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1.	 Bevezetés

Az elmúlt években tapasztalt előrelépések a nanotechnoló-
gia területén új perspektívákat nyitottak a nanométeres tar-
tományba eső anyagok előállításában és alkalmazásában. 
Ezen fejlesztések egyik kulcstechnológiája az elektrosztati-
kus szálképzés (electrospinning), amely gyors és hatékony 
megoldást kínál különféle, jellemzően lineáris polimerekből 
álló nanoszálas rendszerek előállítására. Kutatócsoportunk 
tevékenysége fókuszában az elektrosztatikus szálképzés 
paramétereinek optimalizálása és az így létrehozott nano-
szálas struktúrák fizikai, kémiai és funkcionális jellemzése 
áll. Emellett kutatómunkánk kiterjed ezen nanoszálas rend-
szerek alkalmazási lehetőségeinek vizsgálatára, elsősorban 
az immobilizált enzimekkel végzett szintetikus biokatalí-
zisre, valamint a nanoformulált terápiás enzimeken alapuló 
gyógyszerészeti alkalmazásokra fókuszálva.

2.	Nanoszálak: mint innovatív szerkezeti elemek

A nanotechnológia dinamikus fejlődése új távlatokat nyi-
tott a nanoanyagok számtalan formájának előállításában és 
alkalmazásában. Ezek sokféle morfológiát vehetnek fel, le-
gyen szó egyszerű gömbökről, szálakról, szalagokról vagy 
rudakról. A nanoszálak olyan egyedülálló szerkezetű anya-
gok, amelyek keresztmetszeti átmérője nanométer-skálán 
(általában 1–1000 nm) helyezkedik el – hozzávetőleg az em-
beri hajszál átmérőjének századrésze (1. ábra) –, miközben 
hosszuk több nagyságrenddel meghaladja szélességüket2–4. 
Ezen ultravékony szálak előállításának egyik legelterjedtebb 
módszere az elektrosztatikus szálképzés (electrospinning), 
amely során a folyadék fázisú polimer prekurzor elegy csepp-
je elektromos tér hatására finom folyadék sugárrá formáló-
dik, majd a szilárd halmazállapotú szálak képződése közben 
a szolvens pillanatszerűen elpárolog2. E struktúrák kiemel-
kedő fizikai-kémiai tulajdonságokkal rendelkeznek, mint 
például az extrém nagy fajlagos felületük (akár 100 m2 g−1), 
magas porozitásuk és mechanikai rugalmasságuk, amik le-
hetővé teszik alkalmazásukat számos területen5.

1. Ábra. Elektronmikroszkópos felvétel egy emberi hajszálról 
(Ø ≈ 70 μm), amely keresztben fekszik egy elektrosztatikus 
szálképzéssel előállított nanoszálas (Ø ≈ 200 nm szövedéken)1.

3.	 Nanoszálak alkalmazási területei

A polimer alapú nanoszálak alkalmazása rendkívül szél-
eskörű a modern tudományos és ipari gyakorlatban. Az 
elektrosztatikus szálképzéssel előállított polimer nano-
szálak kiemelkedő szerepet játszanak az orvosbiológiai 
alkalmazásokban, köszönhetően annak, hogy szerkeze-
tükben hasonlítanak a természetes szövetek extracelluláris 
mátrixához6,7. E tulajdonságuknak köszönhetően kiválóan 
alkalmazhatók sebkezelésben7, szövetmérnökségben6, va-
lamint gyógyszerhatóanyag-hordozó rendszerekként8. Az 
intelligens, különböző stimulusokra (pl.: fény, hőmérséklet, 
pH, mágneses tér) reagáló nanoszálak célzott és szabályo-
zott hatóanyag-leadást tesznek lehetővé9. A biomedicinális 
alkalmazásokon túl a polimer nanoszálak számos más te-
rületen is jelentős potenciállal bírnak. Az élelmiszeripari 
csomagolástechnikában használva javíthatják a termékek 
eltarthatóságát, valamint hosszútávon megőrizhetik azok 
minőségét10.
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A nanoszálas hordozókra rögzített katalizátorok kiemelke-
dően hatékonyak az ipari katalízisben területén is, ugyanis 
nagy specifikus felületük, kiváló mechanikai stabilitásuk 
és az egyszerű újra felhasználhatóságuk lehetővé teszik a 
folyamatok költséghatékony optimalizálását. Ezek a rend-
szerek felhasználhatók többek közt savkatalízishez11 vagy 
hidrogénezési reakciókban12.

Kiváló szűrési tulajdonságaik révén aeroszol szűrésre13, 
vízkezelésre és fémion adszorpcióra14,15 is alkalmasak, to-
vábbá porózus membrán formájában különböző szepará-
ciós folyamatokban hasznosíthatók. Az elektromágneses 
interferencia árnyékolásban is előnyösen alkalmazhatók a 
fémrészecskékkel módosított nanoszálak16, míg speciális 
összetételű nanoszálas rendszerek érzékelőkben17 és ener-
giatároló eszközökben, például szuperkondenzátorokban15 
is megtalálhatók.

