

HUNGARIAN GEOGRAPHICAL BULLETIN

Volume 74 Number 4 2025

HUNGARIAN GEOGRAPHICAL BULLETIN

Quarterly Journal of the
GEOGRAPHICAL INSTITUTE
RESEARCH CENTRE FOR ASTRONOMY AND EARTH SCIENCES

Editor-in-Chief:	ZOLTÁN KOVÁCS
Deputy Editor-in-Chief:	TIBOR TINER
Executive Editors:	TAMÁS EGEDY
Managing Editors:	FERENC GYURIS, GYÖRGY VARGA
Book Review Editor:	SZabolcs FABULA, NOÉMI UJHÁZY
Cartography Editor:	ZSOMBOR NEMERKÉNYI
Online Editor:	ÁRPÁD MAGYAR

Board Members

DAN BÂLTEANU (Bucharest), JÓZSEF BENEDEK (Cluj-Napoca), COLIN BOOTH (Bristol), DOMINIK FAUST (Dresden), BÉLA FILEP (Bern), MICHAEL A. FULLEN (Wolverhampton), VLADIMIR IRA (Bratislava), GERGELY JAKAB (Budapest), STEVEN JOBBITT (Thunder Bay), PETER JORDAN (Vienna), ÁDÁM KERTÉSZ (Budapest), KÁROLY KOCSIS (Budapest), VLADIMIR KOLOSSOV (Moscow), JOSEF KŘEČEK (Prague), THILO LANG (Leipzig), DÉNES LÓCZY (Pécs), MARK MACKLIN (Lincoln, UK), SLOBODAN MARKOVIĆ (Novi Sad), REZSÓ MÉSZÁROS (Szeged), GÁBOR MICHALKÓ (Budapest), CLAUDIO MINCA (Bologna), ATTILA NEMES (Ås), JEAN POESEN (Leuven), LEONID RUDENKO (Kyiv), JAMES SCOTT (Joensuu), TOON SMETS (London), JÓZSEF SZABÓ (Debrecen), SZILÁRD SZABÓ (Debrecen), ZOLTÁN SZALAI (Budapest), CHARLES TARNOCAI (Ottawa), ANDREW TAYLOR (Darwin), DALLEN J. TIMOTHY (Phoenix), ANDRÁS TRÓCSÁNYI (Pécs), ANTONÍN VAISHAR (Brno), DORIS WASTL-WALTER (Bern), AN ZHISHENG (Xi'an), JERNEJ ZUPANČIČ (Ljubljana)

Indexed by Clarivate Web of Science Core Collection, Elsevier-GEOBASE®,
Elsevier-SCOPUS®, EBSCO Information Services, CAB Abstracts, Current
Geographical Publications, Scimago Journal & Country Rank, Google Scholar

CONTENT

<i>Szilárd Szabó, Abdelmajeed A. Elrasheed, Lilla Kovács, Imre J. Holb, Szilárd B. Likó and Dávid Abriha: Lithological mapping with pseudo-labelling: Promise or overestimation in data-scarce settings?</i>	339
<i>Elemér László, Csaba Rácz, Attila Csaba Dobos and Péter Salavec: How extreme precipitation in 2010 altered urban heat island behaviour in Debrecen</i>	359
<i>András Béres, Tamás Száraz, Zsolt Hetesi and Szabolcs Czigány: Cultural adaptation and validation of the water attitude scale: Insights from Hungarian student responses</i>	371
<i>Priszcilla Hafenscher, György Kukely, Árpád János Bárdi, Laura Bazsó-Bertalan, Judit Papp-Vancsó and Ferenc Jankó: Human-forest relationship in the Budapest agglomeration: an urban-rural divide among forest visitors</i>	395
<i>Antonín Vaishar and Milada Šťastná: A possible strategy for the economic restructuring of a rural region based on wine tourism: Case study of Blue Mountains, Moravia</i>	413
<i>László Kökény, Borbála Szüle, Zoltán Birkner and Gábor Michalkó: "Good neighbours are worth their weight in gold" – The role of familiarity on the revisit intention to neighbouring countries</i>	431

Book review section

<i>Wacquant, L.: Bourdieu in the City: Challenging Urban Theory (Márton Berki)</i>	447
<i>Jankó, F.: From Borderland to Burgenland. Science, Geopolitics, Identity, and the Making of a Region (Norman Henniges)</i>	451

Lithological mapping with pseudo-labelling: Promise or overestimation in data-scarce settings?

SZILÁRD SZABÓ¹, ABDELMajeed A. ELRASHEED², LILLA KOVÁCS³, IMRE J. HOLB⁴,
SZILÁRD B. LIKÓ⁵ and DÁVID ABRIHA⁶

Abstract

Reference data are the most crucial points in model building. In geoscience, a scarcity of sufficient reference data is common. Pseudo-labelling (PL), i.e. incorporating high-probability data in the model-building process, offers a potential solution. We aimed to reveal the efficiency of PL in lithological mapping in a vegetation-free arid region of Sudan. Multiple Adaptive Regression Splines (MARS) and Random Forest (RF) were used to classify a Landsat 9 image. Reference data were collected during fieldwork and through visual interpretation. Image processing yielded classified maps with associated probability layers, from which 1000 additional traditional samples (PL data) were extracted at a 95 percent probability. A detailed accuracy assessment was conducted, and accuracy measures were evaluated using statistical analysis and visual inspection. MARS was found to be an ambiguous classifier because the probability was too optimistic related to the overall accuracy (OA) (81% of samples had above 99% probability, OA = 98.2%) compared to RF (21% above 99%, OA = 98.1%); that is, despite the high probability, the accuracy improvement was only 0.1 percent. At the class level, the correlation between probability and the F1-score was low (0.21%). The original and PL-based models resulted in different maps with improved accuracy, although the new model version showed lower probability values for both the classifiers. Visual inspection proved essential for better insights into the spatial patterns: expert knowledge is crucial for controlling the occurrence of rock types and identifying false classifications. The main finding is that probability should be handled carefully, as it does not guarantee high model performance in classification, although the PL approach can lead to more reliable maps.

Keywords: Multiple Adaptive Regression Splines (MARS), Random Forest (RF), self-training, probability, data augmentation

Received June 2025, accepted November 2025.

Introduction

Lithological mapping is the process of identifying different lithological units (rocks) within

a given area and represents a fundamental step in most geological investigations, including mineral exploration, groundwater assessment, petroleum studies, natural resource

¹ Department of Physical Geography and Geoinformatics, Faculty of Sciences and Technology, University of Debrecen. National Laboratory for Water Science and Water Safety, University of Debrecen. Egyetem tér 1, H-4032 Debrecen, Hungary. Corresponding author's e-mail: szabo.szilard@science.unideb.hu

² Department of Physical Geography and Geoinformatics, Faculty of Sciences and Technology, University of Debrecen. Egyetem tér 1, H-4032 Debrecen, Hungary. Department of Geology, University of Khartoum. 1115 Khartoum, Sudan. E-mails: aaelrasheed@uofk.edu, ali.abdelmajeed.adam.elrasheed@science.unideb.hu

³ Doctoral School of Geosciences, Faculty of Sciences and Technology, University of Debrecen. Egyetem tér 1, H-4032 Debrecen, Hungary. E-mail: kovacs.lilla@science.unideb.hu

⁴ Institute of Horticulture, University of Debrecen. Böszörményi út 138, H-4032 Debrecen, Hungary. Plant Protection Institute, Centre for Agricultural Research, HUN-REN. Herman Ottó út 15, H-1022 Budapest, Hungary. E-mails: holb.imre@agr.unideb.hu, holbimre@gmail.com

⁵ Freelancer. E-mail: liko.szilard.balazs@gmail.com

⁶ Department of Physical Geography and Geoinformatics, Faculty of Sciences and Technology, University of Debrecen. Egyetem tér 1, H-4032 Debrecen, Hungary. E-mail: abriha.david@science.unideb.hu

evaluation, and environmental management (AMUSUK, D.J. *et al.* 2016; ABRAMS, M. and YAMAGUCHI, Y. 2019). Consequently, obtaining an accurate lithological map is crucial for mineral exploration. Traditionally, lithological mapping is executed mainly through interpretation of aerial photographs, followed by extensive field-based investigations in which geologists collect samples, register observations, measure geological structures (such as dip and strike), identify mineral composition and textures, or interpret field relationships (SZANIAWSKA, L. 2018). However, this traditional mapping approach can be challenging because it requires skilled field geologists, is time-consuming, and requires a suitable budget to cover costs, especially in harsh environments and inaccessible or isolated places. These difficulties have recently decreased through the integration of cutting-edge technologies, such as remote sensing and machine learning, in the lithological mapping process (BACHRI, I. *et al.* 2019; ABDELKAREEM, M. *et al.* 2021; SHIRMARD, H. *et al.* 2022).

Geological features can be identified using extensive datasets of remote sensing technology (EL-OMAIRI, M.A. and GAROUANI, A.E. 2023). Valuable insights can be drawn from the geographic data obtained by sensors, based on the distinctive properties of the local area (NAIR, P. *et al.* 2023). Machine learning offers an efficient way of processing remote sensing data. After the training phase, algorithms can identify rock types, faults, or mineral deposits if the spectral resolution of the images makes it possible. These algorithms can handle large datasets, allowing the discovery of plausible patterns in complex geological datasets (HAN, W. *et al.* 2023). However, machine learning requires high-quality training data to build a reliable model. Additionally, independent testing data (known as reference data) are essential for validating a model's performance (JAMES, G. *et al.* 2013).

Reference data is the most crucial constituent of all models. Training subsets are used for model building, while testing subsets are used to assess accuracy. In remote sensing, we may have millions of pixels (i.e. data points),

which may give the impression that the delineation of reference data is easy, however, this is not true for all tasks. For example, in land cover mapping, the traditional approach is to classify surface objects into simple classes such as forests, grasslands, and water bodies. These classes can include thousands of pixels as reference data because simple visual interpretations of the images can provide sufficient information. However, when the aim is a more specific problem, such as identifying plant or tree species, detecting plant diseases, or classifying roof types, reference data collection requires field observations and/or ground measurements, which makes this step labour-intensive and time-consuming. Lithological mapping faces the same problem: Field observations are essential for a reliable reference dataset. If the number of labelled instances is insufficient, the model cannot be adequately trained because of the insufficient size of the reference dataset.

The question of how much reference data is needed depends on the algorithms and is widely discussed in the literature. While there are basic rules, generally, the more the reference data, the better. Studies have shown that accurate, balanced, and large training datasets are often more important than the choice of algorithms in terms of the output (LI, C. *et al.* 2014; MAXWELL, A.E. *et al.* 2018; COLLINS, L. *et al.* 2020). There is no universally accepted minimum number of training data points. However, FOOPY, G.M. (2009) defined a method for calculating the minimum amount of testing data based on the desired overall accuracy, acceptable standard error, and classification error. For example, for four categories with an 85 percent target accuracy and a standard error of 0.02 (2%), at least 1275 testing data samples are required, which is approximately 320 per class. Class imbalance also can be a crucial point when the target class or some classes are underrepresented causing false accuracy metrics (LUQUE, A. *et al.* 2019), which is common when the target features are limited owing to unique characteristics (e.g. rare species, specific roofing types, or uncommon rock types or plant species), collecting a sufficient number of data

points may be infeasible, while easy to collect non-target classes. Even with fewer reference data than the optimal, accurate outcomes are still possible depending on the data distribution and representativeness of the data which introduces a higher risk of uncertain results.

An alternative method, known as self-training or pseudo-labelling (PL), involves selecting high-probability data from the predictions of an initial model conducted with fewer data points, and the model training is repeated with data from a classified map with the highest probability. The effectiveness of this method has been proven to improve the classification results, including soil class mapping (ZHANG, L. et al. 2021), detection of geochemical anomalies (CHEN, Y. et al. 2023), prediction of invasive species distribution (CRUZ, C. et al. 2023; KIM, E. et al. 2024), and identification of sporadically distributed species (LIKÓ, SZ.B. et al. 2024). However, PL does not always improve classification accuracy or even result in worse predictions. Although PL appears to be a good solution for overcoming the issue of limited reference data, users cannot assume that the outcome will be better than that of the model

output based on the original data. Geological mapping presents a unique challenge, as both natural and anthropogenic processes (e.g. physical and chemical weathering and mining) can alter rock characteristics. However, the spatial pattern can easily be validated by visual interpretation (e.g. the given rock type can occur at a given location).

We aimed to determine the effectiveness of PL in geological mapping. The selected study site was in an arid environment, where the lack of vegetation made it possible to observe rock types in satellite imagery. We had the following questions related to the probabilities and PL: (i) what was the probability of the related rock type and how did it change with the increased training data; (ii) what was the standard deviation (SD) of classes in the changed areas, and how large areas were influenced; and (iii) what was the direction of the changes in terms of probability? Accordingly, we formulated the following hypotheses: (i) high probability values ensure high model performance and (ii) pseudo-labelling improves map quality by providing additional training data for the modelling process.

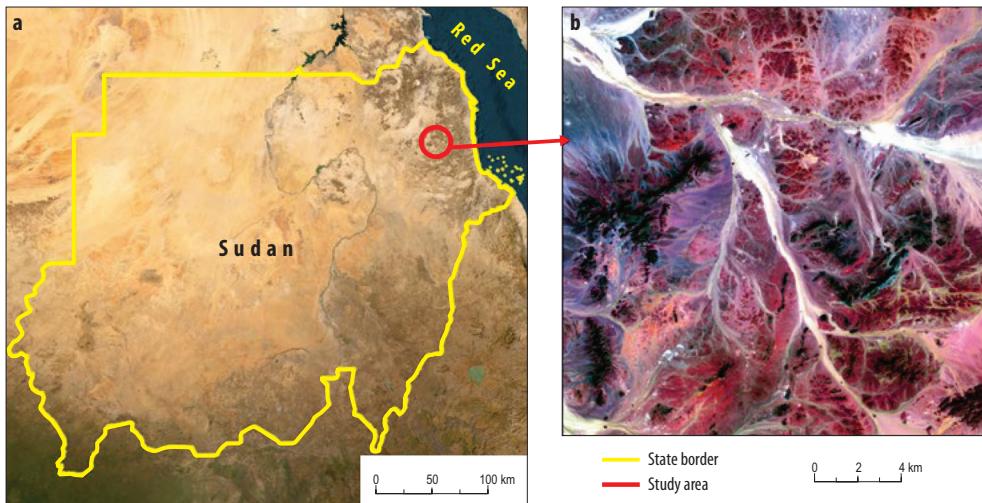


Fig. 1. Location of the study area: Sudan and study area location (a), and Landsat 8 colour composite of the study area in 7, 5, and 2 bands (b). Source: Authors' own elaboration.

Data and methodology

Study area

The study area was located in the Red Sea State, northeast Sudan, 90 km from Port Sudan (*Figure 1*). Geologically, the area is part of the Red Sea Hills (RSHs), the Sudanese section of the Arabian Nubian Shield, which is a juvenile continental crust formed between 900 Ma and 550 Ma (ABDELSALAM, M.G. *et al.* 2000; HAMIMI, Z. *et al.* 2021; ABDELRAHMAN, S. *et al.* 2024). These rocks are highly sheared and deformed, and their geology is complex (ABDELSALAM, M.G. and STERN, R.J. 1993). The study area is part of the Gebeit terrane, and the major lithological units include highly sheared low-grade meta-volcanics (meta-basaltic andesite, meta-andesitic basalt, and meta-dacite), meta-sediments (marble), sheared granitoids, and superficial deposits. Accordingly, we identified and mapped the following six rock types: artisanal (art), granite (gra), marble (marb), meta-volcanic rocks (mtvo), ophiolite (ophi), and wadi deposits (WDi).

Applied data

A Landsat 9 image (LC09_L2SP_172046_20231014_20231015_02_T1, US Geological Survey) was used in the analysis on a cloud-free date. Through a thorough review of current geological maps, close visual inspection, and analysis of processed Landsat data, as well as high spatial resolution imagery from Google Earth, we carefully produced reference data. In addition, extensive fieldwork was conducted along regularly planned traverses.

Image processing

Machine learning

Multivariate Adaptive Regression Spline (MARS) and Random Forest (RF) and algorithms were tested in this study because both provide a probability layer that indicates the

reliability of the classification pixel-by-pixel regarding the classes.

MARS is a nonparametric, robust algorithm that efficiently manages a large amount of input data and nonlinear relationships between the target and explanatory variables with no assumptions (FRIEDMAN, J.H. 1991). The feature space is split into regions based on knots, which define the boundaries of the piecewise linear basis functions that contribute to the overall prediction. Each basis function votes on a class for the data instances, and finally, the function with the majority votes is selected as the prediction. Probability calculation for classification tasks are similar to the procedure of logistic regression (logistic transformation to convert the continuous values to 0 and 1 probabilities), but the main difference is that the MARS, instead of using linear terms, calculates the weighted sum of the basic functions (FRIEDMAN, J.H. 1991; BOEHMKE, B. and GREENWELL, B.M. 2019, 2020). In the R implementation, the earth package (MILBORROW, S. *et al.* 2024), the 'degree' should be specified, which is the degree of interaction among the input variables, 'nprune' refers to the number of basic functions. The performance of MARS models is high; however, a grid search of hyper-parameters is important.

RF is a widely used and robust algorithm (BREIMAN, L. 2001), and its efficiency has been proven in several fields such as land cover mapping, soil science, and geology (BELGIU, M. and DRĂGUT, L. 2016; SHAHARE, Y.R. *et al.* 2024; SIMARMATA, N. *et al.* 2025). RF does not assume normal distribution, homoscedasticity, or multi-collinearity due to its calculation method, and classification is based on hundreds of decision trees (DTs) using randomly chosen data (36.8% subset of the training dataset) and variables. The number of trees (ntree) parameter is usually set between 100 and 500, and we used the default setting of the 'caret' package (KUHN, M. 2022), which is 500. The number of variables (mtry) is chosen at each split of a single DT, the default is the square root of the number of all variables, and hyper-parameter tuning testing can be tested between 1:20.

Models were developed and conducted in R 4.4.2 (R Core Team, 2024) with the 'caret' package (KUHN, M. 2022). Both models resulted in two outputs: prediction of the classes (classified map) and calculation of the related probabilities (probability map). Probabilities were calculated by classes, but in the analysis, we used only the maximum values, i.e. instead of having six values (for the six classes) with the related probabilities in six raster layers, only the highest values were extracted to a single raster layer. It was important, because the maximums determined the resulting classified output, and we were able to pair and evaluate the classes with the probabilities by pixels: for six classes 16.67 percent ($100/6 = 16.66$) of maximum probability was enough to classify a pixel, whereas the maximum was 100 percent.

Accuracy assessment

Model testing is a crucial step in all predictions (BUI, D.H. and MUCSI, L. 2022). We used our previously developed module, programmed for an automated accuracy assessment, the Classification Assessment Tool (SZABÓ, Sz. et al. 2024), which calculates accuracies using advanced solutions by taking random subsamples from the entire testing dataset based on a predefined ratio obtained from the testing data (0–1) and the number of repetitions of random sampling. We applied 0.6 for the fraction (60% of data were used at a time with stratified random sampling), and for repetitions, we applied 10. Boxplot diagrams were used to visualise the differences among the classes. The following class-level metrics were calculated: Precision (or User's Accuracy, UA), Sensitivity (Producer's Accuracy, PA) (CONGALTON, R.G. 1991; BARSÍ, Á. et al. 2018), Specificity (True Negative Rate), F1-scores (or Dice Similarity Coefficient), Jaccard Index (or Intersection over Union, IOU) (WILLEM, 2017; GRANDINI, M. et al. 2020), and Matthews correlation coefficient (MCC) (CAO, C. et al. 2020; CHICCO, D. and JURMAN, G. 2020).

Pseudo-labelling and statistical evaluation

For pseudo-labelling, users must choose a probability map based on an accuracy assessment (e.g. the highest accuracy). A threshold value should be set to define pixels with a minimum probability to delineate the area where the newly labelled classes will be collected. Although the threshold can be between 1 and 100 percent, only higher values (e.g. 0.9 [$> 90\%$]) are useful; accordingly, we chose 95 percent. This step assigned the relating area to the probability maps. We selected 1000 spatially random data points from the assigned area as PL-data (abbreviated as PL1000), involved in the new training phase, merged with the original training data; possible duplicates were removed. Next, the classification step was repeated with an accuracy assessment.

Furthermore, we compared the class-level accuracy metrics (independent variables: Precision, Sensitivity, Specificity, MCC, F1, IOU) of the original maps with the map where the model was trained with the largest number (1000) of pseudo-labelled, resampled data (PL1000) (i.e. input datasets as dependent variables). A multivariate method, Hotelling's T-squared test, was used to test H_0 (group means for all independent variables were equal). The analysis was conducted with R 4.4.2 with the Hotelling package (CURRAN, J. and HERSH, T. 2012). Besides the p-values, effect sizes of partial η^2 and Mahalanobis Distance Squared (D^2) were also determined to express the magnitude of the differences between the two values of the dependent variable. For partial η^2 , 0.01–0.06 is considered as small, 0.06–0.14 as medium, > 0.14 as large effect; for D^2 , 0.25–0.50 is considered as small, 0.50–1.00 as medium, and > 1.00 as large effect (COHEN, J. 2013; MATCHARASHVILI, T. et al. 2019; SHAKER, A. 2023).

Maps produced with the original training and PL1000 data were compared using cross-tabulation and quantified by cross-entropy and visual analysis. Cross-entropy is a robust index for identifying hotspot areas of change (the higher the value, the larger the

change) (SHIM, J.W. 2024). Values below the upper quartile were blanked to enhance the relevant differences between the two maps, and the differences were quantified in comparison (agreement) tables. The two maps were also compared using the Interspersion and Juxtaposition Index (IJI), which showed the isolation of the intermixing of patches (i.e. rock types) (MEAD, R.A. *et al.* 1981). Cross-entropy was determined using the 'spatialEco' package (EVANS, J.S. *et al.* 2023), and IJI with the 'landscapemetrics' package (HESSELBARTH, M.H.K. *et al.* 2025).

We also performed a difference analysis between the original and PL1000 maps, focusing directly on changes and probabilities. We determined the probabilities of the classifications and the relationship between the accuracy metrics and probabilities at the class level by rock type. We focused on the areas where the classification was different in the two approaches, and investigated the probability of the pairs (e.g. in the original approach, a pixel was "art", and in the PL1000 it was "WDi"). Finally, we compared the F1-scores and mean probabilities by rock type using Spearman correlation.

Results

Geological maps with original training data

The MARS and RF algorithms provided seemingly similar maps of rock types, but there were also significant differences. The main

difference was in the case of WDi: MARS considerably overestimated WDi and underestimated all the other types (Table 1). Considering the possible occurrence of WDi, the RF model was more reliable, as MARS indicated the deposits at irrelevant locations as well (NW and NE corners of the area, Figure 2).

However, the class-level accuracy metrics showed different results: WDi had the best performance with MARS (Figure 3). In the case of other rock types, the accuracies were similar (or at least slightly, 2–3%, better with the RF), and the RF had a narrower range based on the repetitions of the testing procedure, that is, it acted more reliably with the existing testing data.

Classification accuracies and probabilities

Regarding the probabilities, maps showed that MARS was supposed to be more accurate as 371.56 km² of the area had > 99 percent probability (considering the maximum probabilities of all classes by pixels), whilst in the case of RF it was only 94.85 km² (Figure 4). Although the near-100 percent pixels dominated the MARS model, it did not perform better; only the probabilities were overoptimistic, and the accuracy measures were only slightly better than RF (Figure 5, a). The median (derived from the accuracy assessment data) differences between the two models in the case of the robust F1 and MCC did not demonstrate the superiority of any of the models: for art, marb, and ophi, the RF performed better than the MARS with 4.6–2.2–6.6 percent (MCC) and 4.0–1.8–5.9 percent (F1), whereas the MARS was shown to be a better model for gra, mtvo, and WDi with 2.9–1.4–12.2 percent (MCC) and 2.7–1.0–10.9 percent (F1).

