsonhatasba a trimer illetve a dimer dUTPazokkal.*
(2. Abra) Az, hogy ez az Stl fehérje kiilonboz6 szegmensei
révén barmely tipust dUTPazt képes felismerni, arra utal,
hogy az uracil-mentes kdrnyezet elényt jelenthet a patog-
enitasi szigetek terjedésében.
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2. Abra. Az Stl fehérjén HDX-MS moédszerrel detektalt tomegvaltozas
trimer (fels6 panel, PDB ID: 4GV8) illetve dimer (alsé panel, AlphaFold
szerver) fag-eredetiit dUTPazzal valo kdlcsonhatas kovetkeztében.

A fehérjék alegységei a sziirke kiilonboz6 arnyalataival szinezve.

A szubsztratanalog ({UPNPP) fekete palcikaként a kofaktor magnézium
ion gdmbként van abrazolva.®

2018-ban Dimitri I. Svergun kutatocsoportjaval kollabora-
ciéban (DESY, Hamburg) méretkizarasos kromatografiaval
kombinalt kisszogli szinkrotron radidcios rontgenszoras
(SEC-SAXS) vizsgalattal meghataroztuk a human dUTPaz
és az Stl fehérje komplexének kis felbontasu szerkezetét.>
A kapott szerkezeti modell egyértelmtien arra utal, hogy a
komplexképzddés megzavarja az Stl fehérje dimerizacidjat.
Ez alapjan feltételezhetd, hogy a trimer fag dUTPazok a
patogenitasi szigetek atirodasat az azt szabalyoz6 génsza-
kaszhoz kot6do Stl represszor dimer megbontasaval képe-
sek inicidlni. Kotédési kinetikai méréseink alapjan megha-
taroztuk, hogy az Stl dimerizacié disszociacios egyensulyi
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allanddja Ky, = 0.12 nM.”” Ennek fényében a fag dUTPa-
zok tehat csak egy Osszetett és finomhangolt interakcids ha-
l6zat révén lehetnek képesek a patogenicitasi sziget represz-
szor dimerjének megbontasara.

A huméan dUTPaz esetében az Stl fehérjével vald kdlcson-
hatas er0ssége és az enzimgatlas mértéke (70%) is kisebb,
mint a fdg dUTPaz esetében (kdzel 100%). Annak érde-
kében, hogy az Stl-t mint a human dUTPaz térben és idd-
ben szabalyozhat6 szelektiv inhibitoraként hasznalhassuk
human sejtes kisérletekben a human dUTPazra kifejtett
Stl-altali gatlast tobbféle stratégia alapjan kiséreltiik meg
novelni.® A dimerizacidés domén eltavolitasa, illetve a di-
merizaciot gyengitd specifikus pontmutaciok nem eredmé-
nyeztek jelentds névekedést az inhibicié mértékében. Ezzel
kimutattuk, hogy az Stl karboxi terminalis doménje teljes
egészében fontos szerepet jatszik a human dUTPaz inhibi-
cidjaban. Az altalunk meghatarozott dUTPaz-Stl kristaly-
szerkezet alapjan specifikus pontmutaciokat terveztiink a
kolcsonhatas erdsitésére (3. Abra, 1. Tablazat). Itt megjegy-
zendd, hogy a kristalyositashoz az Stl C-terminalis régidjat
nem tartalmazo fehérjekonstruktot hasznaltunk, mivel a
teljes hosszisagu Stl fehérje az amino és karboxi terminalis
domének kozotti szakasz flexibilitasa® kovetkeztében nem
kristalyosithato.

3. Abra. A human dUTP4z az Stl fehérje amino terminalis szegmensével
(StINT) alkotott komplexének rontgendiffrakcios modszerrel meghatarozott
szerkezeti modellje (PDB-kod: 8CS8I). A konnyebb atlathatosag kedvéért
a trimer dUTPaz (szalag model és attetsz0 felszin) mellett a harom
kolesonhato Stl lancbol csak egyet abrazoltunk szalag modellként.
A tervezett mutaciok helyét nyilakkal és sotétitéssel jeloltiik. A kialakulo
0j kolesonhatasokat az 1. Tablazatban mutatjuk be.