4.	Elektrosztatikus szálképzés

Az elektrosztatikus szálképzés napjainkban az egyik legdi-
namikusabban fejlődő eljárásként tartandó számon, amely 
alkalmas nagy fajlagos felületű, szubmikronos, illetve 
nanoskálájú polimer szálak előállítására18. A technológia 
jelentősége abban rejlik, hogy alkalmazása lehetővé teszi 
különféle bioaktív anyagok (például gyógyszerhatóanya-
gok, fehérjék vagy más biomolekulák) immobilizálását és 
stabilizálását19, mindezt külön segéd- vagy hordozóanya-
gok használata nélkül. Az eljárás során magas feszültségű 
elektromos tér hatására oldott vagy olvadt halmazállapotú 
polimerekből nanoszálak képződnek, amelyek a folyamat 
végén szilárd halmazállapotban, strukturált, random ren-
deződve vagy orientált módon gyűlnek össze egy földelt 
gyűjtőfelületen (kollektor)20.
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2. Ábra. Laboratóriumi elektrosztatikus szálképző berendezés 
sematikus ábrája.

A 2. ábrán látható az elektrosztatikus szálképzés folyama-
tának sematikus ábrája. A folyamat jellemzően zárt térben 
történik, ahol a polimer oldatot egy pozitív elektromos 
potenciálra kapcsolt ún. emitter-tű végére juttatják szabá-
lyozott adagolási sebességgel. Az emitter hegyén kialakuló 

folyadékcsepp az elektromos tér hatására töltést vesz fel, 
és alakja a felületi feszültség és az elektrosztatikus taszí-
tó erők kölcsönhatása révén kúpszerű formát ölt, amelyet 
Taylor-kúpnak nevezünk21. Amennyiben az elektromos tér 
által kifejtett elektrosztatikus húzóerő meghaladja a csep-
pet egyben tartó felületi feszültséget, a Taylor-kúp csúcsá-
ból egy folyadéksugár (polymer-jet) indul ki, amely a tér 
nulla potenciálú végpontja, azaz a kollektor irányába ha-
lad. A jet kialakulásának és stabilitásának egyik alapvető 
feltétele a polimerláncok közötti megfelelő kohéziós erő 
fennállása. Alacsony kohéziós erő esetén az anyagáram-
lás instabillá válik, és a folyamat során diszkrét polimer-
cseppek lépnek ki az emitterből, míg túlzott kohézió esetén 
az elektromos tér nem képes legyőzni a belső kötőerőket, 
aminek következtében a csepp megnövekszik, majd hirte-
len, nagyobb tömegben válik le.22 A jet mozgása a kilépési 
ponttól távolodva fokozatosan gyorsul. A kezdeti szakasz-
ban a rendszer viselkedése ohmikus áramlásként írható le, 
ahol a stabil folyadékszál jellemzőit a felületi feszültség és a 
polimerláncok közötti elektrosztatikus taszító kölcsönhatá-
sok egyensúlya határozza meg. A folyadékszálban található 
töltéssel rendelkező polimer molekulák idővel a szál felüle-
tére migrálnak, ahol a hasonló töltések közötti taszító erő 
hatására a jet „ostorszerű” mozgást végez23. Ennek követ-
keztében az áramlás dinamikája megváltozik, és konvektív 
áramlási szakaszba lép át, amelyet tovább növekvő sebes-
ség és komplex pályaváltozások jellemeznek. Az ostorszerű 
mozgás és a megnövekedett áramlási sebesség hatására a 
szál jelentősen megnyúlik, fajlagos felülete nagymérték-
ben megnő, ami elősegíti az oldószer gyors elpárolgását. 
A folyadékszál szilárd nanoszállá való átalakulása tehát az 
anyag gyors nedvesség- vagy oldószervesztésének eredmé-
nyeként megy végbe, amelynek végállapotaként a nanoszá-
lak szilárd halmazállapotban, véletlenszerű vagy rendezett 
struktúrában csapódnak ki a kollektor felületén24,25.

Az elektrosztatikus szálképzési technológia többféle el-
rendezésben valósítható meg, amelyek alapvetően tűalapú 
és tűmentes rendszerekre oszthatók26. A tűalapú konfigu-
rációkban az emitter rendszerint szűk átmérőjű tű vagy 
kapilláris, míg a tűmentes eljárások a szálképzést szabad 
folyadékfelszínről valósítják meg27. A tűalapú rendszerek 
továbbá orientációjuk szerint vertikális vagy horizontális 
elrendezésűek lehetnek. A vertikális elrendezés lehetőséget 
kínál fentről-lefelé irányuló (tengelyes) vagy lentről-felfelé 
működő (fordított) szálképzésre28.