Class level accuracy and the F1-score had no connection with the two classifiers; the Spearman correlation coefficient was 0.21 ($p = 0.51$, i.e. not significant). In half of the rock types, the RF performed better, and in the other half, the MARS performed better based on the F1-scores (Figure 5, b). Although the values theoretically followed a linear relationship,

Table 1. Estimated area of rock types by two classification models: Multiple Adaptive Regression Spline (MARS) and Random Forest (RF)

Rock type	Area based on	
	MARS model, km ²	RF model, km ²
art (artisanal)	54.09	58.98
gra (granit)	133.08	150.57
marb (marble)	47.56	60.64
mtvo (meta-volcanic)	54.93	64.81
ophi (ophiolite)	29.60	22.88
WDi (wadi deposits)	139.59	100.96

Source. Compiled by the authors.

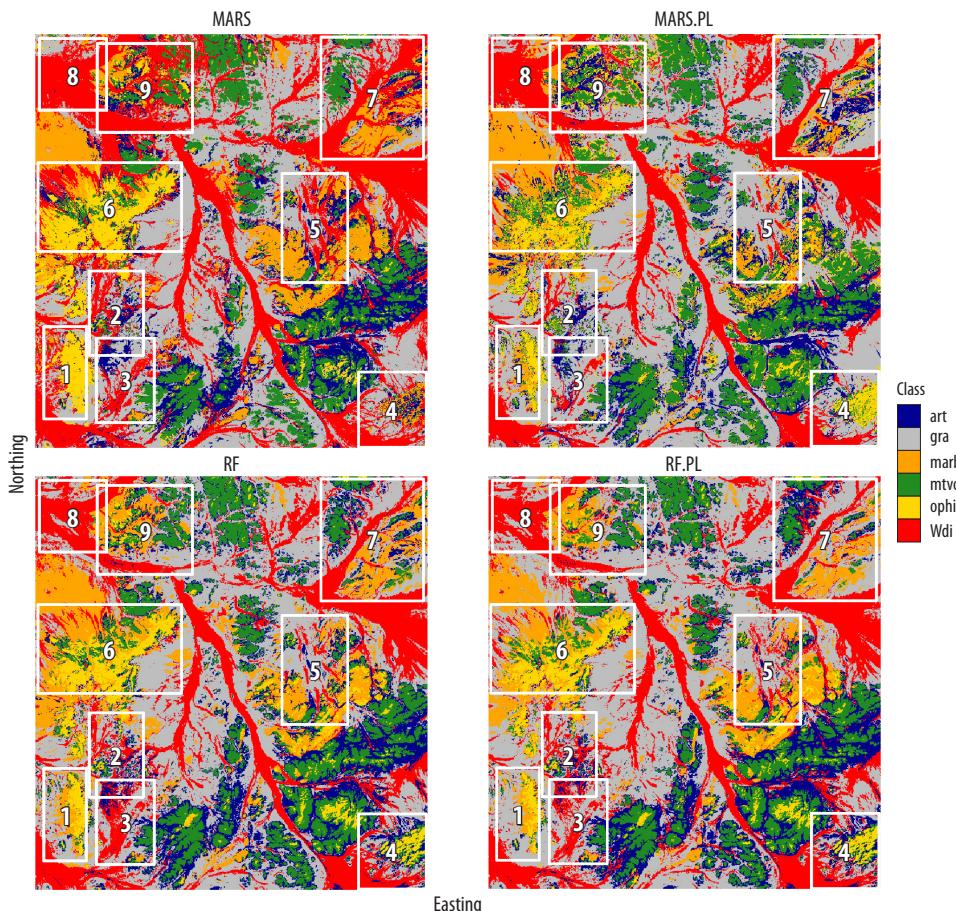


Fig. 2. Geological maps of the Multiple Adaptive Regression Spline (MARS), and Random Forest (RF) models and their pseudo-labelled (PL) versions. Rock types: art = artisanal; gra = granite; marb = marble; mtvo = metavolcanic; ophi = ophiolite; WDi = wadi deposits. (PL = 1000 pseudo-label data with 95% probability; white rectangles and numbers: evaluated areas). Source: Authors' own elaboration.

there were outliers in both models: in the case of $MARS_{art}$, the mean accuracy (F1) was one of the lowest (0.81), while the probability was 92 percent, and RF_{marb} had a large F1-score (0.98) with the lowest probability (58%).

Models trained with original and pseudo-labelling

We compared the maps produced with the original and PL1000 (95% probability) training datasets and found that the original training

set performed similarly to the case with an additional 1000 data points, at least on the level of accuracy metrics. Comparison matrices showed smaller agreements for MARS (art, marb, and ophi had < 50%, WDi 58%) and slight differences for the RF (all rock types had > 80% agreement, except marb, having only 65%).

Visual analysis brought controversial observations: although both the RF and MARS maps differed by 25 percent from the PL versions regarding the hot-spot changing areas (in addition to the simple expres-

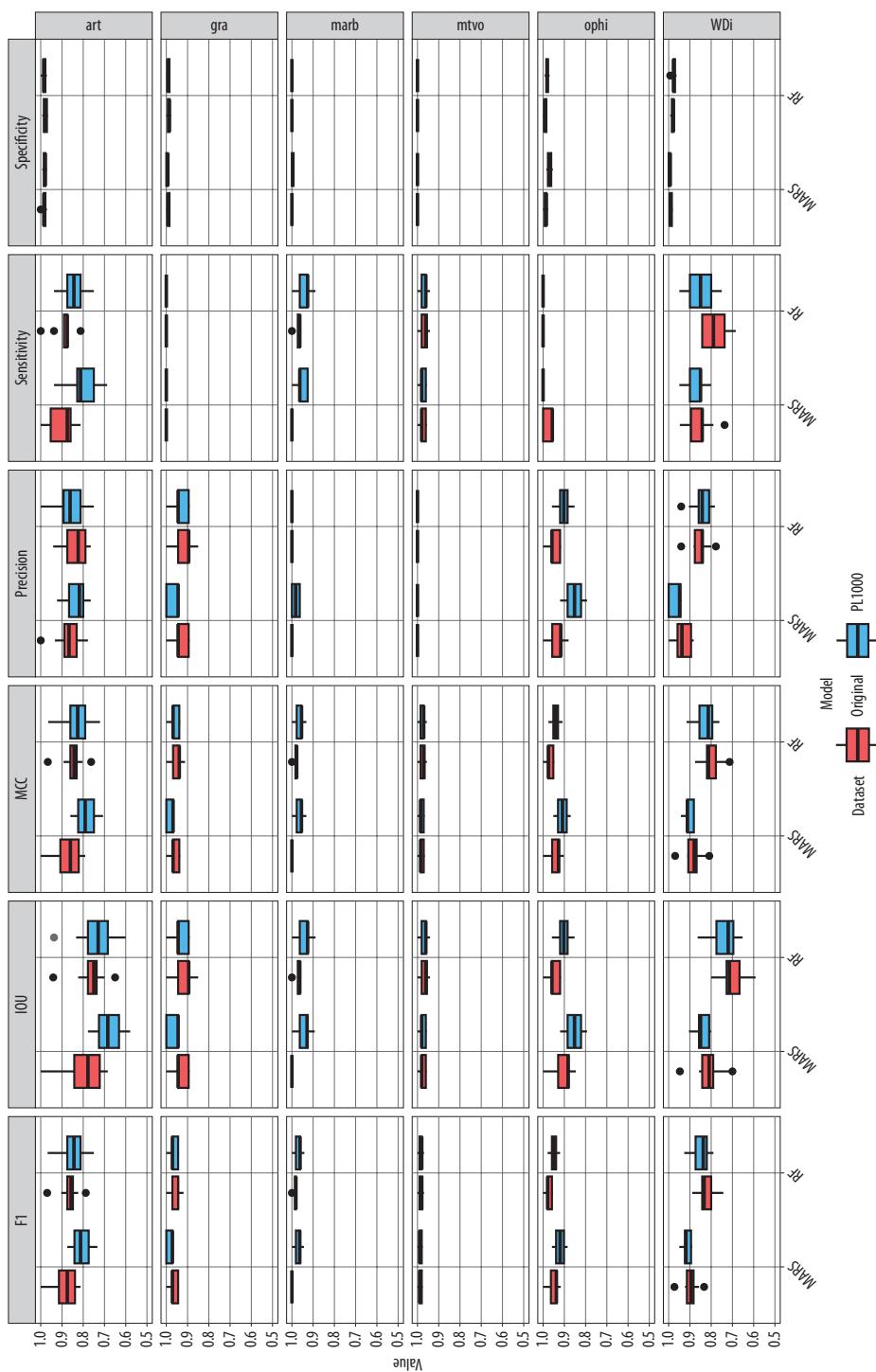


Fig. 3. Accuracy metrics of the MARS and RF classifications. Original = Models trained with the original training dataset; PL1000 = Models trained with an additional 1000 pseudo-labelled data sampled from 95% probability pixels; IOU = Intersection over Union; MCC = Matthews correlation coefficient. For rock types see Fig. 2. Source: Authors' own elaboration.

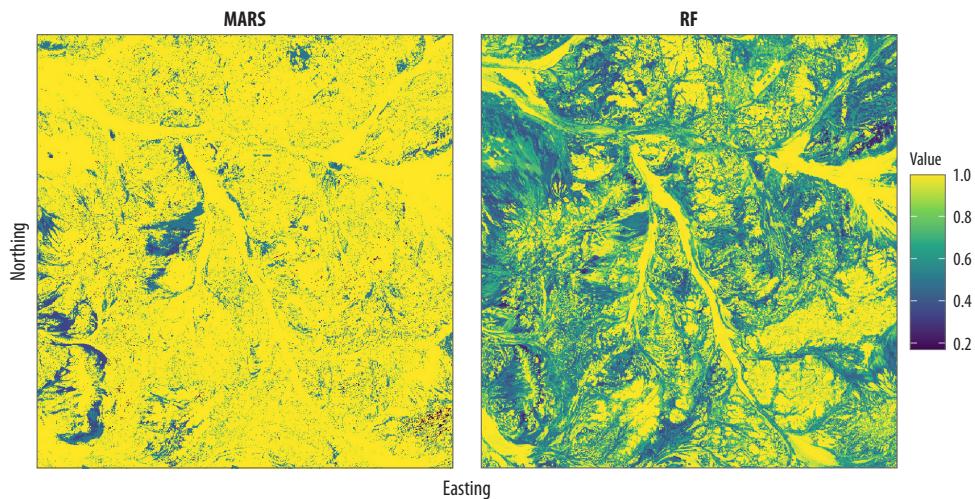


Fig. 4. Probability layers of classification models of the MARS and RF models, visualising the maximum probabilities. Source: Authors' own elaboration.

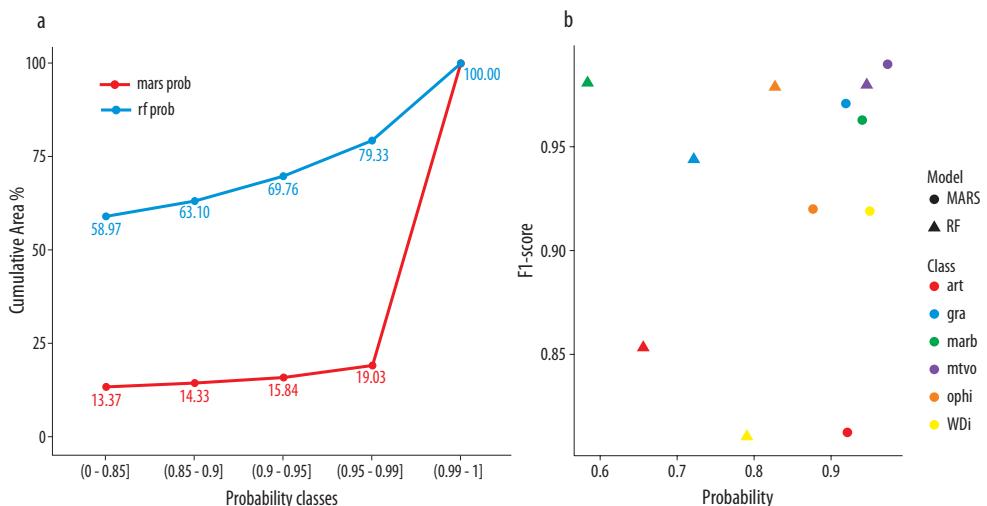


Fig. 5. Cumulative probabilities and accuracies of the MARS and RF models. Proportions of pixels by probability thresholds (a); Probabilities and F1-scores by rock type (b). For rock types see Fig. 2. Source: Authors' own elaboration.

sion of the area, the cross-entropy levels differed significantly), the changes caused by the additional data improved the maps (Table 2). In area 1, the PL versions outperformed the original classifications for both RF

and MARS; in area 2, RF.PL outperformed all other versions, and MARS.PL outperformed the original MARS. For area 3, MARS.PL provided the best outcome, but RF.PL was also better than the original version. In areas 4

Table 2. Summary of best models based in visual inspection of spatial patterns*

Area	Characteristic rock type	Rock type	Best model
1	ophi, WDi	generally	RF.PL and MARS.PL
2	gra, WDi	generally	RF.PL
3	gra, mtvo, WDi	generally	MARS.PL and RF.PL
4	art, ophi, WDi	generally	RF.PL
5	ophi, marb, gra	generally	RF.PL
6	marb, mtvo, ophi	ophi	RF.PL
6	marb, mtvo, ophi	marb	MARS.PL
7	art, marb, mtvo, WDi	mtvo	MARS and MARS.PL
7	art, marb, mtvo, WDi	WDi	RF.PL
8	gra, WDi	generally	RF.PL
9	art, marb, mtwo, WDi	art	RF.PL
9	art, marb, mtwo, WDi	WDi, mtvo	MARS.PL

*Area codes depicted in Figure 2. RF = Random Forest; MARS = Multiple Adaptive Regression Spline; PL = pseudo labelled; art = artisanal, gra = granite, marb = marble, mtvo = meta-volcanic, ophi = ophiolite, WDi = wadi deposits. Source. Compiled by the authors.

and 5, the RF.PL was the most reliable solution. For area 6, MARS was the least accurate, and RF.PL provided the best solution for ophi, and MARS.PL for marb. MARS and MARS.PL mapped mtvo better than the other models, and RF.PL mapped WDi the best in the case of area 7. Generally, RF.PL was the best for area 8. In case area 9, RF.PL had the best classification for art and MARS.PL for mtvo and WDi. Accordingly, the PL model versions performed

well, and based on the visual analysis, the spatial patterns were determined in several cases as the best outcomes.

Although cross-entropy showed that the hot-spot areas of differences were 25 percent for both model pairs (original vs. PL), in the case of RF, the values were higher, indicating that there was a difference in sparse pixels; that is, the level of mixing of standalone pixels had changed (Figure 6). IJI confirmed that

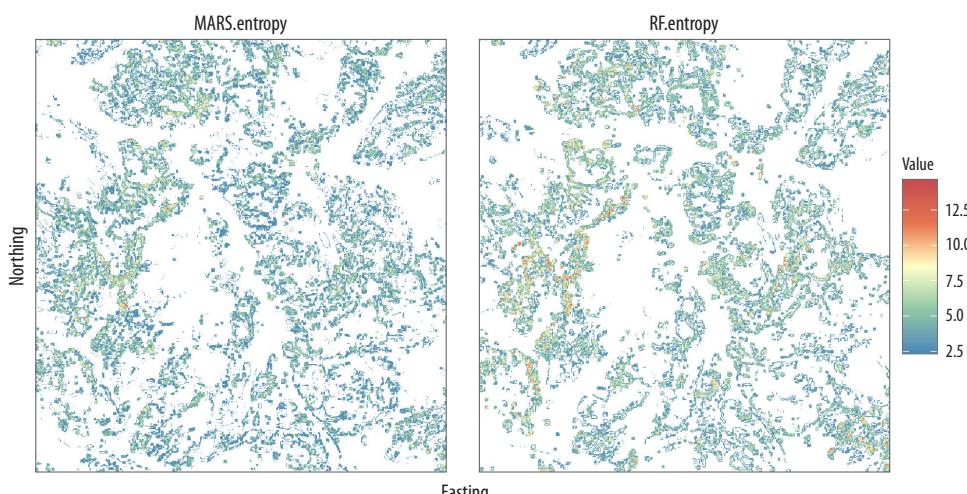


Fig. 6. Differences of the pseudo-labelled model (PL1000) to the original models using the cross-entropy of MARS and RF (values < 2.5, i.e. upper quartile, were blanked). Source: Authors' own elaboration.

interspersion became more uneven with the RF.PL with 2.0 percent (77.2) related to the RF (79.2), while in the case of MARS it was 86.2, and for MARS.PL it was 89.5.

The class-level evaluation of the probability levels in the two classification approaches showed that the classifiers reacted differently. In the case of MARS, the probabilities were initially high in the changing pixels of the rock-type pairs, and usually, the larger probabilities had lower SDs. A small decrease in the mean probability levels caused an increase in SD (*Figure 7, a*). The relationship between the mean probability and SDs was almost perfect (e.g. as a second-order polynomial), but the marb-WDi pair was an influential data point with a low mean and SD. Although the changes in probabilities were not significant according to the Wilcoxon test, they exceeded 10 percent in 14 of 30 cases (*Figure 7, b*). In 12 instances, the probability increased. The results were different for RF; typically, lower mean probabilities had lower SDs and followed a linear relationship (*Figure 8, a*). The probabilities of the original approach were lower than those of MARS, and the probabilities of the PL versions were even lower, with significant differences (*Figure 8, b*). The number of cases in which the change was > 10 percent was nine, and the number increased by only five. The magnitudes of the changes also differed; the maximum increase was 62 percent in the case of MARS, and 0.09 for RF (additionally, the largest change regardless of the direction of changes was only 0.27).

Multivariate comparison of the traditional and pseudo-labelling methods

Multivariate comparison of the MARS models

The MARS models performed better with PL1000 than with the original training data, except for three out of 36 cases (without specific rock types). The original data provided more accurate results, and among the three

exceptions, the mean differences were below 2 percent (mostly < 0.5%). The decreases in F1, IOU, and MCC were up to 18.8 percent, with a maximum increase of 1.8 percent. For RF models, PL1000 was not very useful; nevertheless, it provided better metrics in 17 out of 36 cases, particularly for gra and WDi rock types (*Figure 9*).

The difference between the models based on the original and PL1000 training data was significant according to the Hotelling test ($T^2 = 447.77$, $F[6, 593] = 74.63$, $p < 0.001$). $\eta^2 = 0.4302$ indicated a very large effect size and accounted for 43.02 percent of the multivariate variance by group differences in the independent variable. The large effect size was also justified by $D^2 = 0.746$. Both indicated a strong association between the grouping variables and the set of dependent variables. Effect sizes suggested that there were substantial differences in how the models performed across different datasets, considering all performance metrics simultaneously. Accordingly, the groups were well-separated in the multivariate space defined by the dependent variables.

Multivariate comparison of the RF models

For the RF models, the accuracy metrics showed varied results related to the MARS, and the PL1000 training dataset provided better accuracy measures than the original in 15 out of 36 cases. The increase was 5.5 percent and the maximum decrease was 4.8 percent (see *Figure 9*). The Hotelling test revealed a significant difference ($T^2 = 35.31$, $F[6, 593] = 5.89$, $p < 0.001$), but the effect sizes were not as large as in the case of MARS, indicating less pronounced differences between the groups. $\eta^2 = 0.056$ was close to the threshold for a medium effect (0.06), suggesting moderate significance of the group difference. $D^2 = 0.0588$ indicated a relatively small separation between the groups; accordingly, the difference was statistically significant, but the effect was not large.

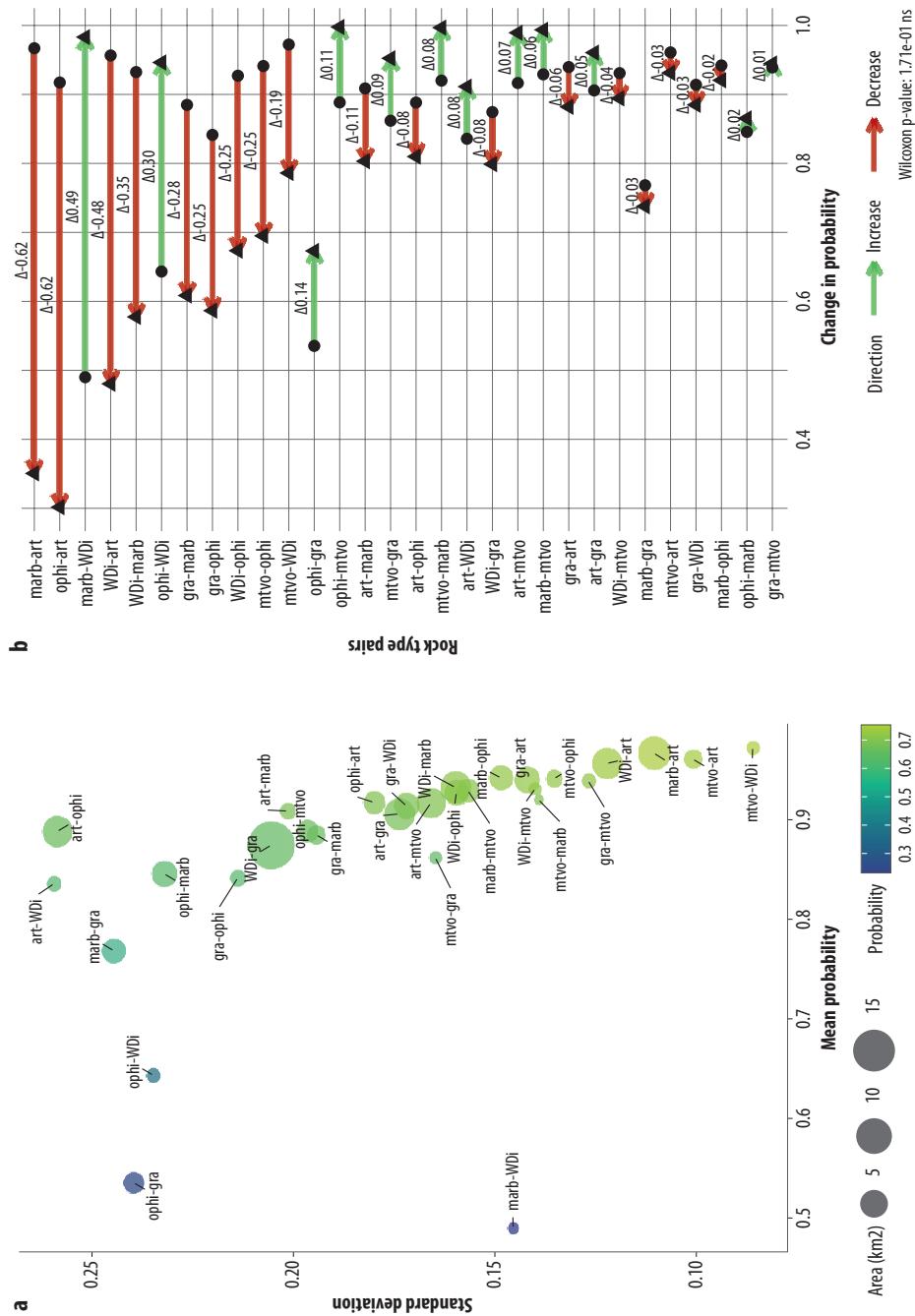


Fig. 7. Changes of rock type classifications in light of probabilities in the case of MARS classifier. Original probabilities by changing rock types (a); Magnitudes of probabilities of rock type pairs (b). For rock types see Fig. 2. Source: Authors' own elaboration.