1. Tablazat. A human dUTPazzal valo kolcsonhatas erdsségének
novelésére tervezett Stl mutaciok

Stl mutacié Lehetséges 1j kolcsonhatasa human dUTPazzal

Y106K

Y106k polaris vagy ionos kdlcsonhatas Aspl104
V55S polaris kolcsonhatas Glul44

S114E

. polaris vagy ionos kélcsonhatas Lys91
Y116R polaris vagy ionos kdlcsonhatas Aspl127

Az eléallitott Stl pontmutansok elvarasainktol eltéréen
nem javitottdk a human dUTP4z inhibicié hatékonysagat.
Feltételezésiink szerint ez a megkdzelités a fehérje atlapold
karjanak flexibilitasa, azaz a fehérje inherens tulajdonsaga
miatt volt sikertelen.

A dUTPaz és Stl fehérje kozotti kdlesonhatas mélyebb meg-
értése érdekében a teljes hosszusdgu fehérjék altal alkotott
komplex térszerkezetének megfejtésére krio-EM kisérlete-
ket végeztiink (Jiri Novacek, CEITEC, Brno), ezek eredmé-
nyének kiértékelése jelenleg folyamatban van.

Tovabba vizsgaltuk azt is, hogy az Stl fehérje amino termi-
nalis szegmense (StINT) képes-e jobban vagy legalabb a vad
tipushoz hasonld hatékonysaggal gatolni a M. tuberculosis
dUTPazt (MtDUT). A szerkezeti vizsgalatokhoz ebben az
esetben is az StINT amino terminalis szegmenst hasznal-
tuk. A MtDUT-StINT komplex kristalyszerkezet (PDB-kod:
8P80) alapjan elmondhato, hogy az StINT fehérje a MtDUT
aktiv centrumaba kotodik (4. abra/A), itt alakul ki az els6d-
leges kolcsonhatasi felszin a két fehérje kozott a korabban
ismert dUTP4az-N-terminalis Stl komplex szerkezetekhez
hasonloan.**-#!

—e— M(DUT - sti"T
..... MEDUT - StiNT

Aktivitas (%)

0 100 200 300 400
Cst"" vagy csyw (NM)

90°

4. Abra. A M. tuberculosis dUTPaz Stl altali gatlasa. A) A MtDUT-
StINT komplex kristalyszerkezete (PDB-kod: 8P80). A trimer MtDUT-
hoz (s6tétsziirke) harom StINT (vilagosszirke) kotédik. B) A MtDUT
enzim aktivitas gatlasa a két Stl varians altal. C) A MtDUT enzim
teljes hossz Stl fehérjével alkotott komplexének AlphaFold modellje.
A fehérjék megjelenitése az A) panelhez hasonld, az Stl fehérje N-és
C-terminalis doménjeit jelolve, a fehérje komplex két orientacioban
lathato.

Ezaltal az inhibitor sztérikusan gatolja a szubsztrat bekd-
tédését. Kiilonbozo biokémiai €s biofizikai médszerek se-
gitségével kimutattuk, hogy a StINT fehérje kevésbé képes
gatolni a MtDUT-ot, mint a teljes hossza Stl fehérje (StIVT),
az enzim aktivitasat nagyjabol csak a felére csokkenti (4.
Abra/B), és szubsztrat mentes kornyezetben is gyengébb
kotodést mutat, amely kiilonbség a disszociacios ratakban
mutatkozik meg (2. tablazat).
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2. Tablazat. Az Stl variansok és MtDUT kozotti kolesonhatas kinetikai
paraméterei, bioréteg interferometria (BLI) mérések alapjan