4.1.	 A szálképzés főbb paraméterei

Az elektrosztatikus szálképzés során számos paraméter be-
állítása szükséges annak érdekében, hogy a kapott szálas 
termék morfológiája és mennyisége megfeleljen a kívánt 
jellemzőknek, melyek közül a legfontosabbakat a 3. ábra 
foglalja össze. Ezen paraméterek hatása komplex és egy-
mással szorosan összefüggő rendszert alkot, amely három 
fő kategóriába sorolható: oldatparaméterek, műveleti para-
méterek és környezeti paraméterek25.
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Az oldatparaméterek közé tartozik a polimer elegy kon-
centrációja, molekulatömege, viszkozitása, vezetőképes-
sége, valamint a felületi feszültség, amely az emitter-he-
gyen kialakuló folyadékcsepp felszínén érvényesül. Ezek 
közül kiemelkedő szerepet játszik a molekulatömeg29, a 
koncentráció30 és a viszkozitás31,32, melyek egymással szo-
ros kölcsönhatásban állnak, így hatásukat kizárólag együtt 
vizsgálva értelmezhetjük. A polimer molekulatömege a 
lánchosszúsággal arányosan növekszik, ami fokozza a po-
limerláncok közötti kölcsönhatásokat és elősegíti a stabil, 
folytonos polimersugár kialakulását. A nagyobb molekula-
tömegű polimer oldatokban megnövekszik a makromoleku-
lák térkitöltése, ezáltal nő a kohézió, ami elengedhetetlen 
a stabil szálképződéshez. A magasabb molekulatömeg és 
koncentráció fokozott viszkozitással jár, amely alapvető fel-
tétele a szálképződésnek. Ugyanakkor, ha ezen paraméte-
rek értéke túl alacsony, a keletkező kohéziós erők nem ele-
gendőek a folytonos anyagátadáshoz, és az oldat nem képez 
szálat, hanem cseppes termékként (electrospraying) jelenik 
meg. Túl magas értékek esetén viszont a folyadék nem képes 
Taylor-kúpot alkotni, és a szálképzés meghiúsul29,33,34. A ve-
zetőképesség a szálképzés egyik meghatározó paramétere, 
amely növelhető ionizáló adalékok, például sók hozzáadá-
sával. A magasabb vezetőképesség nagyobb töltéshordozó 
kapacitást eredményez, ezáltal stabilabb és megnyúltabb 
folyadéksugarat biztosít, amely vékonyabb, egyenletesebb 
szálakat eredményez. Ezzel szemben az alacsony vezető-
képesség instabil jet-et, szabálytalan morfológiát és gyön-
gyképződést eredményezhet.35,36 A felületi feszültség az 
oldatból kilépő polimersugár stabilitására van jelentős ha-
tással. A magas felületi feszültség megnehezíti a Taylor-kúp 
kialakulását, és elősegíti a cseppképződést, amely szintén 
gyöngyös szerkezet kialakulásához vezet. Ennek megelőzé-
sére a felületi feszültség csökkentése szükséges, különösen 
a gyöngymentes szálak előállítása érdekében37.

Az alkalmazott elektromos feszültség alapvető feltétele az 
elektrosztatikus szálképzésnek, mivel ez biztosítja a poli-
mersugár elindításához szükséges elektrosztatikus erőket. 
A feszültség növelése elősegíti a stabil Taylor-kúp és po-
limersugár kialakulását, azonban túl magas érték insta-
bilitást, szabálytalan morfológiát vagy gyöngyképződést 
okozhat30. Az adagolási sebesség a szál vastagságára és 
morfológiájára gyakorol hatást. A túl magas áramlási se-
besség csökkenti az oldószer elpárolgásához szükséges 
időt, így vastagabb és hibás szálak képződhetnek. A Taylor-
kúp csak bizonyos áramlási sebesség-intervallumon belül 
képes stabilan kialakulni38. Az emitter-hegy és a kollektor 
közötti távolság (Emitter-kollektor távolság, EKT) megha-
tározza a polimersugár útvonalát és ezzel együtt az oldószer 
elpárolgásához rendelkezésre álló időt. A távolság növelése 
javíthatja a szálak morfológiai egyenletességét, azonban túl 
nagy érték inhomogén szerkezethez vezethet. A laboratóri-
umi körülmények között alkalmazott optimális távolság jel-
lemzően 10–20 cm közé esik39,40. Az emitter-hegy átmérője 
befolyásolja az áramlás sebességét és a nyomásesés mér-
tékét. Kis átmérő esetén vékonyabb szálak képződnek, és 
a nagy viszkozitású oldatok is könnyebben feldolgozhatók. 

A túl nagy átmérő azonban a prekurzor elegy kiszáradását 
okozhatja az emitter-hegy peremén, amely duguláshoz és a 
folyamat megszakadásához vezethet41,42. A kollektor anyaga 
és kialakítása szintén befolyásolja a szálképzés eredményét. 
A leggyakrabban használt alumíniumfólia kiváló vezetőké-
pessége miatt ideális választás, de alkalmazhatók egyéb ve-
zetőképes anyagok is, mint például textíliák, drótháló vagy 
papír37,43. A forgó dobos kollektor kisebb szálátmérőt és ho-
mogénebb szerkezetet eredményezhet, továbbá lehetőséget 
biztosít a szálak orientációjának szabályozására. A kollek-
tor mérete hatással van a szálak eloszlására és az elektrosz-
tatikus tér alakulására, azonban jelentősége másodlagos a 
többi paraméterhez képest, mivel hatása főként magasabb 
rendű, komplex tényezők függvénye44.