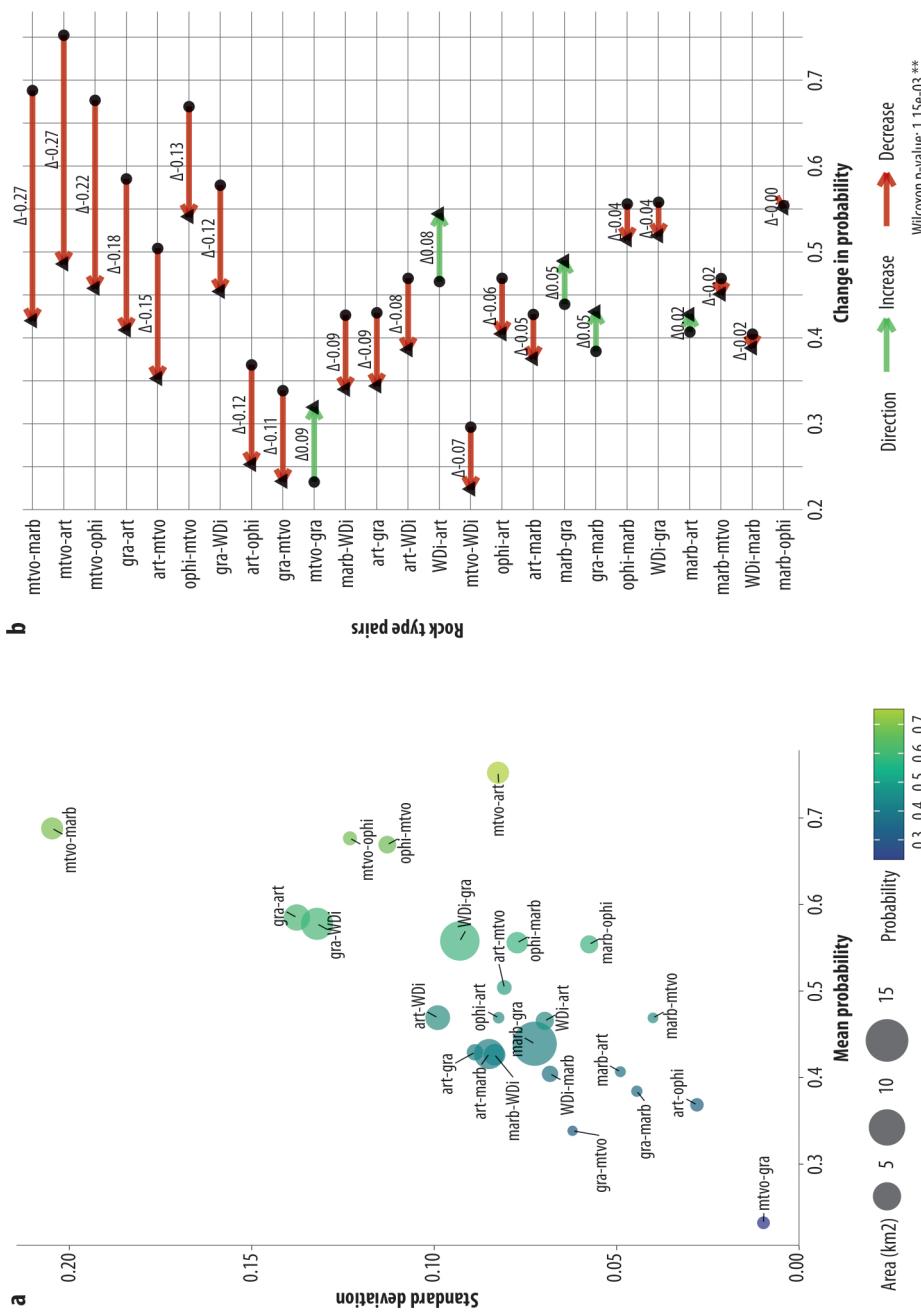


Fig. 8. Changes of rock type classifications in light of probabilities in case of RF classifier. Original probabilities by the changing rock types (a); Magnitudes of probabilities of the rock type pairs (b). For rock types see Fig. 2. *Source:* Authors' own elaboration.

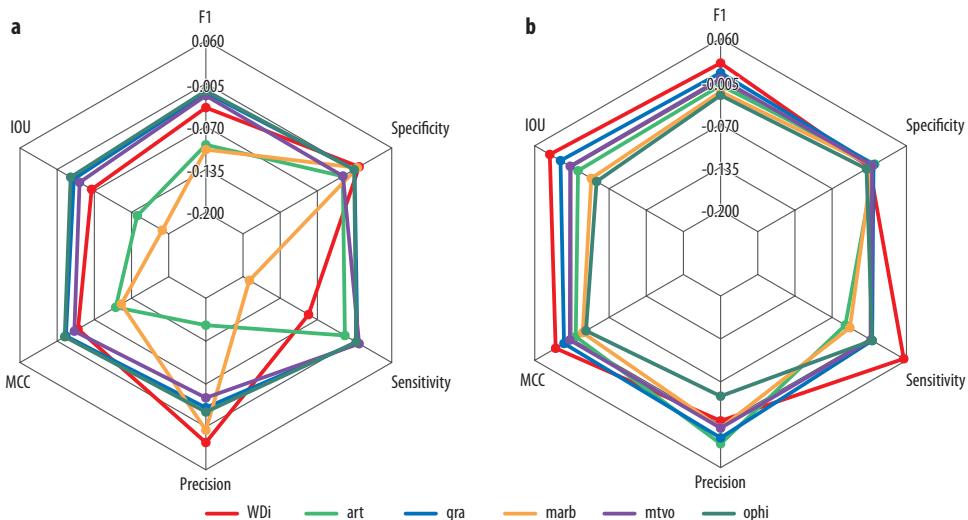


Fig. 9. Difference in model accuracies (Original – PL1000 training data) by rock type and accuracy metrics MARS (a), and RF (b). IOU = Intersection over Union; MCC = Matthews correlation coefficient. For rock types see Fig. 2. Source: Authors' own elaboration.

Discussion

Insights on classification algorithms

Studying the probability maps alone could lead to misjudging the real performance of the algorithms, as MARS provided unreliablely high values, and one could state that RF has poor accuracy. Although probabilities provided new insights, MARS indicated almost perfect reliability (i.e. > 99%) for 81 percent of the study area; however, this was not validated by the accuracy metrics, and RF was not worse than MARS. The OAs only slightly differed between the MARS and RF models; at the class level, there were differences in the misclassification. The reason for the high probabilities of MARS can amplify small spectral differences through its model calculation procedure, whereas RF naturally moderates its probabilities through vote averaging. The key point of this result is that, although MARS seems to be a better classifier based on the probabilities, RF

was not worse when considering the accuracy metrics. Even with class-level comparisons regarding the medians, MARS performed only 1–2 percent better than RF in half of the cases. The general issue with confirming the results is that MARS, unlike RF, SVM, XGB, or KNN, is not frequently used. QUIRÓS, E. *et al.* (2009) found that MARS was the best classifier related to Maximum Likelihood and Parallelepiped methods in 13 of 17 test zones in Spain. NAGPAL, A. and SINGH, V. (2019) used MARS and RF and found that RF was better in six out of 10 datasets. Based on the study by ROTIGLIANO, E. *et al.* (2018), MARS outperformed binary logistic regression for landslide identification, which is consistent with our finding. HARVEY, A.S. and FOTOPoulos, G. (2016) found that RF was the best classifier; however, in their study, MARS was not applied. Thus, although direct comparison is not a common practice, because MARS is not as popular as RF, we can conclude that both classifiers can generally perform well.

Common misclassifications were caused due to the complexities of geological features, high inter-class similarity, and difficulties presented by remote sensing data. Misclassifications are frequently encountered in lithological mapping, especially when employing this type of data (EL-OMAIRI, M.A. and GAROUANI, A.E. 2023). In our study, the rock type classification focused on marble, meta-volcanic, ophiolite, altered rock, and wadi deposit units. Discriminating these lithologies is inherently challenging because of their spectral similarities (OTHMAN, A.A. and GLOAGUEN, R. 2014). Misclassifications occurred primarily among granitoids, wadi deposits, and altered rocks owing to their heterogeneous nature and overlapping spectral characteristics. Specifically, wadi deposits are largely influenced by the weathering of granitoids, whereas altered rocks, often the result of traditional mining activities, are typically associated with these deposits. In contrast, marble, metavolcanic, and ophiolite units predominantly comprise iron (Fe) and magnesium (Mg) minerals, which are less prone to weathering and, thus, less likely to be misclassified. These observations are consistent with LIU, H. et al. (2021), who reported common misclassifications between similar lithologies such as granitoids and alluvial sediments owing to their spectral similarities.

Evaluation of pseudo-labelling

PL is generally regarded as a promising method for model-based predictions and focuses on geosciences (e.g. well-log classification: DUNHAM, M.W. et al. 2020; seismic facies classification: ASGHAR, S. et al. 2020). In remote sensing, PL also ensured better models, and several authors have proven its relevance (AYDAV, P.S.S. and MINZ, S. 2018; LI, J. et al. 2022). However, in our study, the outcomes were not always straightforward in terms of usefulness, as reflected by the F1 and MCC values (see *Figure 9*). We evaluated the results both quantitatively (based on accuracy metrics) and qualitatively (based on visual inspection), and the final judgement was not obvious.

A comparison of the original and PL approaches showed that 25 percent of the study area was affected by the changed training data, and the accuracy metrics were affected by the differences between the two approaches, although the improvement was not consistent across all rock types. Focusing on the areas where rock types were classified differently using the two approaches, we found that the consequences differed for the MARS and RF maps. The reason is the initially high probability of the MARS model, which was the opposite of the results experienced in case of RF: the areas of differently classified pixels had high probability with low SD in case of MARS where a small decrease of probability caused the increase of SD; while in case of RF followed a more common trend, having a linear relation with low SDs for low mean probabilities, and high SDs for high probabilities by rock pairs. The main observation was that the probabilities did not improve in the case of MARS and had significantly lower values with RF. Although the MARS was dominated by > 99 percent probabilities, in the areas of change, these values were lower, and the PL approach ensured a higher probability. In the case of RF, the probabilities were lower and could result in lower values with PL, but this did not mean that the performance would have been lower.

Multivariate analyses showed that using 1000 additional data with 95 percent probability changed the accuracy metrics according to the Hotelling test. Furthermore, visual analysis justified these differences. However, PL1000 resulted in conflicting results with several rock types; in these circumstances, PL1000 was useless, and training the model using the original data was more adequate. A summary of the visual analysis results showed that RF.PL was more useful than MARS. The PL was not as successful as the metrics suggested. This seems to be a contradiction, but the explanation can be simple: the amount of testing data was not sufficient to reveal the accuracy in detail. A geologically complex area, such as the study area, would require a higher amount of testing data, but testing only

validated spots is recommended to avoid false accuracy metrics (MEYER, H. and PEBESMA, E. 2022; GAO, M. et al. 2023). Accordingly, we did not use pseudo-labelled data for testing, but only for training; therefore, the testing points did not cover the entire area. Furthermore, spatial patterns cannot be captured using points, and visual inspection with specific geological knowledge is more important. The main question is, based on analogies, whether there are reasonable (i.e. geologically possible) occurrences of rock types. The artisanal small-scale mining exploits certain rock types (meta-volcanics), and occurrences can be excluded when they are identified on marble, ophiolite, and granite. Wadi deposits (WDi) also have typical areas where wadis can be found, corresponding to the topography.

Limitations

Training data is always the main question of all models, and in our case, we provided a possible approach by augmenting the available training data. Testing is another important point, and we had only a limited amount of data, 256 records that were collected during extensive fieldwork, and rock samples that were investigated and registered. This was sufficient to conduct an accuracy assessment; however, visual inspection of the spatial patterns was useful. Accordingly, further testing is needed with more testing data and other datasets where probabilities can be tested as well.

Conclusions

Our aim was to study the efficacy of pseudo-labelling in the geological mapping of an African area. We applied the RF and MARS classifiers, which provided classified maps and probability maps, and evaluated the results using an accuracy assessment and visual analysis. RF provided more reliable probability levels, whereas the MARS probability map was too optimistic; 85.7 percent of the classified pixels were above 90 percent

probability and 81 percent above 99 percent probability, which did not correspond to the accuracy assessment. MARS performed only slightly better than RF, and as the PL data were obtained within the 95 percent range of probability, PL was useful for MARS (with 1000 PL data of 95% probability). For RF, PL helped to obtain better accuracies, but its relevance was smaller owing to its robustness. Visual analysis enhanced the relevance of specific knowledge of the area by confirming or excluding the outcomes of the best and impossible occurrences of rock types. We revealed the relevance of PL in geological mapping for both RF and MARS, and the additional data helped to gain better maps. Based on class-level accuracy metrics, PL provided better maps in the case of MARS (33 out of 36) and fewer cases with RF (17 out of 36), considering 1000 additional samples of 95 percent probability.

Acknowledgements: The project was funded by the NKFI K138079, the framework of the Széchenyi Plan Plus program with the support of the RRF 2.3.1 21 2022 00008 project and the TKP2021-NKTA-32 has been implemented with the support provided by the National Research, Development and Innovation Fund of Hungary.

REFERENCES

ABDELKAREEM, M., HAMIMI, Z., EL-BIALY, M.Z., KHAMIS, H. and ABDEL WAHED, S.A. 2021. Integration of remote-sensing data for mapping lithological and structural features in the Esh El-Mallaha area, west Gulf of Suez, Egypt. *Arabian Journal of Geosciences* 14. (6): 497. <https://doi.org/10.1007/s12517-021-06791-3>

ABDELRAHMAN, S., IBRAHIM, M.A.E., LI, H., ABDELRAHMAN, E.M. and FAISAL, M. 2024. Geochemical characteristics of Neoproterozoic meta-volcanic rocks of Ariab Auriferous Volcanogenic Massive Sulfide deposit, Red Sea Hills, North-East Sudan. *Journal of African Earth Sciences* 216. 105305. <https://doi.org/10.1016/j.jafrearsci.2024.105305>

ABDELSALAM, M.G. and STERN, R.J. 1993. Tectonic evolution of the Nakasib suture, Red Sea Hills, Sudan: Evidence for a late Precambrian Wilson Cycle. *Journal of the Geological Society* 150. (2): 393–404. <https://doi.org/10.1144/gsjgs.150.2.0393>

ABDELSALAM, M.G., STERN, R.J. and BERHANE, W.G. 2000. Mapping gossans in arid regions with Landsat TM

and SIR-C images: The Beddaho Alteration Zone in northern Eritrea. *Journal of African Earth Sciences* 30. (4): 903–916. [https://doi.org/10.1016/S0899-5362\(00\)00059-2](https://doi.org/10.1016/S0899-5362(00)00059-2)

ABRAMS, M. and YAMAGUCHI, Y. 2019. Twenty years of ASTER contributions to lithological mapping and mineral exploration. *Remote Sensing* 11. (11): 1394. <https://doi.org/10.3390/rs11111394>

AMUSUK, D.J., HASHIM, M., POUR, A.B. and MUSA, S.I. 2016. Utilization of Landsat-8 data for lithological mapping of basement rocks of plateau state North Central Nigeria. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLII-4-W1, 335–337. TC IV
 International Conference on Geomatic and Geospatial Technology (GGT) 2016. Vol. XLII-4/W1. 3–5 October 2016, Kuala Lumpur, Malaysia. <https://doi.org/10.5194/isprs-archives-XLII-4-W1-335-2016>

ASGHAR, S., CHOI, J., YOON, D. and BYUN, J. 2020. Spatial pseudo-labelling for semi-supervised facies classification. *Journal of Petroleum Science and Engineering* 195. 107834. <https://doi.org/10.1016/j.petrol.2020.107834>

AYDAN, P.S.S. and MINZ, S. 2018. Classification of hyperspectral images using self-training and a pseudo-validation set. *Remote Sensing Letters* 9. (11): 1109–1117. <https://doi.org/10.1080/2150704X.2018.1511932>

BACHRI, I., HAKDAOUI, M., RAJI, M., TEODORO, A.C. and BENBOUZIANE, A. 2019. Machine learning algorithms for automatic lithological mapping using remote sensing data: A case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. *ISPRS International Journal of Geo-Information* 8. (6): 1–20. <https://doi.org/10.3390/ijgi8060248>

BARSI, Á., KUGLER, Zs., LÁSZLÓ, I., SZABÓ, Gy. and ABDULMUTALIB, H.M. 2018. Accuracy dimensions in remote sensing. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences* XLII-3. 61–67. <https://doi.org/10.5194/isprs-archives-XLII-3-61-2018>

BELGIU, M. and DRĂGĂUȚ, L. 2016. Random forest in remote sensing: A review of applications and future directions. *ISPRS Journal of Photogrammetry and Remote Sensing* 114. 24–31. <https://doi.org/10.1016/j.isprsjprs.2016.01.011>

BOEHMKE, B. and GREENWELL, B.M. 2019. *Hands-On Machine Learning with R*. London, Chapman and Hall/ CRC. <https://doi.org/10.1201/9780367816377>

BOEHMKE, B. and GREENWELL, B.M. 2020. *Hands-On Machine Learning with R*. London, Chapman and Hall/ CRC. <https://bradleyboehmke.github.io/HOML/>

BREIMAN, L. 2001. Random forests. *Machine Learning* 45. (1): 5–32. <https://doi.org/10.1023/A:1010933404324>

BUI, D.H. and MUCSI, L. 2022. Predicting the future land-use change and evaluating the change in landscape pattern in Binh Duong province, Vietnam. *Hungarian Geographical Bulletin* 71. (4): 349–364. <https://doi.org/10.15201/hungeobull.71.4.3>

CAO, C., CHICCO, D. and HOFFMAN, M.M. 2020. *The MCC-F1 Curve: A Performance Evaluation Technique for Binary Classification*. arXiv:2006.11278, arXiv. <https://doi.org/10.48550/arXiv.2006.11278>

CHEN, Y., SUI, Y. and SHAYILAN, A. 2023. Constructing a high-performance self-training model based on support vector classifiers to detect gold mineralization-related geochemical anomalies for gold exploration targeting. *Ore Geology Reviews* 153. 105265. <https://doi.org/10.1016/j.oregeorev.2022.105265>

CHICCO, D. and JURMAN, G. 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. *BMC Genomics* 21. (6): <https://doi.org/10.1186/s12864-019-6413-7>

COHEN, J. 2013. *Statistical Power Analysis for the Behavioural Sciences*. 2nd edition. London, Routledge. <https://doi.org/10.4324/9780203771587>

COLLINS, L., MCCARTHY, G., MELLOR, A., NEWELL, G. and SMITH, L. 2020. Training data requirements for fire severity mapping using Landsat imagery and random forest. *Remote Sensing of Environment* 245. 111839. <https://doi.org/10.1016/j.rse.2020.111839>

CONGALTON, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. *Remote Sensing of Environment* 37. (1): 35–46. [https://doi.org/10.1016/0034-4257\(91\)90048-B](https://doi.org/10.1016/0034-4257(91)90048-B)

CRUZ, C., MCGUINNESS, K., PERRIN, P.M., O'CONNELL, J., MARTIN, J.R. and CONNOLLY, J. 2023. Improving the mapping of coastal invasive species using UAV imagery and deep learning. *International Journal of Remote Sensing* 44. (18): 5713–5735. <https://doi.org/10.1080/01431161.2023.2251186>

CURRAN, J. and HERSH, T. 2012. *Hotelling: Hotelling's T² Test and Variants*. p. 1.0–8 (Dataset). <https://doi.org/10.32614/CRAN.package.Hotelling>

DUNHAM, M.W., MALCOLM, A. and KIM WELFORD, J. 2020. Improved well-log classification using semi-supervised label propagation and self-training, with comparisons to popular supervised algorithms. *Geophysics* 85. (1): 1–15. <https://doi.org/10.1190/geo2019-0238.1>

EL-OMAIRI, M.A. and GAROUANI, A.E. 2023. A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data. *Heliyon* 9. (9): <https://doi.org/10.1016/j.heliyon.2023.e20168>

EVANS, J.S., MURPHY, M.A. and RAM, K. 2023. *spatialEco: Spatial Analysis and Modelling Utilities*. Version 2.0–2. (Computer software). <https://cran.r-project.org/web/packages/spatialEco/index.html>

FOODY, G.M. 2009. Sample size determination for image classification accuracy assessment and comparison. *International Journal of Remote Sensing* 30. (20): 5273–5291. <https://doi.org/10.1080/01431160903130937>

FRIEDMAN, J.H. 1991. Multivariate adaptive regression splines. *The Annals of Statistics* 19. (1): 1–67. <https://doi.org/10.1214/aos/1176347963>

GAO, M., WANG, G., XU, Y., MOU, N., HUANG, L., ZUO, L. and WU, R. 2023. 3D mineral exploration Cu-Zn targeting with multi-source geoscience datasets in the Weilasituo-bairendaba district, Inner Mongolia, China. *Frontiers in Earth Science* 11. <https://doi.org/10.3389/feart.2023.1102640>

GRANDINI, M., BAGLI, E. and VISANI, G. 2020. *Metrics for Multi-Class Classification: An Overview*. arXiv:2008.05756, arXiv. <https://doi.org/10.48550/arXiv.2008.05756>

HAMIMI, Z., FOWLER, A.-R., COLLINS, A., LIÉGEOIS, J.-P., ABDELSALAM, M. and ABD EL-WAHED, M. 2021. *The Geology of the Arabian-Nubian Shield*. Regional Geology Reviews. Cham, Springer Nature. <https://doi.org/10.1007/978-3-030-72995-0>

HAN, W., ZHANG, X., WANG, Y., WANG, L., HUANG, X., LI, J., WANG, S., CHEN, W., LI, X., FENG, R., FAN, R., ZHANG, X. and WANG, Y. 2023. A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities. *ISPRS Journal of Photogrammetry and Remote Sensing* 202. 87–113. <https://doi.org/10.1016/j.isprsjprs.2023.05.032>

HARVEY, A.S. and FOTOPoulos, G. 2016. Geological mapping using machine learning algorithms. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences* XLI-B8. 423–430. XXIII ISPRS Congress, Commission VIII, Volume XLI-B8. 19 July 2016, Prague, Czech Republic. <https://doi.org/10.5194/isprsarchives-XLI-B8-423-2016>

HESSELBARTH, M.H.K., SCIAINI, M., NOWOSAD, J. and HANS, S. 2025. *Landscape Metrics for Categorical Map Patterns*. p. 2.2.1 (Dataset). <https://doi.org/10.32614/CRAN.package.landscapemetrics>

JAMES, G., WITTEN, D., HASTIE, T. and TIBSHIRANI, R. 2013. *An Introduction to Statistical Learning: With Applications in R*. 1st edition. Corr. 7th printing 2017 edition. Cham, Springer.