. . KD k(m koﬁ
Ligandum  Analit (M) M s)(109) ()(10%)
StiVt MtDUT <1 2,70+0,01 <0,01+0,01
StINT MtDUT 190+1 5,42+0,01 10,28+0,04

A szerkezeti modellezés fejlédését kihasznalva probaltunk
magyarazatot talalni arra, hogy az Stl fehérje C-terminalis
doménje hogyan jarul hozza az er6sebb MtDUT-tal vald
kolcsonhatashoz és gatlashoz. Ehhez AlphaFold modelle-
ket alkalmaztunk, amik azt sugalljak, hogy a két fehérje
kozotti kolesonhatas kialakuldsa soran az Stl karboxi ter-
minalis domének (StIT) egymas kozott 1étrehozhatnak egy
oligomerizacids felszint (4. abra/C), ami altal ndvekszik az
aviditas, és ez magyarazhatja a teljes hosszu Stl fehérje er6-
sebb kotddését.*? Ezt a hipotézist a tovabbiakban krio-elekt-
ronmikroszkopias modszerrel tervezziik vizsgalni.

4. Zebrahal dUTPaz szerkezeti és élettani vizsgalata

A zebrahal, mint modellorganizmus ma nagyon népszeri a
kutatok korében, mivel kdnnyen, alacsony koltségen fenn-
tarthatd, fejlodése meglehetdsen gyors, €s jo tuléloképessé-
get mutat a kiilonb6zd megtermékenyités utani eljarasokkal
szemben. Mindezek mellett tovabbi eldénye, hogy olyan ge-
rinces faj, amely 70%-o0s homologiat mutat az emberi gen-
ommal. Tovabba az embridk az anyaallaton kiviil fejléd-
nek és atlatszok. Ezen eldnyok kovetkeztében ez a modell
jol alkalmazhaté az embrionalis fejlédés vizsgalatara.*-4
Eredményeink azt mutattdk, hogy a korai embrionalis fej-
16dés soran a genomi uracilszint és a sejten beliili dUTP
szint igen magas zebrahalakban. Emellett azt tapasztaltuk,
ha ezeket a szinteket a dUTPaz megtermékenyitett petesejt-
jeibe torténé mikroinjektalasaval csokkentjiik, az az emb-
riokra nézve letalis. Annak érdekében, hogy minél jobban
megértsiik ezt a folyamatot tobbek kozott a zebrahal dUT-
P4z enzim izoformadit karakterizaltuk. Termofluorimetrias
héstabilitas vizsgalataink és spektrofotometriai alapu enzi-
maktivitas méréseink soran azt tapasztaltuk, hogy az izo-
formak kiilonbozo stabilitassal és aktivitassal rendelkeztek.
Emellett a zebrahal dUTPaz rontgen krisztallografias szer-
kezetét is meghataroztuk egy szubsztrat analoggal (AUPN-
PP) komplexben. A zebrahal dUTPaz szerkezete igen nagy
hasonlésagot mutat a human dUTPazhoz. A szerkezetben
jol azonosithaté a fehérjelancok és a szubsztrat konforma-
cidjanak Osszefiiggése, mivel a trimer dUTPaz harom aktiv
helyén a szubsztrat €s a karboxi terminalis kar tobbféle té-
réallast vesz fel. Egyes szubsztratkotd zsebek esetében a fe-
hérjelanc kaboxi terminalisa nem zarja az aktiv centrumot,
ekkor a szubsztrat egy nem hidrolizalhato, ¢ransz konfor-
macidt vesz fel és a reakcid lejatszodasahoz szitkséges mag-
nézium ion kofaktor sincs jelen (5. Abra/A). Amennyiben az
aktiv helyet a karboxi terminalis régid zarja a szubsztrat a
hidrolizishez megfelelé gauche konformaciot vesz fel és a
magnézium ion kofaktor is bekétddik (5. Abra/B).