A hőmérséklet az elektrosztatikus szálképzés számos fi-
zikai és kémiai folyamatát befolyásolja, többek között a 
polimerkristályosságot, a láncok konformációját, az oldat 
viszkoelasztikus tulajdonságait és az oldószer párolgását. 
A hőmérséklet növekedése jellemzően csökkenti a szálak 
átmérőjét, ugyanakkor a túlzott hőmérséklet kedvezőtlen 
morfológiai változásokat is eredményezhet45. A relatív pá-
ratartalom szintén meghatározó szerepet játszik a szálas 
termék szerkezetében. Magas páratartalom esetén az oldat 
nedvességtartalma lassabban csökken, ami gyöngyös, ös�-
szeolvadó szálrészeket és porózus, gyapjúszerű szerkeze-
tet eredményez. Alacsony páratartalom esetén finomabb 
és simább szálak jönnek létre, bár ezek előállítása lassabb 
lehet37,46.

3. Ábra. Az elektrosztatikus szálképzést befolyásoló legfontosabb 
paraméterek. A folyamat sikeres kivitelezését, valamint a kialakuló 
termék jellemzőit az oldat tulajdonságai, a műveleti paraméterek, 
valamint a környezeti tényezők együttesen határozzák meg. (E-
K: Emitter-Kollektor; Gyf.: Gyűjtőfelület, Fel. feszültség: Felületi 
feszültség)

Összességében elmondható, hogy a sikeres elektrosztatikus 
szálképzés érdekében minden paraméter optimális tarto-
mányban történő beállítása szükséges, figyelembe véve 
azok kölcsönhatásait és határértékeit. A paraméterek integ-
rált, rendszerszintű szemléletű kezelése alapvető feltétele a 
reprodukálható és megfelelő minőségű nanoszálas anyagok 
előállításának.
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5.	 Biokatalizator mint terápias eszköz

Az enzimek, mint biokatalizátorok, kulcsszerepet játszanak 
az élő szervezetek biokémiai folyamataiban47. Ahogy ezt a 
4. ábra is mutatja, egyre növekvő figyelem övezi az enzimek 
terápiás alkalmazását, mivel kivételes specificitásuk, szelek-
tivitásuk és biológiai aktivitásuk révén lehetőséget kínálnak 
célzott, mellékhatásoktól mentes kezelések kifejlesztésére. 
Az enzimalapú terápiák különösen fontosak genetikai ere-
detű betegségek, anyagcsere-rendellenességek, daganatos 
elváltozások és immunológiai kórképek kezelésében48.

Kiemelkedő példája a terápiás enzimek alkalmazásának az 
enzimhelyettesítő terápia (ERT), mely során a szervezetből 
hiányzó vagy hibásan működő enzimek pótlásával korrigál-
ják az anyagcsere-folyamatokat49. Az ERT különösen sike-
resnek bizonyult lizoszomális tárolási betegségek – például 
Gaucher-, Fabry- és Pompe-kór – kezelésében. Az ilyen te-
rápiák hosszabb távon nemcsak a tünetek enyhítésére, de 
a betegségek progressziójának lassítására is alkalmasak50. 

4. Ábra. Az enzim alapú gyógyszerfejlesztéssel kapcsolatos publikációk száma, valamint újonnan engedélyezett enzimhatóanyagok éves száma 
1950 és 2025 között. A publikációk számának meghatározásához a PubMed adatbázisban a „Title/Abstract” mezőre szűkítve, az „enzyme therapy, drug 

and treatment” kulcsszavakra keresve történt a lekérdezés. Az engedélyezett enzimek számát a DrugBank Online adatbázisban szereplő, enzimeket 
tartalmazó gyógyszerek elsőként jóváhagyott változatának engedélyezési dátuma alapján határoztuk meg51.

Az enzimterápia alkalmazása azonban komoly kihívások-
kal is szembesül. A fő nehézségek közé tartozik az enzi-
mek rövid biológiai felezési ideje, érzékenységük a hőre és 
pH-változásokra, immunválaszt kiváltó potenciáljuk, vala-
mint az alacsony célzott hatékonyság49,52. Ráadásul a szisz-
témásan (pl. intravénásan) alkalmazott enzimek gyakori 
adagolást és egészségügyi háttérinfrastruktúrát igényelnek, 
ami jelentős terhet ró a betegekre53.