KIM, E., MOON, J., SHIM, J. and HWANG, E. 2024. Predicting invasive species distributions using incremental ensemble-based pseudo-labelling. *Ecological Informatics* 79. 102407. <https://doi.org/10.1016/j.ecoinf.2023.102407>

KUHN, M. 2022. *caret: Classification and Regression Training*. <https://CRAN.R-project.org/package=caret>

LI, C., WANG, J., WANG, L., HU, L. and GONG, P. 2014. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. *Remote Sensing* 6. (2): 964–983. <https://doi.org/10.3390/rs6020964>

LI, J., SUN, B., LI, S. and KANG, X. 2022. Semi-supervised semantic segmentation of remote sensing images with consistency self-training. *IEEE Transactions on Geoscience and Remote Sensing* 60. 1–11. <https://doi.org/10.1109/TGRS.2021.3134277>

LÍKÓ, Sz.B., HOLB, I.J., OLÁH, V., BURAI, P. and SZABÓ, Sz. 2024. Deep learning-based training data augmentation combined with post-classification improves the classification accuracy for dominant and scattered invasive forest tree species. *Remote Sensing in Ecology and Conservation* 10. (2): 203–219. <https://doi.org/10.1002/rse2.365>

LIU, H., WU, K., XU, H. and XU, Y. 2021. Lithology classification using TASI thermal infrared hyperspectral data with convolutional neural networks. *Remote Sensing* 13. (16): 3117. <https://doi.org/10.3390/rs13163117>

LUQUE, A., CARRASCO, A., MARTÍN, A. and DE LAS HERAS, A. 2019. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. *Pattern Recognition* 91. 216–231. <https://doi.org/10.1016/j.patcog.2019.02.023>

MATCHARASHVILI, T., CZECHOWSKI, Z. and ZHUKOVA, N. 2019. Mahalanobis distance-based recognition of changes in the dynamics of a seismic process. *Nonlinear Processes in Geophysics* 26. (3): 291–305. <https://doi.org/10.5194/npg-26-291-2019>

MAXWELL, A.E., WARNER, T.A. and FANG, F. 2018. Implementation of machine-learning classification in remote sensing: An applied review. *International Journal of Remote Sensing*. 39. (9): 2784–2817. <https://doi.org/10.1080/01431161.2018.1433343>

MEAD, R.A., SHARIK, T.L., PRISLEY, S.P. and HEINEN, J.T. 1981. A computerized spatial analysis system for assessing wildlife habitat from vegetation maps. *Canadian Journal of Remote Sensing* 7. (1): 34–40. <https://doi.org/10.1080/07038992.1981.10855007>

MEYER, H. and PEBESMA, E. 2022. Machine learning-based global maps of ecological variables and the challenge of assessing them. *Nature Communications* 13. (1): 2208. <https://doi.org/10.1038/s41467-022-29838-9>

MILBROW, S., HASTIE, T. and TIBSHIRANI, R. 2024. *Package 'earth': Multivariate Adaptive Regression Splines*. CRAN. <https://doi.org/10.32614/CRAN.package.earth>

NAGPAL, A. and SINGH, V. 2019. Coupling multivariate adaptive regression spline (MARS) and random forest (RF): A hybrid feature selection method in action. *International Journal of Healthcare Information Systems and Informatics* 14. (1): 1–18. <https://doi.org/10.4018/IJHISI.2019010101>

NAIR, P., SRIVASTAVA, D.K. and BHATNAGAR, R. 2023. Application of machine learning in mineral mapping using remote sensing. In *IOT with Smart Systems*. Eds.: CHOURDIE, J., MAHALLE, P., PERUMAL, T. and JOSHI, A., Cham, Springer Nature, 27–35. https://doi.org/10.1007/978-981-19-3575-6_4

OTHMAN, A.A. and GLOAGUEN, R. 2014. Improving lithological mapping by SVM classification of spectral and morphological features: The discovery of a new chromite body in the Mawat Ophiolite Complex (Kurdistan, NE Iraq). *Remote Sensing* 6. (8): 30. <https://doi.org/10.3390/rs608687>

QUIRÓS, E., FELICÍSIMO, Á.M. and CUARTERO, A. 2009. Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images. *Sensors* 9. (11): 9011–9028. <https://doi.org/10.3390/s91109011>

R Core Team, 2024. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. <https://www.R-project.org/>

ROTIGLIANO, E., MARTINELLO, C., AGNESI, V. and CONOSCENTI, C. 2018. Evaluation of debris flow susceptibility in El Salvador (CA): A comparison between multivariate adaptive regression splines

(MARS) and binary logistic regression (BLR). *Hungarian Geographical Bulletin* 67. (4): 361–373. <https://doi.org/10.15201/hungeobull.67.4.5>

SHAHARE, Y.R., SINGH, M.P., SINGH, S.P., SINGH, P. and DIWAKAR, M. 2024. ASUR: Agriculture soil fertility assessment using random forest classifier and regressor. *Procedia Computer Science* 235. 1732–1741. <https://doi.org/10.1016/j.procs.2024.04.164>

SHAKER, A. 2023. Chapter 6 Effect sizes | STM1001 Topic 7: One-way ANOVA. https://bookdown.org/a_shaker/STM1001_Topic_7/6-effect-sizes.html

SHIM, J.W. 2024. Enhancing cross entropy with a linearly adaptive loss function for optimized classification performance. *Scientific Reports* 14. (1): 27405. <https://doi.org/10.1038/s41598-024-78858-6>

SHIRMARD, H., FARAHBAKHSH, E., HEIDARI, E., BEIRANVAND POUR, A., PRADHAN, B., MÜLLER, D. and CHANDRA, R. 2022. A comparative study of convolutional neural networks and conventional machine learning models for lithological mapping using remote sensing data. *Remote Sensing* 14. (4): 819. <https://doi.org/10.3390/rs14040819>

SIMARMATA, N., WIKANTIKA, K., TARIGAN, T.A., ALDYANSYAH, M., TOHIR, R.K., FAUZI, A.I. and FAUZIA, A.R. 2025. Comparison of random forest, gradient tree boosting, and classification and regression trees for mangrove cover change monitoring using Landsat imagery. *The Egyptian Journal of Remote Sensing and Space Sciences* 28. (1): 138–150. <https://doi.org/10.1016/j.ejrs.2025.02.002>

SZABÓ, SZ., HOLB, I.J., ABRHA-MOLNÁR, V.É., SZATMÁRI, G., SINGH, S.K. and ABRHA, D. 2024. Classification Assessment Tool: A program to measure the uncertainty of classification models in terms of class-level metrics. *Applied Soft Computing* 155. 111468. <https://doi.org/10.1016/j.asoc.2024.111468>

SZANIAWSKA, L. 2018. Lithological maps visualizing the achievements of geological sciences in the first half of the 19th century. *Polish Cartographical Review* 50. (2): 87–109. <https://doi.org/10.2478/pcr-2018-0006>

Willem, 2017 – [https://stats.stackexchange.com/q/276144](https://stats.stackexchange.com/users/159052/willem, 2017, F1/Dice-Score vs IoU. https://stats.stackexchange.com/q/276144)

ZHANG, L., YANG, L., MA, T., SHEN, F., CAI, Y. and ZHOU, C. 2021. A self-training semi-supervised machine learning method for predictive mapping of soil classes with limited sample data. *Geoderma* 384. 114809. <https://doi.org/10.1016/j.geoderma.2020.114809>

How extreme precipitation in 2010 altered urban heat island behaviour in Debrecen

ELEMÉR LÁSZLÓ¹, CSABA RÁCZ², ATTILA CSABA DOBOS² and PÉTER SALAVEC³

Abstract

Earlier examinations of the urban heat island (UHI) characteristics in Debrecen revealed unusual behaviour in the years 2010 and 2011, while the following years exhibited characteristics expected according to the literature. The year 2010 in Hungary was characterised by anomalously high precipitation with several extreme events, including two Mediterranean cyclones in the spring, numerous convective systems in the summer, and several slow-moving frontal passages in the autumn. These led – both country-wide and in Debrecen – to record-high annual precipitation, and significant deviations in other meteorological elements like soil moisture and near-surface humidity characteristics. It is possible that the development of the urban heat island (UHI) in Debrecen was also affected. This study investigates the unusual behaviour of the UHI in 2010 and early 2011, focusing on how the excessive precipitation influenced the urban climate. Data from 2010 to 2015 were analysed, originally including temperature, humidity, wind, precipitation, cloud cover and soil moisture measurements from a city and a rural station. The current analysis shows that the high precipitation caused significant changes in soil moisture and relative humidity in the rural area, possibly leading to an increased latent heat flux at the expense of sensible heat. This might have reduced the UHI intensity during both day-time and night-time. With this, the study proposes a potential explanation for how long-term high precipitation can have lasting effects on UHI development, which may contribute to a deeper understanding of the interactions between extreme weather events and urban climate dynamics, which is crucial for urban planning and climate adaptation strategies in the context of climate change.

Keywords: urban heat island, precipitation anomaly, Debrecen, extreme weather, climate dynamics, energy balance

Received September 2024, accepted July 2025.

Introduction

Urbanization and climate change are two major factors influencing local and regional weather patterns, particularly in urban environments. One of the most studied phenomena in urban climatology is the Urban Heat Island (UHI) effect, where urban areas exhibit higher air temperature than their rural surroundings, primarily due to modifications in surface characteristics such as reduced veg-

itation, increased impermeable surfaces, and altered energy balance (OKE, T.R. 1973). This effect is especially pronounced during clear, calm weather conditions, but its behaviour under extreme weather, such as excessive precipitation, remains less understood.

The year 2010 presented an opportunity to investigate the effects of extreme precipitation on UHI behaviour in Debrecen, Hungary. The city, located on the Great Hungarian Plain, experienced significantly

¹ Isotope Climatology and Environmental Research Centre, HUN-REN Institute for Nuclear Research (ATOMKI). Bem tér 18/C, H-4026 Debrecen, Hungary. Corresponding author's e-mail: laszlo.elemer@atomki.hu

² Agrometeorological and Agro-ecological Monitoring Centre, Institutes for Agricultural Research and Education Farm, University of Debrecen. Böszörményi út 138, H-4032 Debrecen, Hungary.

³ Unit of Aviation Meteorology, HungaroMet Zrt. Kitaibel Pál utca 1, H-1024 Budapest, Hungary.

higher than average rainfall throughout the year, with some months recording up to three times the normal precipitation (MÓRING, A. 2011). This raised the question of how such excessive rainfall might influence UHI development, given that high precipitation events can alter urban and rural environments' thermal and moisture characteristics.

While the UHI phenomenon has been widely documented, most studies focus on its development during heatwaves or stable, dry weather conditions, and specific impacts of extreme weather, for example a long-lasting high-precipitation event, on UHI dynamics remain largely unexplored. This study aims to address this gap by analysing the unusual UHI behaviour observed in Debrecen during the extreme precipitation year of 2010. The focus is on understanding how excessive rainfall affects the energy balance in both urban and rural areas and how this, in turn, influences UHI development. We compare air temperature, humidity, cloud cover and wind data from 2010 to 2015 from two meteorological stations: one in the urban centre of Debrecen and the other in a nearby rural location. We aim to provide some insights into the mechanism behind UHI modulation in response to a prolonged high-precipitation event.

Ultimately, this research contributes to the broader understanding of urban climatology by highlighting the role of extreme weather in shaping UHI dynamics. The findings are particularly relevant in the context of climate change, where extreme weather events, such as heavy rainfall, are projected to become more frequent and intense. Understanding the interplay between urbanisation, precipitation, and UHI can help inform urban planning and climate adaptation strategists, ensuring that cities are better prepared to cope with the impacts of a changing climate.

Literature review

While the UHI phenomenon has been widely documented in various urban settings, most studies focus on its development during

heatwaves or stable, dry weather conditions (SZYMANOWSKI, M. 2005; KOVÁCS, A. and UNGER, J. 2014; UNGER, J. et al. 2017). In such cases, urban areas experience enhanced heating due to the prevalence of heat-absorbing materials like concrete and asphalt, reduced vegetation, and lower evapotranspiration compared to rural areas (OKE, T.R. 2002). These factors contribute to a temperature contrast between the city and its surroundings, often peaking during the night when heat release from urban surfaces is slower (KŁYSIK, K. and FORTUNIAK, K. 1999). While the literature extensively discusses how UHI affects precipitation (e.g. HAN, J.-Y. et al. 2014; MARELLE, L. et al. 2020; ÖZTÜRK, S.P. et al. 2025), there is limited understanding of the case vice-versa, that is, how prolonged high-precipitation events influence UHI intensity and dynamics, especially when considering the energy balance in urban and rural areas.

In recent years, climate variability has caused a growing frequency of extreme weather events, including both heatwaves and heavy rainfall (BARTHOLY, J. and PONGRÁCZ, R. 2013). The year 2010 serves as an example of an extreme precipitation year in Hungary and much of Central Europe, where several significant rainfall events contributed to record-breaking annual precipitation totals. Among these events, two Mediterranean cyclones, named Zsófia and Angéla, were particularly impactful, bringing intense and prolonged periods of rainfall (UJVÁRY, K. 2010; TEKNÓS, L. 2012). These weather anomalies led to flooding in many areas and significantly altered local climatic conditions (SENEVIRANTE, S.I. et al. 2010; HUSAIN, S.Z. et al. 2014; VEREECKEN, H. et al. 2022), including urban areas such as Debrecen.

Typically, in rural areas, heavy rainfall increases soil moisture, leading to enhanced latent heat flux due to higher evapotranspiration rates, which in turn can reduce surface temperatures (ALTERMANN, M. et al. 2005). In urban areas, however, much of the precipitation is rapidly drained from the surface due to the prevalence of impermeable surfaces and storm water management systems (e.g. DOBAL, A. et al. 2024; KUBIAK-WÓJCICKA, K. et al. 2025),

meaning that the moisture content in the urban environment may not increase to the same extent as in rural areas. This discrepancy could lead to a modification of the UHI effect, as the thermal response of urban and rural areas to precipitation differs. Understanding these dynamics is critical for developing accurate models of urban climate and planning for the impacts of extreme weather events in an era of increasing climate variability.

Several studies have examined the relationship between UHI and weather patterns (MORRIS, C.J.G. and SIMMONDS, I. 2000; BERANOVÁ, R. and HUTH, R. 2005; HOFFMANN, P. and SCHLÜNYEN, K.H. 2013), but few have focused on the impact of prolonged precipitation on UHI intensity (LÁSZLÓ, E. and WEIDINGER, T. 2014; LÁSZLÓ, E. and SALAVEC, P. 2018). Research by SCHLÜNZEN, K.H. *et al.* (2010) highlights the regional differences in temperature and precipitation in metropolitan areas, suggesting that local climatic conditions can significantly influence UHI behaviour. Similarly, GEDZELMAN, S.D. *et al.* (2003) observed mesoscale variations in the UHI effect around New York City, showing that localised weather conditions can modulate the intensity of UHI. However, the specific impact of long-lasting high-precipitation weather on UHI dynamics, particularly in smaller cities like Debrecen, remains largely unexplored.

The UHI's general behaviour in Debrecen resembles those of other similar towns on plain areas without large water bodies in the vicinity (PENG, S. *et al.* 2012). Only a few slight differences were found which seem to express more-or-less unique features for Debrecen (SZEGEDI, S. 2000; KIRCSI, A. and SZEGEDI, S. 2003; SZEGEDI, S. and KIRCSI, A. 2003; SZEGEDI, S. *et al.* 2010; LÁSZLÓ, E. *et al.* 2016). These are reflected in our data as well, in the years from 2012 to 2015, when there were no modifying effects caused by either large precipitation or high soil water content.

General characteristics of absolute humidity difference between urban and rural areas is less frequently studied (KUTTLER, W. *et al.* 2007; SHERWOOD, S.C. *et al.* 2010). Due to convective transfer processes typical of the

summer half-year, this difference decreases following the afternoon maximum, as convection lifts moisture from the surface to higher layers of troposphere, hence, vapour pressure drops in the surface layers.

Soil moisture data can show how saturated the soil is, which determines the intensity of evaporation. As such, the energy balance can be largely different just by the difference in soil moisture content, while other meteorological elements are the same. For example, the latent heat flux can dominate the sensible heat flux when the soil is saturated. Around an urban environment, the different storage capacity of the urban and rural soils – for example, the existence of drainage systems in the town – causes differences in the modification of latent heat flux in an extreme precipitation event (STARKE, P. *et al.* 2010; HUANG, X. and SONG, J. 2023; Luo, Z. *et al.* 2023). With this, the urban heat island development is also affected (ALTERMANN, M. *et al.* 2005).

We will show that the characteristic behaviour of the UHI in Debrecen was different in the years 2010 and 2011, which is attributable to the permanent high precipitation and the long-lasting saturation of the soil with liquid water. Total precipitation in 2010 reached 964 mm at DVK and 994 mm at AMO. More than half of this was recorded during the period between May and September, causing inland floods around the town. For comparison, Hungarian Meteorological Service reported 546 mm average yearly sum in the period 1991 to 2020 in Debrecen.

Data and methods

The measurements, basis of the results detailed below, were carried out at two sites simultaneously: inside the city of Debrecen (DVK, LCZ-2) and 4.9 km to the northwest at the Agrometeorological Observatory near Kismacs (AMO, LCZ-D), at a distance of 1.8 km from the edge of the urban area (Figure 1). The difference between their elevation does not exceed 2 metres. Debrecen, populated by 200,000, is located in the Great Hungarian Plain inside the Carpathi-

Fig. 1. Location of Debrecen Urban Climate Station (DVK, bottom right) at the Institute for Nuclear Research (MTA ATOMKI) and the Agrometeorological Observatory (AMO) of the Centre for Precision Farming R&D Services, University of Debrecen (bottom left) within the satellite map of Debrecen (top). Source: Compiled by the authors.

an Basin at an elevation of 120 m above sea level (approx. N 47.5°, E 21.6°). The flat land and the lack of nearby large water bodies favour the development of an urban heat island (UHI).

The urban climate station (DVK) is situated in a densely built-up (78%) zone of Debrecen, within the area of the Institute for Nuclear Research (HUN-REN ATOMKI), 1 km to the north of the city centre. According to classification scheme of local climate zones (STEWART, I.D. and OKE, T.R. 2012), it is classified as LCZ-2

with rather compact, mid-rise buildings and scattered woody vegetation. Data collection was carried out with a Davis 6152 Vantage automatic weather station in the period between 1 January 2010 and 31 December 2015, with very few intermissions. Instruments have been placed at 2 m a.g.l., which meets the recommendations; data obtained during the measurement campaign will well represent the ambient climate (OKE, T.R. 2006). The type of the station is suitable for studies of urban climate as it is

equipped with adequate precision temperature (± 0.1 °C), humidity ($\pm 2\%$) and wind velocity (± 0.1 m/s) sensors.

As a reference, 10-min resolution and high precision data of the Agrometeorological Observatory (AMO) were used, representing the natural climate of the surrounding area (RÁCZ, Cs. et al. 2013).

Since both stations represent the local climate zone in which they are situated, the temperature of the DVK station subtracted from that of the AMO station serves as an appropriate measure of the intensity of urban heat island intensity.

UHI intensity is defined as the difference between the urban and rural temperatures. In our case, only one station was available in both areas, so the actual UHI intensity is defined as the difference $T_{DVK} - T_{AMO}$. However, this is a time series with a resolution of 10 minutes. Since the UHI exhibits a daily course, we define the following UHI intensity indices for each day:

- F-UHI: Full-day averaged UHI intensity (from 0 to 24 CET),
- D-UHI: Day-time averaged UHI intensity (from 5 to 18 CET),
- N-UHI: Night-time averaged UHI intensity (from 18 to 5 CET),
- M-UHI: Maximal daily UHI intensity.

The difference in relative humidity (RH) between the city and rural areas is less commonly studied (HAGE, K.D. 1975; ACKERMANN, B. 1987; UNGER, J. 1999; UNKAŠEVIĆ, M. et al. 2001). The main reason is the need for high-precision sensors, as RH measurements require a more complex technique than that of temperature. In addition, because of the dependence on temperature of relative humidity, differences in the values do not usually mean the same difference in the absolute amount of moisture. For this reason, it is more suitable to involve vapour pressure or other absolute humidity data to highlight absolute differences. Here, vapour pressure was calculated using the 10-min temperature and relative humidity data for both stations.

Measured data of soil moisture was available only from the Agrometeorological Observatory where two sensors measured soil moisture.

Both represent approximately the average of the uppermost 30 cm. The soil type is a typical calcareous chernozem. Normally, the volumetric soil moisture content lies around 20 percent, but it is mostly in the range of 15 to 30 percent. Values outside this interval occurs during extremely dry or wet weather.

Results

Urban heat island intensity

In the summer of 2010 and 2011, we observed a weaker development of the urban heat island compared to the following years, which may be explained by the excessive precipitation (MÓRING, A. 2011). UHI appears during the dawn and day-time hours as well (Figure 2). Day-time negative heat island was detectable in September and October, which can be explained by the decrease of precipitation in these months. An unusual pattern was also observable during the drought period in 2011 (see Figure 2), so we conjecture that the amount and intensity of precipitation can determine the daily dynamics of UHI. It appeared mainly in late spring to early summer (May: 55 mm, June: 49 mm, July: 266 mm, August: 42 mm) as high precipitation was measured (see Appendix 6 in LÁSZLÓ, E. 2017), while the course of dawn and day-time UHI deviated from the normal.

Relative humidity and vapour pressure

During the day, high differences may occur in the course of relative humidity (Figure 3). The night-time humidity deficit in the city occasionally dropped as low as 38 percent in comparison with the AMO, however, the most typical values range from -10 to -22 percent. In the day-time, relative humidity was generally 10 to 15 percent higher at the DVK, except for the very low (-6%) difference in the cold season. The highest differences were found during the warm and the transitional seasons, clearly pointing out the seasonal characteristic of the parameter. Furthermore,

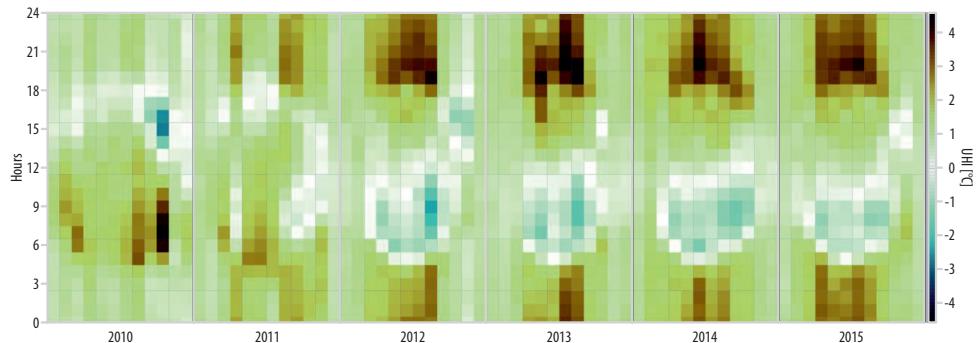


Fig. 2. Monthly averaged daily course of UHI from January 2010 to December 2015. Time of day is on the vertical axis, and one column represents one month. *Source:* Compiled by the authors.

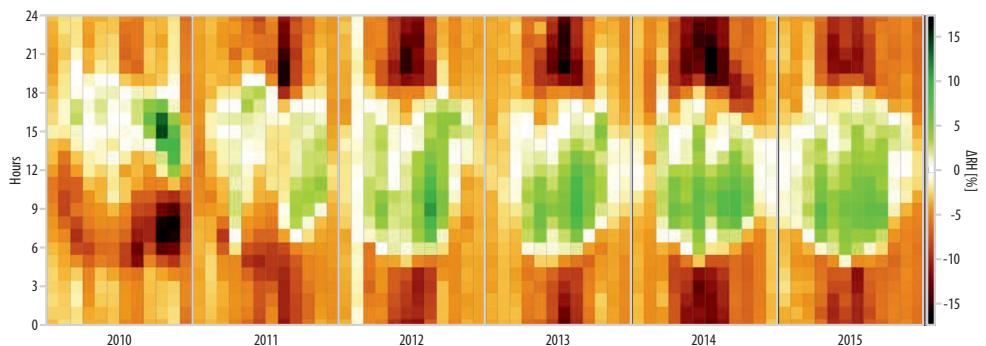


Fig. 3. Monthly averaged daily course of the difference of relative humidity ($RH_{DVK} - RH_{AMO}$) from January 2010 to December 2015. Time of day is on the vertical axis, and one column represents one month. *Source:* Compiled by the authors.

the pattern of differences in relative humidity in 2010 differs from that of an average year, mainly driven by the extreme rainfall measured that year.

Vapour pressure difference (Δe) between the city and the countryside rarely reaches 1 hPa in winter, while it may exceed 5 hPa in the summer months (Figure 4). The effect of convection on vapour pressure can be seen on both the DVK and AMO station data. The absolute humidity curve peaks later inside the city. During the winter half-year convective transfer is less typical, thus, absolute humidity does not show a daily course and only a slight difference is observable between the urban and rural environment.