A B Mg?*

Ser161

Phe159

dUPNPP dUPNPP
trans gauche

5. Abra. A zebrahal dUTPaz szubsztrat analég konformaciés
flexibilitasa A zebrahal dUTPAaz kristalyszerkezet egyik aktiv helyén

a dUPNPP szubsztrat analog az enzim mitkddésben fontos szerepet
jatszo C-terminalis karjanak tavollétében a katalizisre alkalmatlan

trans konformaciot vett fel. Ugyanazon kristalyszerkezetben az enzim
C-terminalis karja (Phel59, S161) és Mg** kofaktor a dUPNPP szubsztrat

5. Onkogén mutaciét hordozé KRAS fehérjék
kolesonhatasainak vizsgalata

Csoportunk a Semmelweis Egyetemmel, az Eo&tvos
Lordand Tudomanyegyetemmel, a KINETO Lab és a
Fototronic  Kft-kel valé egytittmiikodés (Rasopatia
konzorcium) keretében a KRAS fehérje onkogén mu-
tansaira specifikus inhibitorokat fejleszt.® A KRAS
fehérje a sejt novekedését, és osztddasat szabalyozo jelat-
viteli folyamatok kulcsfontossdgti eleme, mutéciéi a daga-
natos megbetegedések kozel egyharmadaban vannak jelen.
A KRAS fehérje molekularis kapcsoloként mitkodik, aktiv
formaban GTP-t, inaktiv allapotban GDP-t két. A jelatvitel
lecsengése a GTPaz aktivalo fehérjékkel (GAP) valo kol-
csonhatas kovetkeztében valosul meg, az onkogén mutan-
sok esetében azonban ez a folyamat jelentdsen gatolt.

Ezen probléma egyik kezelési stratégidja a GDP kotott al-
lapot rogzitése a mutans aminosavhoz szelektiven kapcso-
16d6 agensek altal. A G12C mutans KRAS fehérje esetében
nagy ateresztd képességii sziir6vizsgalatot végeztiink egy
585 elemti diverz fragmens vegyiilettaron, hogy felmérjiik,
mely vegytiletek képesek a mutans ciszteinnel reakcioba
lépni.”’ Az igéretes talalatok méretnovelését kovetden nuk-
leotidcsere vizsgalatokkal szrtiik a vegyiiletek hatékony-
sagat. Ot vegyiiletet ezutan allat modellben is teszteltiink,
amelybdl ketté hatékonynak bizonyult, ezek tovabbi vizs-
galata jelenleg is zajlik.

Egy masik lehetséges megkozelités a KRAS-GAP komp-
lex kolcsonhatasanak erdsitése a mutans KRAS fehérjék
esetében. Ilyen vegyiiletetek utan kutatva Grolmusz Vince
(ELTE, Budapest) kutatocsoportjaval egytiittmitkdésben,
in silico szurési modszert alkalmazva, igéretes jelolteket
talaltunk a kovalens molekuldkkal nehezebben célozhato
G12D mutans KRAS fehérje GAP-pal valo kolcsonhatasa-
nak javitasara.*® Emellett Rosta Edinaval ¢és munkatarsaival
kollaboracioban (University College London) vizsgaltuk a
G12 mutans KRAS fehérjék GAP fehérjék altal el6segitett
GTP bontasanak mechanizmusat.*
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6. Tovabbi kutatasi témak az elmult évtized soran

A fentebb részletezett kutatasok mellett szamos tovabbi
szerkezeti biologiai vizsgélat folyt az ABET Biostruct labo-
ratoriumban kiilonboz6 akadémiai és ipari partnerekkel ko-
z0sen, melyeket e bekezdésben egészen rovid dsszefoglalod
ismertet. Leveles Ibolya a BME SZKTT Szupramolekularis
Kémia Kutatdcsoportjaval vald egyiittmikodés soran uj
kiralis koronaéterek rontgenkrisztallografias szerkezet-
meghatarozasat végezte el.’*>2 Hegedlis Tamas kutatdcso-
portjaval egyiittmtikodve Ibolya hozzdjarult a cisztikus
vizsgalatahoz, mely soran a fehérje funkciojat meghataro-
z6 konformacios valtozasait krio-EM szerkezetek mole-
kuladinamikai (MD) vizsgalataval deritették fel.*> Emelett
fehérjekristalyositas és hazi rontgen sugar kisérletekkel ja-
rultunk hozzé az SH3 domén fehérjék tirozin foszforilacio
inhibicios mechanizmuséanak feltarasahoz. >