E problémák áthidalására korszerű megoldási lehetőséget 
nyújtanak a nanoformulációs technológiák. Ezek lényege, 
hogy az enzimeket különböző nanoszerkezetű hordozók-
kal (például nanorészecskékkel, nanokapszulákkal, vagy 
nanoszálakkal) immobilizálják. Ezáltal növelhető az enzi-
mek stabilitása, meghosszabbítható a biológiai aktivitásuk 
időtartama, valamint mérsékelhető immunogenitásuk54. 
Például α-glükozidázt mágneses nanorészecskékhez rög-
zítve sikeresen használtak Pompe-kór kezelésére, míg 
L-aszparaginázt PEG-ilált (PEG: polietilénglikol) nanoli-
poszómákba ágyazva hatékonyan alkalmaztak leukémia 
esetén55,56.

A nanoformuláció egyik különösen ígéretes megközelíté-
se az elektrosztatikus szálképzéssel előállított nanoszálas 

mátrixok alkalmazása. A folyamat során képződő, nano-
szálakból felépülő szövedék nagy fajlagos felületű, porózus 
mátrixot alkot, amely kitűnően alkalmazható terápiás enzi-
mek hordozójaként. Amennyiben a szálképzéshez használt 
polimer prekurzor oldathoz enzimeket adagolunk, azok a 
szálképzés során beépülnek a megszilárduló polimer nano-
szálakba, így egy szilárd halmazállapotú, nanoszálas en-
zimformula jön létre57,58.

Az ilyen nanoszálas formuláció számos előnyt nyújthat az 
enzimterápiák terén. Egyrészt a polimer mátrix fizikailag 
védi az enzimet a denaturáló hatásoktól, melynek köszön-
hetően jelentősen nő az enzim stabilitása (például javul a 
tárolhatóság vagy a gyomorsavval szembeni ellenállás)59. 
Másrészt a nanoszálas szerkezet és az immobilizáció kö-
vetkeztében az enzimaktivitás is fokozódhat: kutatócso-
portunk kísérletei során számos esetben tapasztaltuk, hogy 
a nanoszálakba ágyazott enzimek aktivitása többszörösen 
meghaladta a szabad (natív) enzimekét. A nanométeres 
szálas hordozóformának köszönhetően lehetőség nyílik az 
enzimek újszerű adagolására, beleértve az orális (szájon át 
történő) alkalmazást, a helyi (topikális) dermális kezelése-
ket, sőt akár kombinált terápiás rendszerek kialakítását is, 
például az enzim egy másik gyógyszerhatóanyaggal együtt 
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történő alkalmazását51. Szintén kiemelendő, hogy az elekt-
rosztatikus szálképzés rugalmasan adaptálható különböző 
polimerek használatával: csoportunk munkája során ví-
zoldható polimerekből, úgymint poli(vinil-alkohol) (PVA) 
és poli(vinil-pirrolidon) (PVP), valamint vízben nem oldó-
dó, biokompatibilis polimerekből (például politejsav, PLA) 
egyaránt sikeresen állítottunk elő enzimtartalmú nanoszá-
lakat60,61. Szükség esetén további stabilizáló, vagy enzimak-
tivitást fokozó segédanyagok is beépíthetők a formulációba.

Kutatócsoportunk munkájának egyik fő célja olyan nano-
szálas enzimformulációk kifejlesztése volt, amelyek al-
kalmazhatók lehetnek orális emésztőenzim-helyettesítő 
terápiában. Ebből a célból elsőként az ilyen terápiákban 
leggyakrabban alkalmazott lipáz, a sertés hasnyálmirigy 
lipáz (PpL) nanoformulálását valósítottuk meg elektroszta-
tikus szálképzéssel. A formulálás során különböző nano-
szálas mátrixokat alakítottunk ki: vízoldható poli(vinil-al-
kohol) (PVA), poli(vinil-pirrolidon) (PVP) és vízoldhatatlan 
politejsav (PLA) polimereket felhasználva. Eredményeink 
alapján a nanoszálas formuláció minden esetben jelentősen 
növelte a PpL aktivitását a szabad enzimhez képest, me-
lyek közül a legmagasabb aktivitásértéket a PLA-mátrixba 
rögzített készítmények esetében mértük. Ezek az értékek 

elérték, sőt esetenként meg is haladták a kereskedelmi for-
galomban kapható referencia PpL készítmények aktivitását, 
ami alátámasztja, hogy a nanoszálas formuláció ígéretes 
megközelítés lehet az orális lipázterápia hatékonyságának 
növelésére. A projekt következő fázisában olyan vízoldható 
nanoszálas rendszerek fejlesztésére törekedtünk, amelyek a 
PLA-alapú formulákhoz hasonlóan magas enzimaktivitást 
biztosítanak. Korábbi eredményeinkre építve két jelentős 
terápiás potenciállal rendelkező lipázt – Aspergillus oryzae 
és Burkholderia cepacia lipázok – immobilizáltunk PVA 
nanoszálakba. A specifikus aktivitás további növelése érde-
kében pedig különböző ciklodextrin alapú stabilizáló ada-
lékokat ko-formuláltunk a lipázokkal. Az így létrehozott 
formulációk minden tesztelt körülmény között lényegesen 
meghaladták a referencia-készítmények aktivitását (lásd 5. 
ábra). Eredményeink azt is igazolták, hogy a ciklodextrinek 
nemcsak fokozzák az enzimaktivitást, hanem elősegítik 
az lipázok egyenletes eloszlását a nanoszálas mátrixban. 
Mindez alátámasztja, hogy a ciklodextrinek alkalmazása 
jelentősen javíthatja a nanoszálas enzimformulációk terápi-
ás hatékonyságát61,62. 