As a general summary, the contrast between city and countryside may as well be significant and negligible, depending on both the season and the time of day, which is reflected in our data as follows:

Only a slight difference of relative humidity can be measured day-time, while during the night it is less humid in the city.

During the day-light hours, vapour pressure is higher in the rural area. Similar to relative humidity, the daily course of vapour pressure peaks in the afternoon hours (at about 14 CET) in the summer half-year.

After sunset, vapour pressure rapidly drops, causing a vapour deficit in urban areas compared to the surroundings.

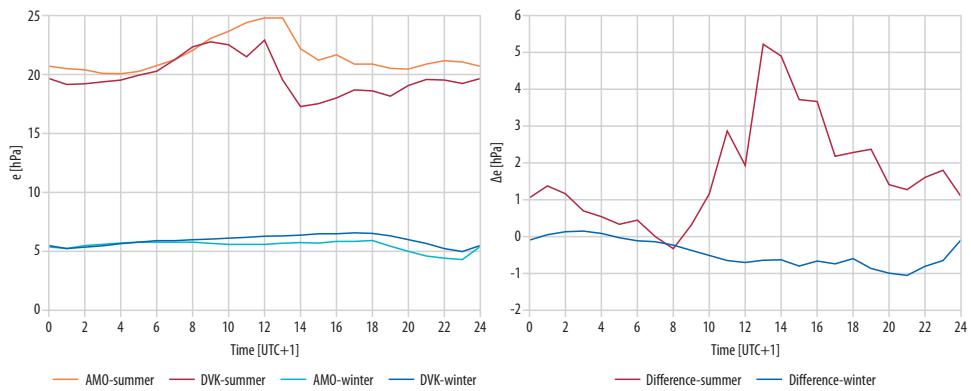


Fig. 4. Vapour pressure course on a typical winter (16.01.2015), and summer (04.08.2015) day at the AMO and DVK stations (left), and their difference ($e_{AMO} - e_{DVK}$) (right). Source: Compiled by the authors.

From the dawn hours, vapor pressure rapidly grows at rural locations, which is driven by the intense evapotranspiration and weak convective processes.

The RH difference daily course (see *Figure 3*) shows the normal behaviour between 2012 and 2015. In 2010 and 2011, a similar pattern can be seen as in *Figure 2* for the UHI. The day-time difference between the city and the rural area vanishes. At night, the usual deficit in the city compared to the rural area is less pronounced. In the autumn of 2010, a morning deficit appeared in the city, while in the afternoon, the RH in the city became higher. This is also similar to the UHI pattern in September and October. The

slow transition to the usual behaviour in 2011 also appears similar to that of the UHI.

Soil moisture

As can be seen in *Figure 5*, the volumetric soil moisture content is generally in the mentioned interval; higher values occur on days when higher precipitation occurred. Considerably, the water content in these periods can be permanently high, over 30 percent, but these are short periods compared to that lasting until around the middle of 2011. The water content in 2010 and early 2011 is usu-

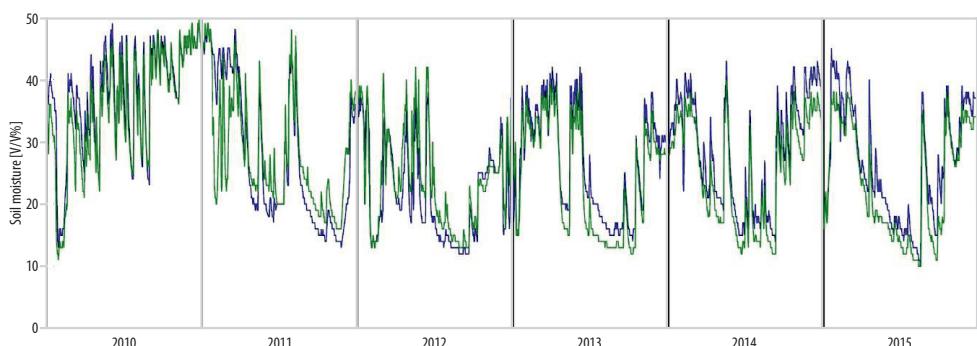


Fig. 5. Soil moisture content time series at the AMO station from two sensors in the upper 30 cm layer. Source: Compiled by the authors.

ally higher than in the usual wet periods, around 45 to 50 percent, about the pore space (46.2%, according to Table 9 in ALTERMANN, M. et al. 2005). This means that inland flooding should be present in the vicinity before the middle of 2011.

Discussion

The investigation of the urban (DVK) and rural (AMO) measurement data revealed the anomalous behaviour of the urban heat island in 2010 and 2011 in Debrecen, Hungary. In normal years, the night-time urban heat island development is usually strong in summer, while the city is usually cooler in the day-time. In winter, the urban heat island development is weak and nearly the same in the night- and in day-time. In 2010 and early 2011, the urban heat island development was nearly equal or even stronger in day-time than at night. In the dry year of 2011, the transition to normal was smooth, meaning that the urban heat island reacted slowly to the return to normal weather which happened in January 2011. This effect is also revealed by the daily course of the UHI (see *Figure 2*).

Elements which are considered determining factors in advantageous conditions for urban heat island development were briefly analysed earlier, but in this case, only the course of relative humidity difference was modified in 2010 and 2011. The difference in wind and cloudiness cannot change much due to the relatively short distance between the two stations. As such, macro-synoptic changes in weather patterns cannot directly alter the urban heat island development, so extreme precipitation and its consequences are assumed to cause the modification of urban heat island development.

In a typical summer day, the building structure in the city causes the temperature to rise more slowly in the morning than in rural areas, due to shadowing. Thus, the relative humidity remains higher as the absolute humidity is not affected. After the maximum temperature – which is determined by the

nearly constant PBL height in a typical fair weather summer day – is reached at the rural area, which is earlier than in the city, the relative humidity difference begins to vanish. As the temperature remains higher in the city at night, the relative humidity becomes lower there. This is true if the vapour pressure has few spatial differences. That spatial difference appears in the afternoon when stronger evapotranspiration makes the vapour pressure rise more in the rural area, as seen in *Figure 4*.

In a high precipitation situation, the high runoff in the city caused by the drainage system and the non-porous surfaces causes the loss of groundwater content. In the rural area, the water is kept in the soil and the high groundwater causes high evapotranspiration which leads to a higher absolute humidity than usual, keeping the relative humidity higher as well. This can make rural RH values equal to, or even in excess of, those of the city. The high RH and the decreased radiation caused by the often cloudy weather can also make the daily course less pronounced.

The similarities of the monthly-averaged daily courses of RH and UHI in 2010 and early 2011 are probably related to the similar patterns in UHI in September and October, the latter can be related to the longer dry period amongst the high precipitation events. However, an explanation of this feature with the available data is uncertain.

In the following winters, the dominating synoptic scale patterns (zonal, meridional, frequent cold pillow situations, etc.) cause complications. The RH difference seems to be more sensitive to synoptic patterns, and one synoptic situation can cover a large part of one winter. As such, the average daily course can be more different from one winter to another, while in the summer, the effect of daily radiation course exceeds that of the synoptic patterns. Thus, the daily course of the RH difference cannot be used to explain UHI behaviour in winter without considering synoptic-scale weather patterns. For example, the apparent inhomogeneity in February 2012 is caused by cold and dry continental air mass lying over the Carpathian Basin for approximately 20 to 25 days.

The effect of high precipitation on humidity can be examined in terms of any humidity characteristic. Relative humidity reveals the difference more pronouncedly because, for example, high relative humidity difference means less difference in absolute humidity in a colder period. Thus, absolute measures are important when considering the energy balance because the absolute humidity is included in the latent heat. When the precipitation, and accordingly the absolute humidity, is high, the latent heat flux rises in the rural area at the expense of the sensible heat flux. The lower sensible heat flux with a similar wind course, however, is only possible if the temperature is lower. This lower temperature can be set up not only by the decreased radiation but also by the higher evaporation of groundwater.

The wet period notably increased the soil moisture and vapour transfer (evapotranspiration) towards the lower layers of the atmosphere at the AMO station. In an urban area, the drainage system removes most of the water content of an excessive precipitation event. The groundwater, in turn, can remain unusually high after a high precipitation period, for a longer time. As the weather returned to normal in January 2011, inland floods were still common in the Great Plain. These survived until spring, partially in the form of ice, and evaporation of these water bodies began only after melting. The ground soil remained saturated until summer, and the evapotranspiration began to decrease in the summer. Soil moisture content measurements at the AMO station are in accordance with this observation, as they show permanently high soil moisture content in 2010 and early 2011, and significantly lower periods afterwards are interrupted with only intermittently occurring high values (see *Figure 5*).

The effect of the high precipitation and the higher humidity on the energy balance is thought to be less in the city because of the loss of groundwater caused by the drainage system and higher surface runoff. This loss of groundwater results in less modification of the vapour pressure. Because of shadowing, the radiation has an effect on the roughness sub-

layer in the city, meaning that the decreased radiation also has a little effect on the energy balance under the roughness sublayer. That is, the overall modification caused by high precipitation weather is minor. Consequently, the modification of the UHI effect by large precipitation is caused by the modified state of soil, and with that, the PBL, in the rural area. A strong conjecture is, thus, that the modifications in the energy balances caused by the rural soil water anomalies are the key factor in the development of the UHI during (and somewhat after) a high precipitation event.

Hypothesising these modifications of the rural and urban energy balances, it could be concluded that the increased humidity can significantly alter the rural energy balance. As mentioned, this is via the increasing latent heat flux at the expense of the sensible heat flux, leading to a lower maximum temperature and a slower rise of the temperature. This results in a temporal shift in the daily rural temperature course, and this shift is greater in average than the shift between the rural and urban daily temperature courses in normal weather. This explains that the urban area remained warmer in 2010 and early 2011. In the night, the frequently high cloudiness caused higher minimum temperatures at both stations. In rural areas, cloudiness also prevented continuous dew formation, and these two features prevented a stronger temperature decrease in the morning. These lead to more balanced temperatures, i.e. lower UHI intensities at night.

Moreover, a temporally local effect in October of 2010 can be considered on *Figure 2*. The weather then was less cloudy which resulted in increased diurnal amplitude in temperature in the city, causing high UHI values mornings and high negative UHIs evenings.

Conclusions

Examining the urban heat island intensity of Debrecen revealed unusual behaviour in 2010 and early 2011. Anomalous daily courses were observed in which urban heat

island was more developed day-time than in the night. Unusually high precipitation characterised the weather of 2010, which often caused inland floods in the vicinity. These survived the winter, and the soil moisture content returned slowly to normal in early 2011, and the normal state of the urban heat island was set up in the summer of 2011. A link between the high precipitation weather and high humidity, and the unusual behaviour of the urban heat island is examined. Measurement datasets of temperature, relative humidity and soil moisture in the city of Debrecen and the nearby Kismacs rural site from 2010 to 2015 are evaluated with the aim of proving the hypothesised link, and to reveal its causes. A possible explanation of the link is provided based on these data. The most possible effect of high precipitation weather is that the unusually high humidity and soil moisture content causes the latent heat flux increase significantly, at the expense of the sensible heat flux, at the rural area in day-time. A more complex effect in the night is probable, tending to be similar to the effect of wet weather in general. In the city, however, these effects are little because of the loss of groundwater caused by the drainage system. This modification of the rural energy balance, thus, resulted in the unusual behaviour of the Debrecen UHI.

Direct measurement to prove the modification of energy balances is difficult to carry out. Difficult on its own because of the expenses of the required measurement technique: a long-term complex micrometeorological measurement campaign is needed at both the rural and urban areas, to track long-term courses of the energy balance components. Furthermore, a similarly exceptional year with high precipitation is needed during which the energy balance is measured as well, but such years occur once in several decades or even centuries. Energy balance measurements may be carried out with continuous control and durable working equipment. Shorter high precipitation weather events, lasting for at least some weeks or months, are not as rare as complete years,

and with these measurements available, the effects of this weather on the energy balances and the urban heat island can be examined. Results from such an event of the energy balance can be compared with our hypothesis on the energy balance modification.

While the measurements were carried out before 2016, when urban heat island research was a bit less developed, the techniques nowadays are much more suitable to check these results. As such, a plan might be formulated to develop a measurement network around Debrecen or other town with similar features. If the sensors are readily accessible, the build-up of such a network could be fast enough to capture at least much of the high-groundwater period, as well as the time range when conditions return to normal. This network would include 5 to 10 stations in and around the town, where sensible and latent heat flux could also be measured. The storage of the high-frequency turbulence data seems to be the most problematic in a technical sense.

Acknowledgement: The research was supported by 2020-2.1.1-ED-2021-00172 for Innovation and Technology from the source of the National Research, Development and Innovation Fund. Elemer László is grateful for the financial support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and of the ÚNKP-23-5 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.

REFERENCES

ACKERMANN, B. 1987. Climatology of Chicago area urban-rural differences in humidity. *Journal of Climate and Applied Meteorology* 26. 427–430. [https://doi.org/10.1175/1520-0450\(1987\)026<026:COCAU>2.0.CO;2](https://doi.org/10.1175/1520-0450(1987)026<026:COCAU>2.0.CO;2)

ALTERMANN, M., RINKLEBE, J., MERBACH, I., KÖRSCHENS, M., LANGER, U. and HOFMANN, B. 2005. Chernozem – Soil of the year 2005. *Journal of Plant Nutrition and Soil Science* 168. 725–740. <https://doi.org/10.1002/jpln.200521814>

BARTHOLY, J. and PONGRÁCZ, R. 2013. Spring and summer weather in 2010: Regular or exceptional? In *Geomorphological Impacts of Extreme Weather: Case Studies from Central and Eastern Europe*. Ed.: BOBROWSKY, P., Springer Geography,

Dordrecht, Springer Netherlands, 3–19. https://doi.org/10.1007/978-94-007-6301-2_1

BERANOVÁ, R. and HUTH, R. 2005. Long-term changes in the heat island of Prague under different synoptic conditions. *Theoretical and Applied Climatology* 82. 113–118. <https://doi.org/10.1007/s00704-004-0115-y>

DOBAI, A., HEGEDŰS, A., VÁGÓ, J., KOVÁCS, K.Z., SERES, A., PECSMÁNY, P., DOBOS, E. 2024. GIS and soil property-based development of runoff modelling to assess the capacity of urban drainage systems for flash floods. *Hungarian Geographical Bulletin* 73. (4): 379–394. <https://doi.org/10.15201/hungeobull.73.4.3>

GEDZELMAN, S.D., AUSTIN, S., CERMAK, R., STEFANO, N., PARTRIDGE, S. and ROBINSON, D.A. 2003. Mesoscale aspects of the urban heat island around New York City. *Theoretical and Applied Climatology* 75. 29–42. <https://doi.org/10.1007/s00704-002-0724-2>

HAGE, K.D. 1975. Urban-rural humidity differences. *Journal of Applied Meteorology* 14. 1277–1283. [https://doi.org/10.1175/1520-0450\(1975\)014<1277:URHD>2.0.CO;2](https://doi.org/10.1175/1520-0450(1975)014<1277:URHD>2.0.CO;2)

HAN, J.-Y., BAIK, J.-J. and LEE, H. 2014. Urban impacts on precipitation. *Asia-Pacific Journal of Atmospheric Sciences* 50. 17–30. <https://doi.org/10.1007/s13143-014-0016-7>

HOFFMANN, P. and SCHLÜNZEN, K.H. 2013. Weather pattern classification to represent the urban heat island in present and future climate. *Journal of Applied Meteorology and Climatology* 52. (12): 2669–2714. <https://doi.org/10.1175/JAMC-D-12-065.1>

HUANG, X. and SONG, J. 2023. Urban moisture and dry islands: spatiotemporal variation patterns and mechanisms of urban air humidity changes across the globe. *Environmental Research Letters* 18. (10): 103003. <https://doi.org/10.1088/1748-9326/acf7d7>

HUSAIN, S.Z., BÉLAIR, S. and LEROYER, S. 2014. Influence of soil moisture on urban microclimate and surface-layer meteorology in Oklahoma City. *Journal of Applied Meteorology and Climatology* 53. (1): 83–98. <https://doi.org/10.1175/JAMC-D-13-0156.1>

KIRCSI, A. and SZEGEDI, S. 2003. The development of the urban heat island studied on temperature profiles in Debrecen. *Acta Climatologica et Chorologica* 36–37. 63–69.

KŁYSIK, K. and FORTUNIAK, K. 1999. Temporal and spatial characteristics of the urban heat island of Łódź, Poland. *Atmospheric Environment* 33. 3885–3995. [https://doi.org/10.1016/S1352-2310\(99\)00131-4](https://doi.org/10.1016/S1352-2310(99)00131-4)

KOVÁCS, A. and UNGER, J. 2014. Modification of the tourism climatic index to Central European climatic conditions – examples. *Időjárás* 118. 147–166.

KUBIAK-WÓJCICKA, K., BĄK, B. and MESSIS, M.-S. 2025. The risk of urban floods caused by precipitation on the example of Bydgoszcz, Poland. *Hungarian Geographical Bulletin* 74. (2):145–162. <https://doi.org/10.15201/hungeobull.74.2.2>

KUTTLER, W., WEBER, S., SCHONNEFELD, J. and HESSEL SCHWERDT, A. 2007. Urban/rural atmos-pheric water vapour pressure differences and urban moisture excess in Krefeld, Germany. *International Journal of Climatology* 27. (14): 2005–2015. <https://doi.org/10.1002/joc.1558>

LÁSZLÓ, E. and WEIDINGER, T. 2014. Az időjárás tényezők hatása a városi hősziget-intenzitás napi dinamikájára (The effect of weather elements on the daily dynamics of the urban heat island intensity). In *Környezettudatos Energiatermelés és -felhasználás. III. Környezet és Energia Konferencia*. Eds.: SZABÓ, V. and FAZEKAS, I., Debrecen, MTA DAB Megújuló Energetikai Munkabizottság, 178–184.

LÁSZLÓ, E., BOTTYÁN, Zs. and SZEGEDI, S. 2016. Long-term changes of meteorological conditions of urban heat island development in the region of Debrecen, Hungary. *Theoretical and Applied Climatology* 124. 365–373. <https://doi.org/10.1007/s00704-015-1427-9>

LÁSZLÓ, E. 2017. *Description and statistic modelling of urban heat island intensity on the example of Debrecen and Berehove*. Ph.D. Thesis. Debrecen, Doctoral School of Earth Sciences, University of Debrecen.

LÁSZLÓ, E. and SALAVEC, P. 2018. Relationship between weather conditions advantageous for the development of urban heat island and atmospheric macro-circulation changes. *International Journal of Climatology* 38. 3224–3232. <https://doi.org/10.1002/joc.5496>

LUO, Z., LIU, J., ZHANG, S., SHAO, W., ZHOU, J. and ZHANG, L. 2023. Impact of urbanization factors considering artificial water dissipation on extreme precipitation: A numerical simulation of rainfall in Shanghai. *Quarterly Journal of the Royal Meteorological Society* 149. (755B): 2320–2332. <https://doi.org/10.1002/qj.4508>

MARELLE, L., MYHRE, G., STEENSEN, B.M., HODENBORG, Ø., ALTERSJKÆR, K. and SILLMANN, J. 2020. Urbanization in megacities increases the frequency of extreme precipitation events far more than their intensity. *Environmental Research Letters* 15. (12): 124072. <https://doi.org/10.1088/1748-9326/abcc8f>

MÓRÍNG, A. 2011. Weather of 2010. *Léggör* 56. 38–42. (in Hungarian).

MORRIS, C.J.G. and SIMMONDS, I. 2000. Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. *International Journal of Climatology* 20. 1931–1954. [https://doi.org/10.1002/1097-0088\(200012\)20:15<1931::AID-JOC578>3.0.CO;2-D](https://doi.org/10.1002/1097-0088(200012)20:15<1931::AID-JOC578>3.0.CO;2-D)

OKE, T.R. 1973. City size and the urban heat island. *Atmospheric Environment* 7. 769–779. [https://doi.org/10.1016/0004-6981\(73\)90140-6](https://doi.org/10.1016/0004-6981(73)90140-6)

OKE, T.R. 2002. *Boundary Layer Climates*. London–New York, Routledge. <https://doi.org/10.4324/9780203407219>

OKE, T.R. 2006. Initial guidance to obtain representative meteorological observations at urban sites. *Instruments and Observing Methods* 81. Geneva, World Meteorological Organization.

ÖZTÜRK, S.P., ÖZDEN, P. and TIKIK, M. 2025. Climate change, extreme heat, and outdoor thermal comfort in urban areas: Case of İzmir, Turkey. *Hungarian Geographical Bulletin* 72. (2): 131–143. <https://doi.org/10.15201/hungeobull.74.2.1>

PENG, S., PIAO, S., CIAIS, P., FRIEDLINGSTEIN, F., OTTLE, C., BRÉON, F.-M., NAN, H., ZHOU, L. and MYNENI, R.B. 2012. Surface urban heat island across 419 global big cities. *Environmental Science and Technology* 81. (2): 696–703. <https://doi.org/10.1021/es2030438>

RÁCZ, Cs., NAGY, J. and DOBOS, A.Cs. 2013. Utilization of meteorological information in agricultural decision support systems. *Lékgör* 58. 53–56. (in Hungarian).

SCHLÜNZEN, K.H., HOFFMANN, P., ROSENHAGEN, G. and RIECKE, W. 2010. Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. *International Journal of Climatology* 30. 1121–1136. <https://doi.org/10.1002/joc.1968>

SENEVIRANTE, S.I., CORTI, T., DAVIN, E.L., HIRSCHI, M., JAEGER, E.B., LEHNER, I., ORLOWSKY, B. and TEULING, A.J. 2010. Investigating soil moisture–climate interactions in a changing climate: A review. *Earth-Science Reviews* 99. (3–4): 125–161. <https://doi.org/10.1016/j.earscirev.2010.02.004>

SHERWOOD, S.C., ROCA, R., WECKWERTH, T.M. and ANDRONOVA, N.G. 2010. Tropospheric water vapour, convection, and climate. *Review of Geophysics* 48. (2): 1–29. <https://doi.org/10.1029/2009RG000301>

STARKE, P., GÖBEL, H. and COLDWEZ, W.G. 2010. Urban evaporation rates for water-permeable pavements. *Water Science and Technology* 62. (5): 1161–1169. <https://doi.org/10.2166/wst.2010.390>

STEWART, I.D. and OKE, T.R. 2012. Local climate zones for urban temperature studies. *Bulletin of the American Meteorological Society* 93. 1879–1900. <https://doi.org/10.1175/BAMS-D-11-00019.1>

SZEGEDI, S. 2000. *Spatial structure of urban heat island in Debrecen*. A paper for the 3rd European Conference on Applied Climatology, 16–20 October 2000, Pisa, Italy.

SZEGEDI, S. and KIRCSI, A. 2003. The effects of the synoptic conditions on development of the urban heat island in Debrecen, Hungary. *Acta Climatologica et Chorologica* 36–37. 111–120.

SZEGEDI, S., GYARMATI, R., KAPOCSKA, L. and TÓTH, T. 2010. Examinations on the meteorologic factors of urban heat island development in small and medium-sized towns of Hungary. *Carpathian Journal of Earth and Environmental Sciences* 8. 456.

SZYMANSKI, M. 2005. Interactions between thermal advection in frontal zones and the urban heat island of Wrocław, Poland. *Theoretical and Applied Climatology* 82. 207–224. <https://doi.org/10.1007/s00704-005-0135-2>

TEKNÓS, L. 2012. A 2010-es évi esőzések vizsgálata katasztrófavédelmi szemszögből (Investigation of rainfalls in 2010 from the aspect of defence against catastrophes). *Műszaki Katonai Közlöny* 22. 208–222.