Az elmult évben egy iparilag relevans enzim szerkeze-
te is meghatarozasra keriilt a Biostruct Laboratoriumban.
A Dr. Bata Zrt.-vel egytittmiikddésben hataroztunk meg az
els6 ismert fumonizin észteraz szerkezetet rontgen-krisz-
tallografia Utjan.® Ez az enzim képes a fumonizin Bl
mikotoxin lebontasara, igy alkalmazhaté ilyen modon
szennyezett ¢élelmiszerek és takarmanyok enzimatikus
detoxifikalasara. A szerkezet meghatarozasa lehetové tet-
te a tovabbi dokkolasi modellezéseket, amivel kozelebb
keriiltiink az fumonizin észterdz miikddésének megérté-
s¢hez, ami elengedhetetlen a késObbi nagyléptékli ipari
felhasznalashoz.

A Biostruct laborbol kiindulva Nagy Gergely 2017-t6l
2022-es visszatéréséig Oxfordban a Division of Structural
Biology (STRUBI) intézet Yvonne Jones altal vezetett
kutatécsoportjaban  végzett posztdoktori kutatasokat.
A szemaforin-plexin extracellularis jelatvitel szerkezeti bio-
ceptor fehérjék egy kiilonleges kélcsonhatasi elrendezésére,
mely soran a két fehérje egyazon sejtmembranon elhelyez-
kedve 1ép kolesonhatasba.’® Emellett fehérjekrisztallografia
révén azonositotta a Semaphorin-5A fehérje glitkozaminog-
likan kotohelyét, majd egyiittmikddd partnerivel egyiitt
meghatarozta e fehérje-proteoglikan kdlcsonhatas specifi-
citasat, valamint in vivo szerepét a neuronalis progenitor
sejtek vandorlasa soran.”’

Szintén a Biostruct laborbol kiindulva Kéhegyi Bianka 2017
januarjaban fél évig a fehérjekrisztallografia rejtelmeirdl ta-
nult tovabb az ESRF (Grenoble, Franciaorszag) laborjaban,
majd szeptember végén Cambridge-ben, az MRC LMB,
Ingo Greger altal vezetett csoportjaban kezdte meg dokto-
ri tanulmanyait. A memdria, illetve tanulds folyamataban
kulcsfontossagu fehérjék, az AMPA receptorok kiilonb6zo
komplexeit vizsgalta krio-elektronmikroszkoppal. Tébbek
kozott sikeresen megfejtette a hippokampusz egyik jellem-
z6 komplexének nyitott és deszenzitizalt allapotban tigyne-
vezett single particle elemzés technika alkalmazasaval.™®

7. Krio-EM centrum Pécsen

Az utobbi évtizedekben a Krio-elektronmikroszkopia for-
radalmasitotta a szerkezeti biologiat: lehetGséget nyujt
olyan kérdések megvalaszolasara, melyek korabban elkép-
zelhetetlennek tiintek. Ennek megfelelden 2022 decembe-
rében megsziiletett az a dontés, hogy Magyarorszagon is
sziikséges egy 300 keV-os krio-eletronmikroszkop, illetve
az ahhoz kapcsolodd infrastruktira kialakitasa Pécsett,
mely majd nyitva all az orszag kutatdi szamara. A projekt
vezetdje Cz¢h Boldizsar lett, akinek munkajat a Szakmai
Tandcsado Testiiletének tagjaként Vértessy Beata is segi-
tette. A kialakuloban 1évé méréallomashoz 2025 januarban
volt kollégank, Koéhegyi Bianka csatlakozott elsé munka-
tarsként. Marciustdl pedig Horvath Péter 10 évnyi kiilfoldi
krio-elektronmikroszkopos tevékenysége utan a Ilétesit-
mény vezetdi tisztségét tolti be. Eldrelathatéan 2026-ban
érkezik meg a miiszer, azonban a kdzpont addig is rendel-
kezésre all a technikaval és mintael6készitéssel kapcsolatos
kérdések megvalaszolasaban.