5. Ábra. Nanoszálas lipázformulációk és kereskedelmi pankreatin készítmények specifikus aktivitásának összehasonlítása p-nitrofenil-palmitát (p-NPP) 
szubsztrát hidrolízise során (UB , U × g –1, 37°C, 1 óra). A mérések a lipázaktivitás kifejezését segítő standard és a felhasználás körülményeit szimuláló 

FeSSIF (Fed State Simulated Intesinal Fluid) közegben történtek. A nanoszálas rendszerek különböző ciklodextrineket (B-CD: β-ciklodextrin, HPB-CD: 
2-hidroxipropil-β-ciklodextrin, SSB-CD: szulfobutilált-β-ciklodextrin) tartalmaztak62.

Egy másik kutatási projektünk célja egy topikális alkal-
mazásra szánt, kombinált hatásmechanizmusú nanoszálas 
gyógyszerhordozó rendszer kifejlesztése volt, amely alkal-
mas a Propionibacterium acnes által kiváltott acne vul-
garis kezelésére. A projekt során háromrétegű nanoszálas 
arcmaszkokat állítottunk elő elektrosztatikus szálképzés-
sel, vízoldható (PVP) és vízoldhatatlan (PLA) polimerek 
felhasználásával. Az arcmaszkokba Candida rugosa és 
Rhizomucor miehei eredetű lipázok, valamint a nadifloxa-
cin nevű antibiotikum együttes formulációját valósítottuk 
meg. A készítményben található lipázok feladata a bőrfag�-

gyú fő zsírsavésztereinek lebontása volt, elősegítve ezzel a 
nadifloxacin mélyebb penetrációját az epidermiszbe, míg 
az antibiotikum közvetlenül célozta a gyulladásért felelős 
baktériumokat. Az immobilizált enzimek minden vizsgált 
zsírsavészter hidrolízisében magas biokatalitikus aktivitást 
mutattak, különösen a PLA alapú nanoszálakban, amelyek 
hidrofób jellege stabilabb enzimkészítményt eredménye-
zett. A háromrétegű maszkokban az együttesen formulált 
lipázok kombinációja kiegyensúlyozott aktivitást biztosított 
a vizsgált szubsztrátok teljes spektrumán. A bőrön át törté-
nő hatóanyag-leadás vizsgálata ex vivo Franz-diffúziós cel-
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lával történt humán epidermisz mintán, amely igazolta a na-
difloxacin sikeres penetrációját: a PVP-alapú maszk gyors, 
míg a PLA-alapú maszk elnyújtott hatóanyagleadást bizto-
sított, ahogy az a 6. ábrán is látható. Összegzésként az előál-
lított nanoszálas maszkok kedvező kombinációját nyújtják 
a mechanikai stabilitásnak, a hangolható hatóanyagleadás-
nak és az enzimaktivitás fenntartásának, így alapjául szol-
gálhatnak olyan bőrgyógyászati terápiáknak, ahol egyidejű 
antimikrobiális és lipolítikus hatás szükséges63. 

Összességében az enzimalapú terápiák jövője szorosan ös�-
szefonódik a nanotechnológia fejlődésével. A nanoszálas 
rendszerek új távlatokat nyitnak a hatékonyabb, célzottabb 
és felhasználóbarátabb gyógyszerformák fejlesztésében, 
különösen az olyan érzékeny hatóanyagok esetén, mint a 
terápiás enzimek.

lipáz
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lipáz

lipáz

lipáz
Pe
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6. Ábra. A nanoszálas formulákban rögzített nadifloxacin (NF) bőrön át történő penetrációjának vizsgálata hővel leválasztott humán epidermiszen 
(HSE), topikális-transzdermális Franz-diffúziós cella segítségével. (a) A NF koncentrációja 24 órás inkubáció után az akceptor fázisban, az 

epidermiszben és a membránban; (b) az NF átjutott mennyisége egy 4 órás periódus során63.

6.	Biokatalizátor mint szintetikus kémia eszközei

Az enzimek – mint biokatalizátorok – számos előnyt kí-
nálnak a hagyományos kémiai katalizátorokhoz képest. 
Egyrészt, segítségükkel gyakran enyhe (vízbázisú, szo-
bahőmérsékletű) és környezetbarát reakciókörülmények 
között valósítható meg a kívánt átalakítás, minimalizálva 
a veszélyes vegyszerek és melléktermékek használatát64. 
Másrészt, az enzimkatalizált reakciók kiemelkedő szelek-
tivitással – többek között enantioszelektivitással és regio-
szelektivitással – zajlanak, lehetővé téve királis vegyületek 
(pl. aminosavak, aminok) hatékony előállítását65,66. Számos 
ipari területen alkalmaznak enzimeket a szintetikus folya-
matokban, a finom-kémiai termékek gyártásától a gyógy-
szeriparon át a biodízel előállításáig67,68.