UJVÁRY, K. 2010. Precipitation-synoptical approach and predictability of cyclones "Zsófia" and "Angéla". *Lékgör* 55. 137–146. (in Hungarian).

UNGER, J. 1999. Urban-rural air humidity differences in Szeged, Hungary. *International Journal of Climatology* 19. 1509–1515. [https://doi.org/10.1002/\(SICI\)1097-0088\(19991115\)19:13<1509::AID-JOC453>3.0.CO;2-P](https://doi.org/10.1002/(SICI)1097-0088(19991115)19:13<1509::AID-JOC453>3.0.CO;2-P)

UNGER, J., SKARBÍT, N. and GÁL, T. 2017. Evaluation of outdoor human thermal sensation of local climate zones based on long-term database. *International Journal of Biometeorology* 62. 183–193. <https://doi.org/10.1007/s00484-017-1440-z>

UNKAŠEVIĆ, M., JOVANOVIC, O. and POPOVIĆ, T. 2001. Urban-suburban/rural vapour pressure and relative humidity differences at fixed hours over the area of Belgrade city. *Theoretical and Applied Climatology* 68. 67–73. <https://doi.org/10.1007/s007040170054>

VERECKEN, H., AMELUNG, W., BAUKE, S.L., BOGENA, H., BRÜGGMANN, N., MONTZKA, C., VANDERBORGH, J., BECHTOLD, M., BLÖSCHL, G., CARMINATI, A., JAVAUX, M., KONINGS, A.G., KUSCHE, J., NEUWEILER, I., OR, D., STEELE-DUNNE, S., VERHOEF, A., YOUNG, M. and ZHANG, Y. 2022. Soil hydrology in the Earth system. *Nature Reviews Earth & Environment* 3. 573–587. <https://doi.org/10.1038/s43017-022-00324-6>

Cultural adaptation and validation of the water attitude scale: Insights from Hungarian student responses

ANDRÁS BÉRES¹, TAMÁS SZÁRAZ¹, ZSOLT HETESI² and SZabolcs CZIGÁNY³

Abstract

Education plays a crucial role in shaping future generations. This is also the case for the formation of environmental attitudes. Hungary is a country with abundant water resources; however, fostering students with a strong water attitude is especially important for the future, even in such nations. The objective of this study was to adapt and validate the Water Attitude Scale (WAS) questionnaire for use with primary school students in Hungary. A total of 964 students from grades 5–8, enrolled in twenty schools located in Southern Transdanubia, completed the questionnaire. The results of the confirmatory factor analysis indicated that the original factor structure was not an optimal fit for the data, prompting the development of a new four-factor model through exploratory factor analysis. The revised factors were: 1) The Value of Water and Responsibility, 2) Awareness and Education, 3) Water Usage at Home and in Society, and 4) Responsibility and Intervention. Analysis across grade levels revealed that fifth graders showed high initial awareness, which gradually declined in higher grades, while attitudes toward water use improved with age. Responsibility peaked in grade 6 but decreased slightly thereafter. The adapted questionnaire proved to be a reliable and valid tool for assessing water-related attitudes among Hungarian students, making it applicable for both diagnostic purposes in environmental education and as a foundation for longitudinal studies.

Keywords: water attitude, environmental education, diagnostic tool, questionnaire validation

Received October 2024, accepted November 2025.

Introduction

Relevance of the research

Water is one of the most essential resources on Earth and plays a pivotal role in several life processes and in the functioning of diverse ecosystems. Water is indispensable for all living organisms, because it is involved in fundamental biochemical processes, including the transport of nutrients and the

removal of metabolic waste. Furthermore, numerous human activities, including agriculture, industry, and energy production, are also significantly dependent on water. Freshwater resources are limited, making up only 2.5 percent of the Earth's water supply, with much of this – in a form not directly usable – stored in ice caps and glaciers. Climate change, population growth, and pollution are worsening the growing demand for freshwater and potentially leading to a global

¹ Doctoral School of Earth Sciences, Faculty of Sciences, University of Pécs, Ifjúság útja 6. H-7624 Pécs, Hungary. E-mails: beres.andras2@pte.hu, szaraz.tamas@pte.hu. Corresponding author's e-mail: beres.andras2@pte.hu, ORCID: 0009-0009-2404-3287

² Department of Applied Mathematics, Institute of Mathematics and Informatics, Faculty of Sciences, University of Pécs, Ifjúság útja 6. H-7624 Pécs, Hungary. E-mail: hetesizs@gamma.ttk.pte.hu, ORCID: 0000-0002-4250-4050

³ Department of Physical and Environmental Geography, Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Ifjúság útja 6. H-7624 Pécs, Hungary. E-mail: sczigany@gamma.ttk.pte.hu, ORCID: 0000-0002-9158-3162

water crisis. Sustainable water management, including water conservation, pollution reduction, and recycling, is critical to ensuring water availability for future generations. On 28 July 2010, the United Nations General Assembly adopted Resolution 64/292, which declared access to safe and clean drinking water and sanitation facilities as a human right, essential for fully enjoying life and all other human rights (United Nations, 2010).

In recent decades, it has become clear that freshwater is a limited resource that is significantly impacted by human activity. The effects of population growth are not as immediately apparent on freshwater consumption, as the regions with the fastest-growing populations often have the lowest per capita water usage (United Nations, 2023). In lower-income countries, the primary cause of poor environmental water quality is inadequate wastewater treatment. In contrast, in higher-income countries, agricultural runoff represents the most significant environmental challenge (United Nations, 2024). As reported by SEELEN, L.M.S. *et al.* (2019), Europeans use an average of 3,550 litres per person per day, a quantity that continues to rise with increasing incomes. Their findings showed that European respondents significantly underestimated their daily water usage, particularly regarding the indirect water use associated with the production of goods and services. Environmental awareness, societal attitudes, behaviour, and knowledge play a significant role in enabling sustainable socio-economic processes (Bodó, A. and ALPEK, B.L. 2024).

In addition to the above, climate skepticism is also a critical issue that affects Hungarian society too (JANKÓ, F. *et al.* 2018). Therefore, the role of education is invaluable. The primary educational goals concerning water resource issues should be to foster long-term changes and nurture conscious citizens ready to act on water-related matters. This will require a shift in focus toward attitudes, knowledge, and behaviours (HURLIMANN, A. *et al.* 2009; GOPINATH, G. 2014; AMAHMID, O. *et al.* 2019). It is crucial to acknowledge that young people can establish the fundamental

elements for lifelong learning and awareness at an early stage of their education. This enables them to make more informed decisions about water-related concepts based on accurate knowledge (REJESKI, D.W. 1982; DIESER, O. and BOGNER, F.X. 2016). The early educational stages thus present an opportunity to model public education on water conservation. The children of today will eventually make decisions about the future use of water resources. The most effective way to equip the next generation with the knowledge and attitudes that promote wise water use and proper behaviour is through school education (SCHAAP, W. and VAN STEENBERGEN, F. 2001; Global Water Partnership, 2003; KOVAČEVIĆ-MAJKIĆ, J. *et al.* 2022).

Water Attitude Scale

This study is based on a questionnaire package developed by YEAP, C.H. *et al.* (2007), known as the Water Attitude Scale (WAS), which was validated by the authors on a primary school-age sample. YEAP, C.H. *et al.* (2007) designed this questionnaire to assess four key components. The four components are: (1) Water and Environmentally Sustainable Development; (2) Water for Health, Hygiene, and Recreation; (3) Water, Social Equity, and Human Dignity; and (4) Cultural, Traditional, and Religious Practices Related to Water. The original objective of the questionnaire was twofold: firstly, to serve as a diagnostic tool for measuring changes resulting from water-related pedagogical interventions introduced by the research group, and secondly, to function as a formative assessment tool.

Despite undergoing multi-stage testing, the questionnaire was conducted with relatively small sample sizes. The initial pilot testing was conducted with 43 participants (across three groups of teachers), followed by a second round with 39 participants (science and mathematics teachers). Following these tests, the final version was established through confirmatory factor analysis. The

original five-point Likert scale was reduced to a four-point scale, eliminating the neutral option. The starting 102 items were gradually refined to a final 29 items. The questionnaire was administered in a small-sample study comprising 24 participants in a science class and 27 in a mathematics class, both before and after the HVWSHE intervention (see subchapter "*The HVWSHE curriculum*"). YEAP, C.H. et al. (2007) grouped the questionnaire items as shown in *Table 1*.

Research objectives

At the outset of this research project, our objective was to develop a standardized questionnaire package that could be used to diagnose attitudes toward water among primary school-aged students. A review of the literature revealed the WAS questionnaire, as previously outlined. However, it became clear that the questionnaire, in its original form, could not be directly transferred as a diagnostic tool into Hungarian educational practice. This was due to its use of terms and expressions unfamiliar to students in this age group, who often lacked the background knowledge necessary for proper comprehension and evaluation of certain concepts. Consequently, we made preliminary adjustments to the original WAS questionnaire, clarifying terms like water meter, water theft, and sanitation by providing explanations in parentheses.

Literature review

Environmental education and its aspects in Hungary

The concept of environmental education has undergone significant evolution since its initial appearance, rendering a precise definition challenging due to its changing content (NEAL, P. and PALMER, J. 1994). One of the most influential international interpretations emerged at the Tbilisi Conference 1978, defining environmental education's aim "to succeed in making individuals and communities understand the complex nature of the natural and the built environments resulting from the interaction of their biological, physical, social, economic and cultural aspects, and acquire the knowledge, values, attitudes, and practical skills to participate responsibly and effectively in participating and solving environmental problems, and the management of the quality of the environment." (United Nations, 1978, 25).

In recent decades, the scope of environmental education has transformed. Initially, it was narrowly focused on environmental protection and primarily conveyed by biology teachers and conservationists. Over time, however, the concept expanded to include human and social dimensions. The principle of sustainability has also taken on an increasingly prominent role within environmental education over the past few decades. Consequently, this field of educa-

*Table 1. Cronbach's alpha coefficients and average inter-item correlation for the factors of the WAS**

Factor	Items	Cronbach alpha	Mean correlation
Water and Environmentally Sustainable Development	1, 2, 10, 11, 12, 18, 22, 26	0.99	0.45
Water for Health, Sanitation and Recreation	3, 13, 14, 17, 19, 25, 27	0.99	0.34
Water, Social Equity, Human Dignity	4, 5, 6, 16, 23, 28, 29	0.98	0.44
Water in Culture, Tradition and Religious Practice	7, 8, 9, 15, 20, 21, 24	0.99	0.43

*N = 51. Source: YEAP, C.H. et al. (2007) p. 7.

tion is now often designated as “education for sustainability”, rendering it pertinent not only for biology instructors but for all educators (KÓNYA, G. 2019). One of the fundamental tenets of environmental education is the instruction of students through an interdisciplinary approach, with an emphasis on the development of skills across a range of contexts. Teachers and educational professionals need to develop curricula and programs that emphasize integrated skill areas, including practical applications (e.g., interpersonal collaboration, problem-solving, and analysis) (VINCENT, S. and FOCHT, W. 2009).

The current Hungarian National Core Curriculum (NCC), which has been in effect since 2020, plays a foundational role in the Hungarian education system. In analysing the NCC 2020, VARJAS, J. (2021, 2022) demonstrated its alignment with the 17 Sustainable Development Goals (SDGs), two of which are directly water related. Goal 6, Clean Water and Sanitation, addresses the provision of water, drinking water, and associated global challenges, while Goal 14, Life Below Water, focuses on the protection of oceans, seas, freshwater organisms, and water pollution. In his 2021 analysis, VARJAS, J. observed that environmental education goals in the NCC 2020 are now presented more as a list, contrasting with the previous versions’ detailed approach. This format affords teachers greater autonomy but provides less detailed guidance.

The NCC 2020 no longer identifies sustainable development as a principal objective. The concept of sustainability is referenced in social science disciplines, including history, civic education, and ethics, and is addressed in all natural science subjects. However, only in biology and ethics is sustainability designated as an independent learning outcome group, while in geography, this is not the case. In the primary school version, approximately 16.9 percent of the overall text is related to sustainable development, increasing to 20.5 percent in secondary school. In primary schools, this represents a decrease to approximately half the word count seen in previous versions.

The HVWSHE curriculum

The study by YEAP, C.H. et al. (2007) relates to the HVWSHE curriculum, which aims to impart knowledge and values associated with water use to foster environmentally conscious behaviours among students. The curriculum, developed for use in Southeast Asian schools through the SEAMEO-UN-HABITAT project, encompasses not only water and hygiene education but also places significant emphasis on the essential human values necessary for sustainability, including honesty, peace, truth, love, and non-violence. The HVWSHE curriculum is structured around four main thematic strands, which address key topics in a way that enables students to gain insight into the multi-faceted role of water in society and nature. This approach fosters the development of valuable attitudes toward sustainable water use.

a) Water and Environmentally Sustainable Development

In the first module, students examine the importance of water and its limited availability, as well as strategies for contributing to its long-term preservation, which is vital for sustaining life and human well-being. This theme incorporates social, environmental, and economic perspectives that facilitate students’ comprehension of the value of water and the concept of environmental sustainability. The educational objective is to instill in students a commitment to conserving water for future generations through the implementation of methods such as water conservation and recycling.

b) Water for Health, Sanitation, and Recreation

This theme posits that water is a foundation for a healthy life, essential for human functioning and meeting fundamental hygiene needs. The curriculum encompasses instruction in water-related hygiene practices and the use of appropriate facilities, as well as an examination of the role of water in recreational activities. The concept encourages students to recognize the health significance of clean water and to engage actively in water-related activities, such as sports or recreation, thereby enhancing their quality of life.

c) Water, Human Dignity, and Social Equity

In this theme, the proposition is advanced that equal access to water and sanitation facilities is a fundamental human right. Students are introduced to the concepts of social justice and human dignity, alongside the necessity for social equality regardless of gender, ethnicity, economic status, or geographic location. The objective of this theme is to cultivate a sense of justice and fairness in students and to equip them with the ability to critically examine and advocate for the equitable distribution of water resources, such as through the implementation of water metering and cost calculation.

d) Water in Culture, Tradition, and Religious Practice

In the last module, students will gain an understanding of how water is integrated into the practices of diverse cultures, traditions, and religions, and the impact this has on people's lives. The curriculum offers students the chance to gain a deeper comprehension of their own and others' cultural, traditional, and religious practices, thereby fostering social cohesion. Furthermore, students gain insight into the significance of water-related festivals and ceremonies, such as water festivals, and learn to express water-related human values, including respect and cooperation, through creative activities.

Each of these themes includes a variety of indicators that can be used to assess students' knowledge, cognitive abilities, and values. The experiences and attitudes that are cultivated through these themes encourage students to commit to the sustainable use and conservation of water, while also fostering an appreciation for water's role in their health and community well-being. Researchers have validated the WAS questionnaire, which is used to measure students' attitudes toward water, using indicators that have been developed based on these themes.

Comparison with related scales

Measuring environmental and water attitudes is cardinal to understanding and promoting

sustainable behaviours, especially in educational and policy contexts. Validated questionnaires such as CHEAKS, EAI, the New Water Culture instrument, and YEAP, C.H. et al.'s (2007) values-based water education tool provide structured means to assess knowledge, attitudes, and behaviours related to environmental and water issues. Their comparative analysis reveals both methodological strengths and persistent gaps, particularly in cross-cultural applicability and the linkage between attitudes and real-world behaviours. To situate the development of the Modified Water Attitude Scale in context, this section reviews several existing instruments for assessing environmental and water-related attitudes. The focus is on three prominent scales – the Children's Environmental Attitudes and Knowledge Scale (CHEAKS), the Environmental Attitudes Inventory (EAI), and a recent New Water Culture questionnaire – and how they compare with the WAS. A summary of key characteristics is provided in *Table 2*.

The Children's Environmental Attitudes and Knowledge Scale (CHEAKS), developed by LEEMING, F.C. et al. (1995), is a widely used instrument for assessing children's environmental orientations. It consists of 66 items divided into a 36-item Attitudes subscale – covering verbal commitment, actual commitment, and affect – and a 30-item Knowledge subscale, addressing domains such as animals, energy, pollution, recycling, water, and general environmental issues. Responses are measured on a 5-point Likert-type scale, with higher scores indicating stronger pro-environmental attitudes and greater knowledge. Originally validated on U.S. children aged 6–13, CHEAKS has demonstrated acceptable reliability ($\alpha \approx .68\text{--}.85$) and validity, though cross-cultural applications (e.g. in Ireland, Brazil, Spain) reveal differences in factor structures and item relevance, necessitating cultural adaptation (WALSH-DANESHMANDI, A. and MACLACHLAN, M. 2006; MORENO, I. et al. 2016; GALLI, F. et al. 2018). While robust for evaluating environmental education interventions among children and adolescents, CHEAKS is a general ecological instrument

Table 2. Comparison of environmental and water attitude scales: focus, structure, and cultural adaptation

Questionnaire (Source)	Target Population	Focus / Main constructs	Structure (Items and scales)	Theoretical foundation	Cultural adaptation	Key limitations
CHEAKS (LEEMING, F.C. et al. 1995)	Children, adolescents (6–13)	General environmental attitudes (affective, behavioural, cognitive) and knowledge (ecological topics: animals, energy, pollution, recycling, water, general issues)	66 items: <i>Attitudes</i> (36 items, 3 subscales: verbal commitment, actual commitment, affect) + <i>Knowledge</i> (30 items). 5-point Likert (attitudes), correct/incorrect (knowledge).	Socio-ecological and educational frameworks	Moderate – constituent elements and factor structures vary across contexts (e.g. US, Ireland, Brazil, Spain)	Limited to younger students; cross-cultural reliability varies; not designed for adults
Environmental Attitudes Inventory (EAI) (MULFONT, T.L. and DUCKITT, J. 2010)	General population, university students	Broad environmental attitudes (e.g. enjoyment of nature, support for conservation, ecocentrism, human dominance, personal behaviour, confidence in science)	120 items (12 scales, 10 items each); shorter 72- and 24-item forms available. 7-point Likert with balanced items. Yields 12 scale scores + 2 higher-order dimensions: <i>Preservation</i> vs. <i>Utilization</i> .	Multidimensional, hierarchical, deliberative attitudinal models	High – validated in multiple languages (e.g. Portuguese, Spanish, Brazilian, European samples)	Less sensitive to short-term educational effects; some subscales less relevant in certain cultural contexts
“New Water Culture” (NWC) Questionnaire (BENARROCH, A. et al. 2021)	General public, students, trainee teachers (Spain)	Water-specific attitudes: scarcity, sustainability, governance, personal actions	27 items (final version, 4-point Likert without neutral option). Organized into 4 sections: (1) scarcity/quantity/distribution, (2) water's multiple dimensions, (3) management/governance, (4) personal water-saving behaviour.	Integrated water education paradigm (KAPP: knowledge, attitudes, perceptions, practices); sustainability and participatory governance frameworks	Low – validated only in Spain, culturally grounded in Iberian water policy	Limited explicit integration of broader cultural/educational dimensions; not adapted beyond Iberian context
Water Attitude Scale (WAS) (YEAP, C.H. et al. 2007)	University students, employees (Malaysia)	Water-specific values and attitudes; links cultural orientation (e.g. collectivism, power distance) to water conservation behaviour	29 Likert-type items; items reflect cultural values, personal responsibility, and conservation behaviours	Cultural/behavioral theories (Hofstede's cultural dimensions, theory of planned behaviour)	Low – limited cross-cultural validation outside Malaysia	Heterogeneity in cultural attitudes; limited psychometric validation; not widely adapted internationally
Modified Water Attitude Scale (mWAS) (Adapted in present study)	Students (Hungary, secondary level)	Water-specific values, attitudes, and behaviours (e.g. conservation)	25 Likert-type items, adapted from YEAP, C.H. et al. (2007). Items probe values, responsibility, and awareness regarding water conservation.	Educational and values-based water conservation framework	Current study provides first <i>Hungarian validation</i>	Novel instrument in Hungarian; further testing needed to confirm cross-cultural stability

Source: Compiled by the authors.

rather than domain-specific and is less suitable for adult populations.

The Environmental Attitudes Inventory (EAI), developed by MILFONT, T.L. and DUCKITT, J. (2010), is a multidimensional measure designed to assess the complexity of adult environmental attitudes. The full version consists of 120 items (12 subscales with 10 items each), capturing diverse dimensions such as Enjoyment of Nature, Ecocentric Concern, Support for Conservation Policies, Personal Conservation Behaviour, Human Dominance, and Confidence in Science and Technology. Responses are rated on a 7-point agreement scale, with balanced (half reverse-scored) items to minimize acquiescence bias. Psychometric analyses consistently support a hierarchical structure in which the 12 subscales load onto two higher-order dimensions: Preservation (reflecting pro-environmental orientations) and Utilization (reflecting anthropocentric and exploitative orientations). Shortened versions (e.g. 72- and 24-item forms) have been developed for practical use while maintaining acceptable reliability and validity (SUTTON, S.G. and GYURIS, E. 2015). Originally validated with university students in New Zealand, the EAI has since been adapted and applied across numerous cultural contexts (e.g. Brazil, Spain, Australia, North America, Europe), though certain subscales (e.g. environmental movement activism) show variable cross-cultural relevance (AJDUKOVIC, I. et al. 2019; ANDRADE, E. et al. 2021). Despite its broad applicability and strong psychometric robustness, the EAI is not tailored to specific domains such as water-related issues, is less sensitive to short-term educational interventions, and to date lacks a validated Hungarian adaptation – highlighting a gap this study's WAS seeks to address.

The “New Water Culture” (NWC) Questionnaire, developed by BENARROCH, A. et al. (2021), was designed to assess knowledge, attitudes, perceptions, and practices (KAPP) consistent with the NWC paradigm, which conceptualizes water as an eco-social resource requiring sustainable, participatory, and demand-oriented management in contrast to tra-

ditional supply-driven approaches (RAMÍREZ-SEGADO, A. et al. 2023). The instrument was initially composed of 20 Likert-type items (1–4 scale, with no neutral option) generating 51 variables and was subsequently refined through expert panel review – including contributions from the New Water Culture Foundation – into a validated 27-item scale. These items are organized into four thematic areas: (1) perceptions of scarcity, quantity, and distribution; (2) recognition of water's multiple dimensions (environmental, social, cultural, economic); (3) preferences for participatory and sustainable management strategies; and (4) personal water-saving actions. The final version demonstrated high internal consistency (Cronbach's $\alpha \approx .91$) and strong content validity (Aiken's $V \approx .84$). Developed and validated in Spain, the NWC questionnaire has been primarily applied to the general public, students, and pre-service teachers in formal education contexts (RAMÍREZ-SEGADO, A. et al. 2023). Unlike broader ecological instruments such as CHEAKS and EAI, the NWC questionnaire is explicitly water-specific and education-oriented, though its cultural grounding in Iberian water policy discourse means adaptation is required for other contexts, including Hungary.

Conceptual distinctions and measurement of knowledge, beliefs, and attitudes

In the literature on environmental and water education, knowledge, beliefs, and attitudes are commonly conceptualized as distinct yet interrelated constructs. Knowledge is treated as factual or conceptual understanding of environmental and water-related issues and is typically assessed with objective instruments such as factual quizzes, structured tests, or knowledge subscales (WALSH-DANESHMANDI, A. and MACLACHLAN, M. 2006; ROSA, C.D. et al. 2022; MOSTACEDO-MARASOVIC, S.-J. et al. 2023). Beliefs refer to convictions and symbolic or cultural meanings attached to environmental and water phenomena; these are examined with belief subscales, the New Eco-

logical Paradigm (NEP) and its child version, and – critically – qualitative or ethnographic approaches that surface culturally embedded meanings (KOPNINA, H. 2011; ROSA, C.D. et al. 2022; MOSTACEDO-MARASOVIC, S.-J. et al. 2023; BERZE, I.Z. et al. 2024). Attitudes capture affective evaluations and predispositions, often including behavioural intentions, and are measured with well-established scales such as CHEAKS, the EAI, and the Two-Major Environmental Values (2-MEV) instrument (MUSSER, L.M. and MALKUS, A.J. 1994; WILFONG, M. et al. 2023; VUCETICH, J.A. et al. 2024).