Koészonetnyilvanitas

Nyiri Kinga koszonettel tartozik a UNKP-20-4-II-
BME-311, OTKA PD 134324, MEC-R-21-141624 és BME
’Vissza a tudomanyba’ palyazatok altal biztositott kutatasi
tamogatasért. A KRAS fehérje inhibitorainak kutatasa az
NVKP 16-1-2016-0020 projekt keretében tortént. A dUT-
Paz-Stl krioelektronmikroszkopias és SEC-SAXS kisérle-
teket az INEXT-Discovery (PID: 19027 ill 1551) tamogatta.
A kozlemény a Bolyai Janos Kutatasi 6sztondij (NGN) és
a Varga Jozsef Alapitvany Somogyi Mihdly palyazatanak
tamogatasaval (NGN) késziilt. Kéhegyi Bianka koszonet-
tel tartozik a Pécsi Tudomanyegyetem Szentagothai Janos
Kutatokozpont Szentagothai Janos Tehetségtamogatd prog-
ram, illetve a KrioEM Kompetencia Kézpont kialakitasa a
Pécsi Tudomanyegyetemen cimii projekt (2022-1.1.1-KK-
2022-00001) altal nyujtott tamogatasért. A C1341189 szamu
projekt a Kulturalis és Innovaciés Minisztérium Nemzeti
Kutatasi Fejlesztési és Innovacios Alapbol nyujtott taimoga-
tasaval, a KDP-2021 palyazati program finanszirozasaban
valdsult meg.
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Over the past decade, structural biology has undergone remark-
able technological and methodological advances, greatly en-
hancing our understanding of macromolecular structures and
their roles in cellular processes. This review summarizes major
developments in experimental and computational structural bi-
ology techniques, including X-ray crystallography, cryogenic
electron microscopy (cryo-EM), and Al-based structure predic-
tion methods such as AlphaFold. X-ray crystallography, though
long established, continues to play a key role in high-resolution
structure determination due to improvements in synchrotron radi-
ation sources, hybrid pixel detectors, and automation. Meanwhile,
cryo-EM has achieved near-atomic resolution and has become
widely accessible, revolutionizing the study of complex biological
systems and in situ structures through cryo-electron tomography.
Complementing experimental approaches, AlphaFold has dramat-
ically advanced the accuracy and accessibility of structure predic-
tion, offering over 200 million models that support biomedical re-
search and hypothesis generation. Using these advanced tools, the
Genome Metabolism and Biostruct group at Budapest University

of Technology and Economics has explored the structural basis of
dUTPase inhibition, a key enzyme that prevents uracil incorpora-
tion into DNA by hydrolyzing dUTP nucleotides. We character-
ized the interaction of dUTPase enzyme with its unique protein
inhibitor, Stl, from bacteriophage ¢11, identifying distinct struc-
tural elements involved in competitive inhibition across different
species, including human and Mycobacterium tuberculosis. We
probed to enhance Stl inhibition of human dUTPase via rational
mutagenesis; however, the structural flexibility of Stl limited the
feasibility of this approach. Further investigations involved cryo-
EM and HDX-MS analyses, revealing the modular binding modes
of Stl to trimeric and dimeric dUTPases. Additionally, structur-
al and physiological studies in zebrafish embryos demonstrated
the critical role of dUTPase in early development, highlighting
conserved enzymatic mechanisms across species. These multi-
disciplinary studies emphasize the power of integrated structural
biology in understanding enzyme regulation, host-pathogen inter-
actions, and potential therapeutic interventions.
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