Bár az enzimek rendkívül hatékony katalizátorok, alkal-
mazásukat számos kihívás nehezíti. Az izolált enzimek 
gyakran instabilak a természetes környezetükön kívül, ér-
zékenyek a hőmérséklet-ingadozásra, pH-eltérésekre és a 
szerves oldószerek jelenlétére69,70. Ezen túlmenően a szabad 
formában alkalmazott enzimek újrafelhasználhatósága kor-
látozott, mivel nehéz őket visszanyerni a reakcióelegyből, 
ami gazdaságtalanná teheti az eljárást. Mivel a tisztított en-
zimfehérjék előállítása jelentős költségekkel jár, stabilitá-
suk és újrafelhasználhatóságuk biztosítása elengedhetetlen 
a fenntartható ipari alkalmazásukhoz71.

Számos kutatás foglalkozott nanoméretű hordozók alkal-
mazásával az enzimstabilitás javítása érdekében59. A szilí-

cium-dioxid alapú nanorészecskék (szilikagél, mezopóru-
sos szilika stb.) különösen elterjedtek és ipari méretekben is 
beváltak az enzimek immobilizálására. Ezenkívül számos 
fém-oxid nanohordozót (pl. titán-dioxid, cink-oxid) is al-
kalmaznak, melyeket gyakran felületmódosítással tesznek 
alkalmassá az enzimmolekulák megkötésére72. Köztük 
a mágneses nanorészecskék – például vas-oxid (magne-
tit) – azért vonzóak, mert külső mágneses tér segítségével 
egyszerűen visszanyerhetők a reakcióelegyből. Az ilyen 
nanorészecske-hordozók nagy fajlagos felülete nemcsak a 
magas enzimkötési kapacitást segíti elő, hanem a fehérjék 
konformációjának stabilizálásához is hozzájárul; kimutat-
ták például, hogy nano-hordozón történő rögzítés csökken-
ti az enzim kicsapódását és növeli a katalizátor hő- és pH 
stabilitását73.

Az elektrosztatikus szálképzéssel előállított polimer nano-
szálak rendkívül nagy fajlagos felülettel és belső porozitással 
rendelkeznek, amelyek magas enzimkötő kapacitást biztosít 
és elősegíti a hatékony szubsztrát-diffúziót. A módszer so-
rán az enzimek közvetlenül a polimer oldathoz keverhetők, 
melyek az ezt követő szálképzés folyamán fizikailag csapdá-
zódnak a keletkező nanoszálak belsejében74. Alternatív meg-
közelítésként az enzimek adszorpcióval, vagy a nanoszálak 
felületének funkcionalizálását követően kovalens kötéssel is 
rögzíthetők a szálakhoz75. Jelentős előny, hogy a szálak belse-
jébe zárt enzimek megőrizhetik natív konformációjukat, így 
fokozott védelmet élveznek - és hőingadozásokkal szemben, 
ami hosszabb élettartamot és nagyobb stabilitást biztosít a 
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katalizátor számára76. Mindezek következményeként egyre 
több kutatás számol be arról, hogy a nanoszálas biokatalizá-
torok ígéretes megoldást jelentenek a finomkémiai eljárások-
ban, az élelmiszeripari folyamatokban, a tejfeldolgozásban és 
a bioüzemanyagok előállításában68,77.

Kutatócsoportunk egyik tanulmánya során célul tűztük ki, 
hogy egy electrospinning technika segítségével létrehozott 
biokatalizátor előállítása során feltérképezzük a polimer 
tulajdonságainak és a szálképzési paramétereknek a hatá-
sát a kialakuló termék szerkezetére és a csapdázott enzim 
aktivitására. A kísérletek során a Burkholderia cepacia 
eredetű lipáz (BcL) PVA alapú nanoszálakban történő csap-
dázását valósítottuk meg elektrosztatikus szálképzéssel. 
Szisztematikus vizsgálat keretében különböző molekulatö-
megű és eltérő hidrolizáltsági fokú PVA alapanyagokat ha-
sonlítottunk össze, miközben optimalizáltuk a szálképzés 
legfontosabb technológiai paramétereit.

Az elvégzett aktivitásvizsgálatok alapján megállapítottuk, 
hogy a nanoszálakba csapdázott BcL specifikus aktivitása 
– a megfelelő gyártási paraméterek mellett – akár tízszere-
se is lehetett a liofilizált enzimének. Emellett a csapdázott 
biokatalizátor kiváló visszaforgathatóságot mutatott: az is-
mételt aktivitástesztek során sem az enzim aktivitásában, 
sem a tömegében nem észleltünk jelentős veszteséget (lásd 
7. ábra). Ezzel szemben a liofilizált enzim a harmadik vis�-
szaforgatási ciklus végére eredeti tömegének közel 30 szá-
zalékát elveszítette.