Validated tools like CHEAKS, EAI, and 2-MEV rely on factor-analytic procedures and, increasingly, Rasch modelling and Item Response Theory (IRT) to sharpen construct separation and improve item performance (MUSSER, L.M. and MALKUS, A.J. 1994; WALSH-DANESHMANDI, A. and MACLACHLAN, M. 2006; MILFONT, T.L. and DUCKITT, J. 2010; MAMAT, M.N. and MOKHTAR, F. 2012; LIEFLÄNDER, A.K. and BOGNER, F.X. 2018; VUCETICH, J.A. et al. 2024; NGAN, S.F. and LI, C.S. 2025). Disciplinary emphases, however, differ: pedagogy and curriculum studies stress experiential and transdisciplinary integration (PALOZZI, J.E. et al. 2025), educational psychology advances identity-based explanations (FREED, A. 2018; PAGANO, L.P. et al. 2025), sociology situates orientations within social-demographic contexts (NEWMAN, T.P. and FERNANDES, R. 2016), and anthropology foregrounds symbolic beliefs, local knowledge, and inequities related to water (JACKSON, S. 2011; LAHIRI-DUTT, K. 2020; WILFONG, M. et al. 2023). Despite these advances, several challenges persist – most notably the conceptual ambiguity of “beliefs”, the limitations of NEP with children, cross-cultural validity concerns for “Western”-developed scales, and the enduring gap between self-reported attitudes and behaviour (MOORE, S. et al. 1994; GROB, A. 1995; ZHU, Z. et al. 2019; YU, J.-H. et al. 2021; HUNDEMER, S. et al. 2022; ROSA, C.D. et al. 2022).

In water-specific contexts, water knowledge centres on objective understanding of cycles, conservation, and management and is

increasingly anchored in standards and water-literacy frameworks (YU, J.-H. et al. 2021; MOSTACEDO-MARASOVIC, S.-J. et al. 2023). Water beliefs encompass both factual beliefs and symbolic meanings – such as sacredness or identity value – often documented in indigenous or traditional settings and associated with preservation behaviours (SINDIK, J. and ARAYA, Y.N. 2013; FREED, A. 2018; LAHIRI-DUTT, K. 2020). Water attitudes cover evaluative tendencies and willingness to engage in water-saving practices, with recent child/adolescent instruments and composite water-literacy measures extending the toolkit (AYSU, B. et al. 2025). In addition, the Water Attitude Scale (WAS) has been specifically developed to capture students’ perceptions and values in water education, further broadening the range of validated instruments available for water-related research (YEAP, C.H. et al. 2007). Demographic heterogeneity is common: gender, age, education, place, and broader contextual factors systematically shape knowledge, attitudes, acceptance, and behaviour (BRAUN, T. et al. 2018).

Identity-based pathways frequently outperform attitude-only models in explaining behaviour: structural models show environmental knowledge acting as a distal driver via attitudes and intentions, while values and emotions exert comparatively strong direct effects. Classroom-embedded, dialogical approaches and theory-based formative assessment broaden the lens beyond knowledge–attitude–behaviour by capturing relevance, responsibility, and identity exploration (LIGORIO, M.B. 2010; GRANIT-DGANI, D. et al. 2017).

Materials and methods

Sampling

The primary area for questionnaire sampling was the South Transdanubia region in SW Hungary (Figure 1). This region is characterized by a high number of small schools with few students, which have undergone continuous transformations: “Over the past

seven decades, education policy measures have left a profound impact on the school network, including institutional restructuring, closures, and occasionally the establishment of new schools" (ANDL, H. 2023, 259). In many small settlements, these educational facilities have been shut down, necessitating that students commute to other locations. A total of seventy-two primary schools were contacted for this survey. Of these, twenty granted permissions to administer the questionnaire. The schools are situated in fifteen different towns within the region. The institutions encompass rural primary schools (notably small schools) in the villages of Látrány and Szőlősgyörök, as well as institutions in cities like Nagykanizsa and the regional centre, Pécs.

The statistical representativeness of the population is evident in the region, as demonstrated by the chi-square tests, which indicate a statistically significant relationship between the legal status of the settlements, the response rates, and the number of respond-

ents relative to the total number of primary school students in each grade level (*Table 3*).

The total number of participating students was 964. Of these, 20 percent were in fifth grade (197 students), 25 percent in sixth grade (237 students), 26 percent in seventh grade (253 students), and 29 percent in eighth grade (277 students). The grade distribution by municipality demonstrates that certain grades are more homogeneous in certain municipalities, as only a limited number of schools agreed to administer the survey across all upper grades. Full grade-level data collection was only conducted in Látrány, Nagykanizsa, and Pécs (*Figure 2*).

Questionnaire adaptation

As previously noted in the introduction, the original WAS questionnaire included a multitude of terms and expressions that were either unfamiliar to the target age group or beyond the scope of their background knowl-

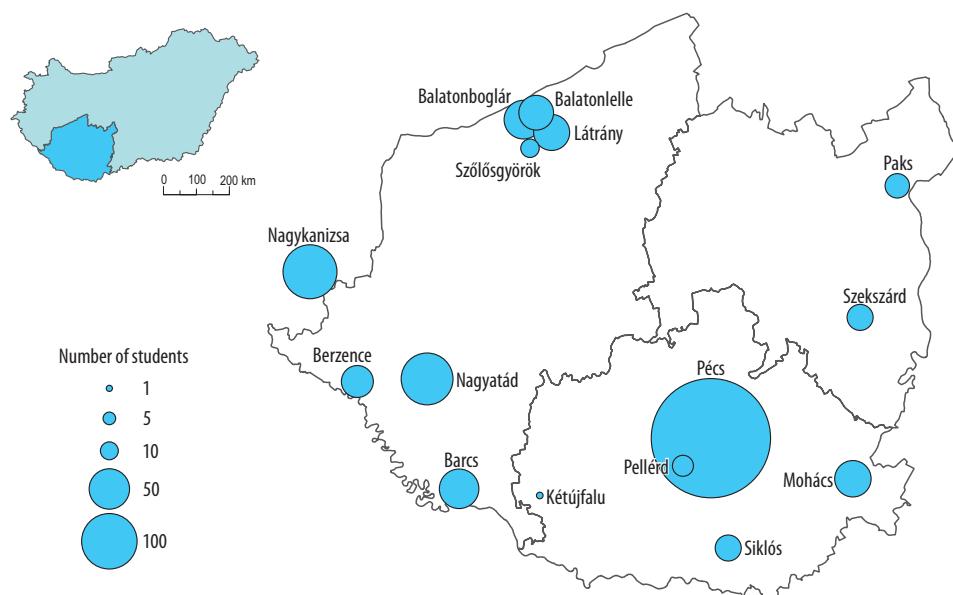


Fig. 1. Spatial dimensions of the population by settlements of school. Source: Authors' own elaboration.

Table 3. Statistical representativeness of the participants based on Chi-square test of independence*

Attribute 1	Attribute 2		Df	χ^2 value
Legal status of settlement	All respondents Non-respondents		30 472	607.43 1,314.00
Legal status of settlement	Fifth grade	Respondents Non-respondents	122 14	424.86 138.66
	Sixth grade	Respondents Non-respondents	120 20	419.32 199.55
	Seventh grade	Respondents Non-respondents	116 18	406.48 140.96
	Eight grade	Respondents Non-respondents	120 14	420.04 133.88

*p-value <0.001, Fisher exact <0.001. Source: Authors' own elaboration.

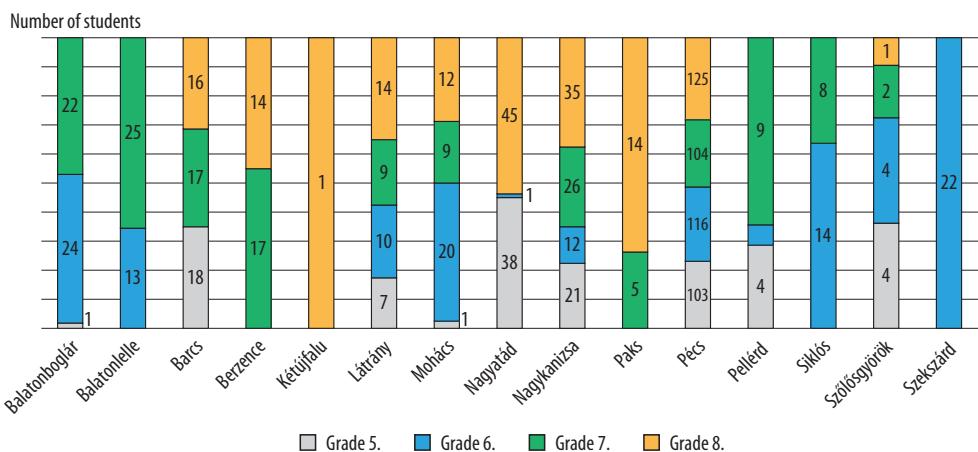


Fig. 2. Distribution of age groups in the population by settlement of school. Source: Authors' own elaboration.

edge for assessment purposes. Accordingly, the initial version of the WAS questionnaire was modified to provide clarification regarding certain terms. For example, regarding the phenomenon of water theft, we provided an illustrative example, stating, "e.g. someone uses a neighbour's water without paying for it". Concerning the objective of a water conservation campaign, we offered a clarification, stating, "The purpose of this would be to encourage people to save water". In the context of sanitary items, we offered a definition, stating, "sanitary = faucets, showers, bathtubs". For instance, the term "water meters" was clarified as "a water meter measures

water consumption in a house/apartment". Additionally, the concept of the water cycle was elucidated as "without the water cycle, the ecosystem would be harmed". Furthermore, the term "erosion" was defined as "erosion = the degradation of land surfaces". Following these initial modifications, a large-scale survey was conducted.

However, additional issues emerged with certain statements, as most students encountered difficulty in understanding questions 2, 14, 21, and 28. Regarding question 2, a considerable number of students encountered difficulties in interpreting the term "drinking water at the garden faucet". Question 14 did

not resonate with the age group in question, as students frequently reacted with excessive humour. Questions 21 and 28 presented interpretation challenges, as students lacked sufficient background knowledge to grasp government responsibilities or the phenomenon of water theft, despite the added explanations. These concepts were largely unfamiliar, especially for this age group.

Data processing

Confirmatory factor analysis: Purpose and application in the research

The concept of reliability concerns the consistency of measurement outcomes. It encompasses test-retest reliability, internal consistency, and inter-rater reliability, which are essential for identifying random and systematic errors in measurements (STREINER, D.L. et al. 2015; MOHAJAN, H.K. 2017). Although reliability pertains to the precision of test scores in representing an attribute, it does not confirm the attribute measured or the test's effectiveness. This is the realm of validity (SLANEY, K. 2017). Validity pertains to the accuracy of measurement tools in capturing the intended construct (BUCKINGHAM, B.R. et al. 1921). The link between factor analysis and construct validity has been recognized since THOMPSON, B. and DANIEL, L.G. (1996). The mid-twentieth century saw a shift in focus towards the assessment of validity through the structural configuration of test variables, often employing factor analysis. This shift was observed by GOODWIN, L.D. and LEECH, N.L. (2003) and represented a departure from the previous emphasis on correlating test scores with external criteria.

Confirmatory factor analysis (CFA) is a statistical technique employed to confirm the factor structure hypothesized by researchers. It is widely employed to bolster construct validity in measurement tools (DiSTEFANO, C. and HESS, B. 2005). Researchers utilize CFA to furnish evidence of validity for a measurement instrument, drawing on its factor struc-

ture and the item-to-factor relationship patterns (RIOS, J. and WELLS, C. 2014). Typically, researchers provide evidence in support of this in the subsequent formats. For data analysis, we used JASP⁴ and RStudio⁵ software.

Fit indices: Use and significance in CFA

This study utilizes CFA to validate a modified version of the WAS. The key model fit indices – including the Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA), and Standardized Root Mean Residual (SRMR) – are employed to evaluate the congruence between the revised model and observed data. These indices facilitate a comprehensive understanding of the model's suitability and ensure that the scale's constructs are appropriately measured within the new demographic.

Both the CFI and the TLI are indices that range from 0 to 1. A CFI value above 0.90 is indicative of an acceptable fit, whereby the proposed model is evaluated in comparison to a null model. The TLI is analogous to the CFI, yet it also considers model complexity. Values exceeding 0.95 indicate an appropriate fit. Additionally, the RMSEA and SRMR are important. An RMSEA value below 0.06 suggests a good fit, although it should be noted that caution is advised in models with limited degrees of freedom, as this value may be misleading in such cases. SRMR is less sensitive to model complexity, with values under 0.08 considered acceptable (SHI, D. et al. 2019; KHADEMI, A. et al. 2023). This approach allows the study to assess model fit while addressing the challenges and nuances in cross-cultural adaptation of attitudinal measures, thereby contributing to more accurate and generalizable findings in educational and environmental research.

⁴ JASP Team (2024). JASP (Version 0.18.3) [Software]. JASP Team (REVELLE, W. 2018).

⁵ RStudio Team (2023). RStudio: Integrated Development for R, Version 2023.06.1 (Software). Posit, PBC.

Exploratory factor analysis

Empirical methods such as exploratory factor analysis (EFA) reveal patterns within the correlations of items in a measurement tool and their unknown domains (factors) (TAVAKOL, M. and WETZEL, A. 2020). EFA clarifies the relationship patterns among assorted items and constructs (KNEKTA, E. et al. 2019). Furthermore, it identifies items that do not align with the anticipated construct, suggesting their exclusion from the assessment (KNEKTA, E. et al. 2019). The EFA provides evidence to support the validity of a construct, which in turn informs decisions regarding its factor structure. In particular, the factor solution derived from the EFA demonstrates the relationships between the constructs of interest and indicators such as behaviours and attitudes. This offers a basis for validating the construct's measurement and for supporting theoretical frameworks (BROWN, T.A. 2015). As a result, the empirical and theoretical understanding of the measure is enhanced (KNEKTA, E. et al. 2019).

In EFA, we used Promax rotation to facilitate the identification of underlying factor structures within the scale. Promax rotation, a type of oblique rotation, allows factors to be correlated, which is often more representative of real-world data where constructs may not be fully independent. This approach allowed us to achieve a clearer and more interpretable factor solution by maximizing the variance of the factor loadings and providing insight into the relationships between the identified factors (FINCH, H. 2006).

Results

Modification of the questionnaire

To assess the reliability of the research data, a confirmatory factor analysis was conducted to ascertain the validity of the original factor structure proposed by YEAP, C.H. et al. (2007) within the context of the current sample. The structure developed by YEAP, C.H. et al. (2007) exhibited at least one negative eigenvalue in the covariance matrix, indicating deficiencies in the model specification. The data structure became interpretable when the condition for the program to search for correlations between factors was removed. However, even with this adjustment, the resulting model lacked statistical reliability, even at the component level (*Table 4*).

Utilizing our dataset with a larger sample size, we developed a novel model based on the original WAS questionnaire (*Appendix A*). After exploratory factor analysis, we removed questions 2, 14, 21, and 28 due to their low factor loadings and issues observed during completion (see subchapter “*Questionnaire adaptation*”). This resulted in a more coherent model (*Table 5, Appendix B*). The original number of factors was retained, but their content composition changed (*Table 6*).

The content of the four new factors has been modified, necessitating adjustments to their grouped labels. The correlations between the factors are displayed in *Figure 3*.

The first factor, designated as Fc1, is entitled “The Value of Water and Responsibility”.

Table 4. Reliability analysis of the original WAS factor structure

Reliability model	Factor 1	Factor 2	Factor 3	Factor 4
McDonald's Omega (ω)	0.569	0.708	0.445	0.240
Cronbach's Alpha (α)	0.522	0.669	0.412	0.234

Source: Authors' own elaboration.

Table 5. Reliability analysis of the modified WAS

Reliability model	Factor 1	Factor 2	Factor 3	Factor 4
McDonald's Omega (ω)	0.880	0.790	0.664	0.670
Cronbach's Alpha (α)	0.876	0.786	0.646	0.658

Source: Authors' own elaboration.

Table 6. Model fit and test summary of the modified WAS

Test	Results
Chi-Square Test	Baseline Model: $\chi^2 = 7769.331$; Df = 300; p < 0.001 Factor Model: $\chi^2 = 868.393$; Df = 269; p < 0.001
Bartlett's Test	$\chi^2 = 7687.393$; Df = 300; p < 0.001
Fit indices	CFI = 0.920 TLI = 0.911 RMSEA = 0.048 SRMR = 0.044

Source: Authors' own elaboration.

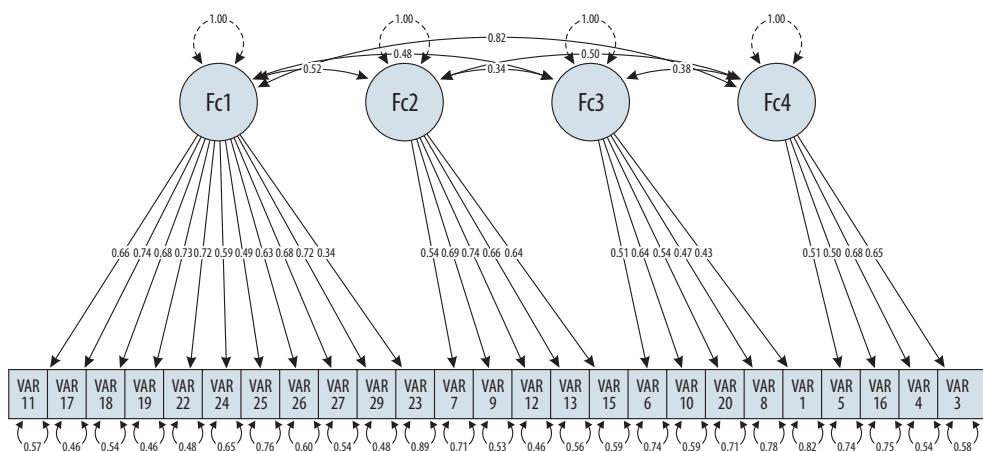


Fig. 3. Structure of the modified WAS. Source: Authors' own elaboration.

This factor emphasizes students' acknowledgment and assumption of accountability for the significance and preservation of water. It includes items addressing themes such as the responsibility associated with water conservation, the appreciation of water's aesthetic qualities, the stabilizing effects of the water cycle, and the significance of water for human health.

The second factor (Fc2), "Awareness and Education", is centred on educational initiatives and awareness-building, encouraging students to disseminate information regarding the importance of water conservation to others. The items included in this factor are organized around three primary areas: personal development regarding water-related issues, intention to participate in water-sav-

ing campaigns, and sharing of knowledge about water conservation.

The third factor (Fc3), "Water Usage at Home and in Society", encompasses questions related to personal and societal water-use habits and attitudes. This encompasses the willingness to conserve water, the individual's responsibility in its usage, and the social equity of access to and the maintenance of hygiene through its use.

The fourth factor (Fc4), "Responsibility and Intervention", addresses individual responsibility, intervention intentions, and ethical concerns. It examines students' attitudes toward avoiding water pollution, reporting leaks and water theft, and the ethical perception of water meter tampering. The number of items within each factor is provided in Table 7.

Table 7. Items of the modified WAS factors

No.	Factor	Items of scale
1	The Value of Water and Responsibility	11, 17, 18, 19, 22, 23, 24, 25, 26, 27, 29
2	Awareness and Education	7, 9, 12, 13, 15
3	Water Usage at Home and in Society	1, 6, 8, 10, 20
4	Responsibility and Intervention	3, 4, 5, 16

Note: In the modified version of the WAS, the following items were categorized: *Knowledge* – 7, 18, 19, 26; *Beliefs* – 6, 8, 10, 20, 22, 23, 24, 29; *Attitudes* – 1, 3, 4, 5, 9, 11, 12, 13, 15, 16, 17, 25, 27. This classification reflects the different pedagogical implications of the items: knowledge relates to factual understanding, beliefs reflect normative or value-based assumptions, while attitudes capture emotional and behavioural orientations toward water. *Source:* Authors' own elaboration.

Development of Water Attitudes by grade

In the following phase of the research, an investigation was conducted to ascertain whether the grouped factors of the questionnaire, calculated for each student, demonstrated any correlations when analysed by grade. Based on the Welch-ANOVA test (Table 8 and 9), the second and third factors exhibited significant correlations, while the fourth factor, though above the significance threshold, was close to it.

With regard to the "Awareness and Education" (Fc2), the observed decline in the mean value indicates a potential reduction in students' awareness and commitment to

education as they progress through the grade levels. The fluctuation in standard deviation indicates changes in the differences of opinion among students, though no significant discrepancies are evident. The minimum value remains constant, except for a slight increase observed in one grade level. The maximum value remains constant, indicating that the highest level of commitment remains unaltered.

The slight increase in the mean value for "Water Usage at Home and in Society" (Fc3) indicates a positive trend, suggesting that students' water-use habits and attitudes tend to improve with grade level. The observed fluctuation in standard deviation indicates an in-

Table 8. Welch's ANOVA Test – Correlations between grade levels and water attitudes

Attitude	Df	Sum Sq	Mean Sq	F value	p-value
The Value of Water and Responsibility	3	68.0	22.5300	1.3681	0.250
Awareness and Education	3	208.7	69.5570	16.1970	0.000
Water Usage at Home and in Society	3	21.0	7.0026	4.1846	0.000
Responsibility and Intervention	3	13.5	4.5090	2.5086	0.051

Source: Authors' own elaboration.

Table 9. Descriptive statistics for factors 2–4

Factors	Factor 2				Factor 3				Factor 4			
	5	6	7	8	5	6	7	8	5	6	7	8
Number of students	197	237	253	277	197	237	253	277	197	237	253	277
Mode	9.81	9.81	9.81	9.81	2.59	2.59	2.59	2.59	9.36	9.36	9.36	8.35
Mean	9.13	8.23	8.29	7.79	4.02	4.30	4.16	4.42	7.55	7.75	7.44	7.48
SD	1.97	2.13	2.00	2.15	1.22	1.34	1.24	1.35	1.35	1.08	1.52	1.36
Min	3.27	3.27	3.81	3.27	2.59	2.59	2.59	2.59	2.34	3.67	2.34	2.34
Max	13.08	13.08	13.08	13.08	8.41	10.36	8.16	10.36	9.36	9.36	9.36	9.36

Source: Authors' own elaboration.

crease in the diversity of opinions among students. The minimum value remains constant, indicating that the lowest level of commitment remains unaltered. The fluctuations in the maximum value indicate that the highest level of commitment varies between grade levels.

Finally, regarding "Responsibility and Intervention" (Fc4), the fluctuations in the mean indicate that students' sense of responsibility and intention to intervene vary across grade levels, without a clear trend. The changes in standard deviation suggest that differences in opinions do not follow a distinct pattern. Variations in the minimum value show that the lowest level of commitment differs across grades. The maximum value remains constant, indicating that the highest level of commitment is stable.

In general, it can be stated that the values of the factors in question undergo a change as students' progress through the various grade levels. Regarding the factor "Awareness and Education" (Fc2), fifth-grade students demonstrate the greatest commitment, although this commitment then declines gradually in subsequent grades. The data indicate that responses from fifth graders exhibit less variability, whereas variability in responses increases in later grades. As indicated by the "Water Usage at Home and in Society" (Fc3) factor, students demonstrate enhanced awareness and commitment across grade levels, particularly in eighth grade. The distribution data demonstrates a notable positive skewness and a pronounced peak, indicating that a subset of students attain higher scores than the remainder. Regarding the "Responsibility and Intervention" (Fc4) factor, fifth and sixth graders evince a heightened sense of responsibility and intention to intervene. However, this declines slightly in seventh and eighth grades. The distribution data indicate a reduction in dispersion, with a few notably high values.