7. Ábra. Három egymást követő reakcióciklus során vizsgáltuk a natív 
BcL és a PVA nanoszálas mátrixban immobilizált BcL stabilitását és 
katalitikus aktivitását. Minden ciklus egy 24 órás átészterezési reakciót 
foglalt magában, majd a katalizátorokat elválasztottuk, mostuk és 
állandó tömegig szárítottuk. A natív enzimet centrifugálással, míg a 
nanoszálas katalizátort csipesszel távolítottuk el a reakcióelegyből. 
A ciklusok végén meghatároztuk a specifikus enzimaktivitást 
(UE ; U × g –1) és a katalizátor tömegcsökkenését (%)60.

A nanoszálas csapdázás során tapasztalt enzimaktivi-
tás-növekedés okainak felderítése során a következő meg-
állapításokat tettük: A differenciál pásztázó kalorimetriás 
vizsgálatok egyértelmű kapcsolatot mutattak a nanoszálas 
biokatalizátorok üvegesedési hőmérséklete (Tg) és az en-
zimaktivitás között. A magasabb Tg-vel rendelkező poli-
mermátrixok minden esetben nagyobb mértékben járultak 
hozzá az enzim katalitikus működéséhez. Ez a megfigyelés 
a PVA mátrix és a csapdázott lipáz között kialakuló stabili-
záló kölcsönhatások kialakulására utalhat.

A PVA és a lipáz közötti specifikus kölcsönhatásokat mo-
lekuladokkolási szimulációkkal is vizsgáltuk. Az eredmé-
nyek alátámasztották, hogy a polimer és az enzim közötti 
közvetlen kapcsolatok hozzájárulnak az enzim konformáci-
ós stabilitásához, ezáltal növelve annak aktivitását a nano-
szálas környezetben.

Egy párhuzamos tanulmányban kutatócsoportunk olyan 
nanoformulációs stratégiát dolgozott ki, amely nemcsak 
az enzimek stabilizálását és aktivitásuk megőrzését segíti 
elő, hanem közvetlenül integrálható a rekombináns fehér-
jetermelés utófeldolgozási szakaszába is. Hisztidin-jelölt 
Chromobacterium violaceum aminotranszferázt (CvTA) 
sikerült közvetlenül a nyers sejtlizátumból izolálnunk és 
fémionokkal funkcionalizált szilícium-dioxid nanorészecs-
kékre immobilizálnunk, így elkerülhetővé vált a költséges 
fehérjetisztítás, és az eljárás ideje a hagyományoshoz képest 
kevesebb mint negyedére csökkent. A nyers sejtlizátumból 
közvetlenül rögzített enzimek aktivitása magasabbnak adó-
dott, mint a tisztított fehérjéből immobilizált változatoké, 
ami arra utal, hogy a sejtlizátum összetevői – például stabi-
lizáló fehérjék vagy kofaktorok – kedvező mikro-környeze-
tet biztosíthatnak az enzim számára.

 
8. Ábra. Az alkalmazott nanohordozó rendszer (fSNP: amino-
funkcionalizált szilika nanorészecskék, PLA nanoszálak és fSNP-t 
tartalmazó PLA nanoszálak) hatása a tisztított CvTA és a sejtlizátum 
biokatalitikus aktivitására (UB)78.
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A továbbfejlesztett, „második generációs” rendszerben az 
enzim–nanorészecske komplexet elektrosztatikus szálkép-
zéssel PLA nanoszálakba ágyaztuk, amely tovább növelte 
a stabilitást. Ahogy azt a 8. ábra is mutatja, az így kapott 
kompozit biokatalizátor specifikus aktivitása jelentősen 
meghaladta a csak nanorészecskén rögzített, és a pusztán 
nanoszálakba csapdázott enzimekét egyaránt. A nanoszálas 
mátrix és a nanohordozók kombinációja tehát szinergiku-
san javította az enzim teljesítményét és újrafelhasználható-
ságát, ami különösen előnyös lehet szintetikus biokataliti-
kus alkalmazásokban78.
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This short review presents an overview of the electrospinning 
process and highlights its potential in biomedical and synthetic 
biocatalytic applications. Emphasis is placed on nanofibrous en-
zyme formulations developed by our research group, demonstrat-
ing how electrospun polymer matrices can enhance the stability, 
reusability, and activity of immobilized enzymes. Case studies 
include oral enzyme replacement therapy using lipase-loaded na-

nofibers, and the design of multilayered nanofibrous facial masks 
for topical drug delivery. In synthetic applications, we describe 
the development of highly active, nanofiber-immobilized lipase 
systems and a hybrid platform combining silica nanoparticles and 
nanofibers for enhanced aminotransferase catalysis. These results 
underline the versatility of electrospun nanofibers as functional 
carriers in advanced biocatalytic systems.
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