These changes reflect developmental processes associated with age, which influence students' water-related attitudes and commitment within and across grade levels. Significant differences are evident in students' water-related attitudes and com-

mitment when comparing academic levels. Fifth graders typically demonstrate a less developed awareness of water conservation and management practices. At this age, the primary objective of education should be the establishment of awareness and the imparting of fundamental knowledge. By the eighth grade, students typically demonstrate a heightened level of awareness and a more nuanced understanding of the personal and societal implications of water use. Consequently, their sensitivity to water management issues increases, enabling them to view water consumption habits and their societal impact with greater criticality.

The capacity for assuming responsibility and engaging in intervention also undergoes a transformation as students progress through the academic grades. Fifth and sixth graders typically demonstrate a heightened sense of responsibility and more active involvement in environmental matters. However, this attitude may exhibit a slight decline among seventh and eighth graders, potentially influenced by social norms, age-specific traits (such as adolescence) and evolving interests.

Beyond these developmental patterns, we also examined whether settlement type was associated with differences across the four extracted factors. Four one-way analyses of variance (ANOVAs) were conducted, with the assumption of homogeneity of variances met in each case, as indicated by non-significant Levene's tests (all $p > .31$). The omnibus ANOVAs revealed no statistically significant differences between settlement types on any of the factors (Factor1: $F(2, 961) = 0.350, p = .705$; Factor2: $F(2, 961) = 1.986, p = .138$; Factor3: $F(2, 961) = 0.654, p = .520$; Factor4: $F(2, 961) = 0.680, p = .507$). Robust Welch tests yielded the same pattern of non-significant results. Effect sizes were consistently trivial ($\eta^2 < .01$), suggesting that settlement type did not account for meaningful variation in students' responses on the four factors. These findings indicate that while developmental differences across age groups are apparent, the influence of settlement context is negligible in shaping students' water-related attitudes.

In sum, the analyses indicate that age-related patterns exert a more consistent influence on students' water-related attitudes than settlement context, a finding that sets the stage for the subsequent discussion of educational implications.

Discussion and conclusions

The study findings provide insight into how Hungarian students' attitudes toward water and environmental sensitivity evolve with grade level, shedding light on age-related shifts in both awareness and engagement. In terms of "Awareness and Education" (Fc2), fifth-grade students displayed the highest awareness and commitment to water-related issues, but this commitment appeared to decrease slightly in higher grades. This trend suggests a potential need for sustained or enhanced engagement strategies as students' progress to maintain and deepen their understanding of water conservation. The variability in responses also increased, indicating a growing diversity of perspectives with age. For "Water Usage at Home and in Society" (Fc3), there was a gradual increase in positive attitudes and practices, particularly noticeable by eighth grade. This trend suggests an overall improvement in students' water-conscious behaviour over time. The distribution of responses, showing a skew towards higher scores, points to a subset of students who display notably elevated levels of commitment. With the "Responsibility and Intervention" (Fc4) factor, fifth and sixth graders showed a stronger sense of responsibility and intervention in water issues. However, this commitment slightly decreased in seventh and eighth grades, possibly due to adolescent developmental factors, shifting interests, and peer influence. This observation highlights the importance of reinforcing responsibility as students grow older, countering potential declines in environmental engagement during adolescence.

The observed decline in awareness from grade 5 onwards resonates with international findings that environmental sensitivity of-

ten diminishes during early adolescence, when cognitive demands increase and peer influences strengthen (LIEFLÄNDER, A.K. and BOGNER, F.X. 2018; OTTO, S. *et al.* 2019; GRØNHØJ, A. and HUBERT, M. 2022). This highlights the importance of sustained educational reinforcement: early gains in awareness need to be consolidated through age-appropriate activities that connect abstract knowledge with practical action. At the same time, the increase in positive attitudes toward daily water use by grade 8 suggests that older students can translate abstract principles into personal habits, provided that curricula emphasize experiential and participatory approaches. The temporary peak in responsibility observed in grade 6, followed by a slight decline, points to a window of opportunity for interventions that foster civic responsibility and ethical reflection before adolescence reshapes motivational orientations.

YEAP, C.H. *et al.* (2007) identified a positive shift in perceptions among lower secondary students following the integration of the HVWSHE curriculum. In comparison, the present study reveals notable variations in attitudes among Hungarian students as they progress through their educational trajectories. This observation lends support to the conclusion of YEAP, C.H. *et al.* (2007) that targeted educational strategies can effectively foster improved water-related perceptions among specific age groups. Moreover, the findings of YEAP, C.H. *et al.* (2007) emphasize the importance of continuous educational initiatives to maintain students' engagement and awareness about water-related issues. The present study corroborates this notion, as it reveals a decline in students' sense of responsibility and willingness to intervene in environmental matters during the seventh and eighth grades. This trend underscores the necessity for sustained educational programs that aim to reinforce positive attitudes toward water conservation as students mature. However, it is crucial to underscore that the findings of VARJAS, J. (2021, 2022) point to a decline in the level of expectations regarding environmental education within

the National Core Curriculum 2020. This decline presents a challenge in the context of Hungary, potentially impeding the efficacy of environmental education initiatives aimed at fostering positive attitudes and awareness about water among students.

The value of the revised and validated questionnaire lies primarily in its potential to advance research on environmental and water-related attitudes in Hungary and other European contexts. As a robust instrument, it enables systematic assessment of students' attitudes toward water and environmental issues, offering reliable data for academic inquiry. The scale also supports longitudinal investigations, allowing researchers to track developmental changes across age cohorts and to evaluate the long-term impact of specific educational interventions. Furthermore, its adaptability to diverse European contexts ensures that it can be modified to reflect regional environmental challenges and cultural specificities, thereby contributing to comparative studies and cross-national educational research.

Beyond its research value, the revised Water Attitude Scale provides direct pedagogical benefits. It can function as a formative tool, offering feedback that supports curriculum development and instructional design aimed at strengthening environmental education. Teachers may use the instrument to better understand students' perceptions, to identify opportunities for integrating water-related issues into everyday teaching, and to foster critical awareness of sustainability. In teacher training, the questionnaire can help future educators develop strategies for meaningful student engagement, while in practice it may encourage reflective pedagogy and evidence-based decision-making. By enabling comparative insights across different school contexts, the scale not only informs classroom practice but also contributes to broader educational policy discussions.

One important omission concerns the dimension of indirect water use, which refers to the hidden water footprint of energy production, food consumption, and material goods. This construct was not included

in the original WAS developed by YEAP, C.H. *et al.* (2007), and therefore it was not part of the Hungarian adaptation either. While pedagogically relevant, its assessment poses challenges with students aged 10–14, as the concept requires abstract reasoning about production and consumption chains that exceed their everyday experience. Nevertheless, introducing indirect water use through project-based or experiential learning may represent an important future direction in environmental education, and future questionnaire adaptations might incorporate simplified items targeting this dimension.

Some items, such as reporting leaks, tampering with meters, or questions of social equity, may appear to exceed the immediate experience of 10–14-year-old students. We acknowledge this potential limitation. At the same time, our findings suggest that students were able to provide consistent responses, indicating that they can engage with such issues at an attitudinal level even if not all of them encounter these situations in practice. As with many attitude measures, responses may be influenced by socially desirable norms, which is itself relevant in understanding how civic and environmental expectations are internalized during adolescence.

In order to further contextualize the Hungarian findings, it is useful to draw on related research from Central and Eastern Europe. Although these studies typically relied on different instruments rather than the Water Attitude Scale, they nonetheless reveal comparable regional dynamics. In Serbia, for instance, validation work identified a three-factor structure that emphasized the rejection of anthropocentrism and the salience of ecological crisis perceptions (Vdović, M. *et al.* 2024). A Czech study likewise confirmed that pro-environmental orientations among young people were present, but their internal consistency varied depending on the applied measurement tool, underscoring the challenges of transferring scales across contexts (LANÍKOVÁ, S. and ZÍKA, V. 2025). In Greece, the internal consistency of the NEP scale proved unsatisfactory, raising ques-

tions about its applicability in this cultural setting (MATSIORI, S.K. 2020). Polish findings, by contrast, suggested a two-factor solution reflecting an ambivalence between economic development priorities and environmental responsibility (DÝR, W. and PRUSÍK, M. 2020). Taken together, these results highlight that environmental attitudes in the region are strongly conditioned by socio-cultural and economic contexts, which not only reinforces the relevance of the Hungarian findings but also underscores the necessity of context-sensitive approaches in cross-cultural attitude research. Consequently, given that Hungarian public education traditionally places strong emphasis on lexical knowledge (i.e. the transmission of factual content), it is likely that students are relatively well equipped to understand even those items that may initially appear remote from their everyday experience—such as questions about water meters.

It should be noted that the findings of this research are subject to certain limitations that may affect their generalizability. Primarily, the study was conducted exclusively in the Southern Transdanubia region of Hungary, which may limit the applicability of the results to other geographic areas with differing environmental education contexts. In addition, the lack of responses from certain grades in some schools may introduce some bias and limit the robustness of the data. Another limitation is that socioeconomic variables (e.g. parental education, household resources) and finer-grained urban–rural distinctions were not available. These factors could have provided additional explanatory power and should be incorporated in future research.

Further research could be conducted in the form of longitudinal studies, tracking students' attitudes and awareness regarding water conservation throughout their educational trajectories. Such investigations would provide deeper insights into the evolution of these attitudes over time and the effectiveness of educational interventions. Additionally, expanding the study to encompass multiple regions across Hungary would

enhance the generalizability of the findings and allow for comparative analyses of environmental attitudes in diverse educational settings. This approach could yield valuable data on regional differences in environmental awareness and inform the development of targeted educational strategies to address specific community needs.

Acknowledgement: The study was conducted with the support of the Kriszbacher Ildikó Talent Development Program at the University of Pécs for the 2024/2025 academic year (Project ID: PTE-KITEP-2024-357).

REFERENCES

AJDUKOVIC, I., GILIBERT, D. and FOINTIAT, V. 2019. Structural confirmation of the 24-item Environmental Attitude Inventory. *PsyEcology: Bilingual Journal of Environmental Psychology* 10. (2): 184–216. <https://doi.org/10.1080/21711976.2019.1586140>

AMAHIMID, O., EL GUAMRI, Y., YAZIDI, M., RAZOKI, B., KAID RASSOU, K., RAKIBI, Y., KNINI, G. and EL OUARDI, T. 2019. Water education in school curricula: impact on children knowledge, attitudes and behaviours towards water use. *International Research in Geographical and Environmental Education* 28. (3): 178–193. <https://doi.org/10.1080/10382046.2018.1513446>

ANDL, H. 2023. „A sorsunk közös.” Falvak és iskolák (“We share a common destiny.” Villages and schools). *Educatio* 32. (2): 257–273. <https://doi.org/10.1556/2063.32.2023.2.6>

ANDRADE, E., SEOANE, G., VELAY, L. and SABUCEDO, J.-M. 2021. Multidimensional model of environmental attitudes: Evidence supporting an abbreviated measure in Spanish. *International Journal of Environmental Research and Public Health* 18. (9): 4438. <https://doi.org/10.3390/ijerph18094438>

AYŞU, B., ARAL, N., AYDOĞDU, F. and GÜRSOY, F. 2025. Children's attitudes towards water: A scale development study. *Frontiers in Education* 10. Online publication. <https://doi.org/10.3389/feduc.2025.1552082>

BENARROCH, A., RODRIGUEZ-SERRANO, M. and RAMÍREZ-SEGADO, A. 2021. New water culture versus the traditional design and validation of a questionnaire to discriminate between both. *Sustainability* 13. (4): 2174. <https://doi.org/10.3390/su13042174>

BERZE, I.Z., VARGA, A., MÓNUS, F. and DÜLL, A. 2024. Measuring the environmental worldview of Hungarian students. A confirmatory study on the dimensionality and validity of the Hungarian version of the NEP scale for children. *Magyar Pszichológiai Szemle / Hungarian Review of Psychology* 78. (4): 647–673. <https://doi.org/10.1556/0016.2023.00068>

BODÓ, A. and ALPEK, B.L. 2024. A környezettudatos gondolkodás és magatartás vizsgálata a Pécsi járásban (Examination of the environmentally conscious thinking and behaviour in the district of Pécs). *Modern Geográfia* 19. (3): 13–24. <https://doi.org/10.15170/MG.2024.19.03.02>

BRAUN, T., COTTRELL, R. and DIERKES, P. 2018. Fostering changes in attitude, knowledge and behaviour: Demographic variation in environmental education effects. *Environmental Education Research* 24. (6): 899–920. <https://doi.org/10.1080/13504622.2017.1343279>

BROWN, T. A. 2015. *Confirmatory Factor Analysis for Applied Research*. New York, Guilford Press.

BUCKINGHAM, B.R., McCALL, W.A., OTIS, A.S., RUGG, H.O., TRABUE, M.R. and COURTIS, S.A. 1921. Report of the Standardization Committee. *Journal of Educational Research* 4. (1): 78–80.

DIESER, O. and BOGNER, F.X. 2016. Young people's cognitive achievement as fostered by hands-on-centred environmental education. *Environmental Education Research* 22. (7): 943–957. <https://doi.org/10.1080/13504622.2015.1054265>

DiSTEFANO, C. and HESS, B. 2005. Using confirmatory factor analysis for construct validation: An empirical review. *Journal of Psychoeducational Assessment* 23. (3): 225–241. <https://doi.org/10.1177/07342890502300303>

DYR, W. and PRUSIK, M. 2020. Measurement of pro-ecological attitudes within new ecological paradigm in Polish current settings. *Social Psychological Bulletin* 15. (3): <https://doi.org/10.32872/spb.3697>

FINCH, H. 2006. Comparison of the performance of varimax and promax rotations: Factor structure recovery for dichotomous items. *Journal of Educational Measurement* 43. (1): 39–52. <https://doi.org/10.1111/j.1745-3984.2006.00003.x>

FREED, A. 2018. The relationship between university students' environmental identity, decision-making process, and behaviour. *Environmental Education Research* 24. (3): 474–475. <https://doi.org/10.1080/13504622.2017.1320705>

GALLI, F., BEDIN, L.M., STRELHOW, M.R.W. and SARRIERA, J.C. 2018. Propriedades psicométricas da escala de atitudes ambientais para crianças e da escala infantil de satisfação com o ambiente (Psychometric properties of the scale of environmental attitudes for children and the children's scale of satisfaction with the environment). *Psicologia: Teoria e Pesquisa* 34. e3454. <https://doi.org/10.1590/0102.3772e3454>

Global Water Partnership 2003. *Integrated Water Resources Management Toolbox: Sharing Knowledge for Equitable, Efficient and Sustainable Water Resources Management*. Stockholm, GWP.

GOODWIN, L.D. and LEECH, N.L. 2003. The meaning of validity in the new standards for educational and psychological testing: *Measurement and Evaluation in Counseling and Development* 36. (3): 181–191. <https://doi.org/10.1080/07481756.2003.11909741>

GOPINATH, G. 2014. A study on environmental awareness among secondary school students in a district of Kerala State. *International Journal of Education and Psychological Research* 3. (2): 54–57.

GRANIT-DGANI, D., KAPLAN, A. and FLUM, H. 2017. Theory-based assessment in environmental education: A tool for formative evaluation. *Environmental Education Research* 23. (2): 269–299. <https://doi.org/10.1080/13504622.2016.1144172>

GROB, A. 1995. A structural model of environmental attitudes and behaviour. *Journal of Environmental Psychology* 15. (3): 209–220. [https://doi.org/10.1016/0272-4944\(95\)90004-7](https://doi.org/10.1016/0272-4944(95)90004-7)

GRØNHØJ, A. and HUBERT, M. 2022. Are we a growing a green generation? Exploring young people's pro-environmental orientation over time. *Journal of Marketing Management* 38. (9–10): 844–865. <https://doi.org/10.1080/0267257X.2021.2005664>

HUNDEMER, S., MONROE, M.C. and KAPLAN, D. 2022. The water science communication problem: Water knowledge and the acceptance or rejection of water science. *Journal of Hydrology* 604. 127230. <https://doi.org/10.1016/j.jhydrol.2021.127230>

HURLIMANN, A., DOLNICAR, S. and MEYER, P. 2009. Understanding behaviour to inform water supply management in developed nations – A review of literature, conceptual model and research agenda. *Journal of Environmental Management* 91. (1): 47–56. <https://doi.org/10.1016/j.jenvman.2009.07.014>

JACKSON, S. 2011. Aboriginal access to water in Australia: Opportunities and constraints. In *Water Resources Planning and Management*. Eds.: QUENTIN GRAFRON, R. and HUSSEY, K., Cambridge, Cambridge University Press, 601–628. <https://doi.org/10.1017/CBO9780511974304.031>

JANKÓ, F., BERTALAN, L., HOSCHEK, M., KOMORNOKI, K., NÉMETH, N. and PAPP-VANCSÓ, J. 2018. Perception, understanding and action: Attitudes of climate change in the Hungarian population. *Hungarian Geographical Bulletin* 67. (2): 159–171. <https://doi.org/10.15201/hungeobull.67.2.4>

KHADEMI, A., WELLS, C.S., OLIVERI, M.E. and VILLALONGA-OLIVES, E. 2023. Examining appropriacy of CFI and TLI cutoff value in multiple-group CFA test of measurement invariance to enhance accuracy of test score interpretation. *Sage Open* 13. (4): 1–11. <https://doi.org/10.1177/21582440231205354>

KNEKTA, E., RUNYON, C. and EDDY, S. 2019. One size doesn't fit all: Using factor analysis to gather validity evidence when using surveys in your research. *CBE – Life Sciences Education* 18. (1): 1–17. <https://doi.org/10.1187/cbe.18-04-0064>

KÓNYA, G. 2019. Középiskolások környezeti attitűdjét meghatározó tényezők vizsgálata (Investigation of factors influencing environmental attitudes among high school students). Doctoral thesis, Sopron, University of Sopron.

KOPNINA, H. 2011. Qualitative revision of the new ecological paradigm (NEP) scale for children. *International Journal of Environmental Research* 5. (4): 1025–1034. <https://www.researchgate.net/publication/267153409>

KOVAČEVIĆ-MAJKIĆ, J., ČALIĆ, J., MICIĆ, J., BRANKOV, J., MILANOVIĆ, R. and TELBISZ, T. 2022. Public knowledge on karst and protected areas: A case study of Tara National Park, Serbia. *Hungarian Geographical Bulletin* 71. (2): 163–179. <https://doi.org/10.15201/hungeobull.71.2.5>

LAHIRI-DUTT, K. 2020. Knowledge others, others' knowledge. *Ecology, Economy and Society – the INSEE Journal* 3. (2): 113–123. <https://doi.org/10.37773/ees.v3i2.226>

LANÍKOVÁ, S. and ZÍKA, V. 2025. Validation of environmental scales on a Czech sample. *PsyArXiv*. Article in review. https://doi.org/10.31234/osf.io/qf8kv_v1

LEEMING, F.C., DWYER, W.O. and BRACKEN, B.A. 1995. Children's environmental attitude and knowledge scale: Construction and validation. *The Journal of Environmental Education* 26. (3): 22–31. <https://doi.org/10.1080/00958964.1995.9941442>

LIEFLÄNDER, A.K. and BOGNER, F.X. 2018. Educational impact on the relationship of environmental knowledge and attitudes. *Environmental Education Research* 24. (4): 611–624. <https://doi.org/10.1080/13504622.2016.1188265>

LIGORIO, M.B. 2010. Dialogical relationship between identity and learning. *Culture and Psychology* 16. (1): 93–107. <https://doi.org/10.1177/1354067X09353206>

MAMAT, M.N. and MOKHTAR, F. 2012. Reliable assessment model for affective environmental education: Rasch model made simple. In *Proceedings, 2012 International Conference on E-Learning and E-Technologies in Education (ICEEE)*. Piscataway, NJ, IEEE, 171–174. <https://doi.org/10.1109/ICeLeTE.2012.6333387>

MATSIORI, S.K. 2020. Application of the new environmental paradigm to Greece: A critical case study. *Economic Analysis and Policy* 66. 335–344. <https://doi.org/10.1016/j.eap.2020.02.010>

MILFONT, T.L. and DUCKITT, J. 2010. The environmental attitudes inventory: A valid and reliable measure to assess the structure of environmental attitudes. *Journal of Environmental Psychology* 30. (1): 80–94. <https://doi.org/10.1016/j.jenvp.2009.09.001>

MOHajan, H.K. 2017. Two criteria for good measurements in research: Validity and reliability. *Annals of Spiru Haret University. Economic Series* 17. (4): 59–82. <https://doi.org/10.26458/1746>

MOORE, S., MURPHY, M. and WATSON, R. 1994. A longitudinal study of domestic water conservation behaviour. *Population and Environment* 16. (2): 175–189. <https://doi.org/10.1007/BF02208782>

MORENO, I., AMÉRIGO, M. and GARCÍA, J.A. 2016. Design and application of an environmental attitudes scale in primary education. *PsyEcology: Bilingual Journal of Environmental Psychology* 7. (1): 64–88. <https://doi.org/10.1080/21711976.2015.1114217>

MOSTACEDO-MARASOVIC, S.-J., MOTT, B.C., WHITE, H. and FORBES, C.T. 2023. Towards water literacy: Analysis of standards for teaching and learning about water on Earth. *Journal of Geoscience Education* 71. (2): 192–207. <https://doi.org/10.1080/10899995.2022.2112490>

MUSSER, L.M. and MALKUS, A.J. 1994. The children's attitudes toward the environment scale. *The Journal of Environmental Education* 25. (3): 22–26. <https://doi.org/10.1080/00958964.1994.9941954>

NEAL, P. and PALMER, J. 1994. *The Handbook of Environmental Education*. London, Routledge. <https://doi.org/10.4324/9780203422021>

NEWMAN, T.P. and FERNANDES, R. 2016. A re-assessment of factors associated with environmental concern and behaviour using the 2010 General Social Survey. *Environmental Education Research* 22. (2): 153–175. <https://doi.org/10.1080/13504622.2014.999227>

NGAN, S.F. and LI, C.S. 2025. Applying environmental attitudes of pre-service preschool teacher scale and its subscales to investigate the environmental attitudes of pre-service preschool teachers using the Rasch psychometric approach. *Social Sciences and Humanities Open* 12. 101768. <https://doi.org/10.1016/j.ssho.2025.101768>

OTTO, S., EVANS, G.W., MOON, M.J. and KAISER, F.G. 2019. The development of children's environmental attitude and behaviour. *Global Environmental Change* 58. 101947. <https://doi.org/10.1016/j.gloenvcha.2019.101947>

PAGANO, L.P., GAROFALO, C., MAZZESCHI, C., DE CARO, E.F. and DELVECCHIO, E. 2025. A systematic review of environmental identity: Definitions, measurement tools, and future directions. *Journal of Environmental Psychology* 105. 102657. <https://doi.org/10.1016/j.jenvp.2025.102657>

PALOZZI, J.E., HARPER, N.J. and SHACKELFORD, N. 2025. From plants to pedagogies: reviewing environmental education pedagogies with a systems thinking approach to aid curricula development. *Environmental Education Research* 31. (7): 1509–1531. <https://doi.org/10.1080/13504622.2024.2437694>

RAMÍREZ-SEGADO, A., RODRÍGUEZ-SERRANO, M., CASTRO-VELÁSQUEZ, F.E. and BENARROCH, A.B. 2023. Knowledge of trainee teachers about the new water culture: A comparative study between two Spanish cities. *Sustainability* 15. (18): 13672. <https://doi.org/10.3390/su151813672>

REJESKI, D.W. 1982. Children look at nature: Environmental perception and education. *The Journal of Environmental Education* 13. (4): 27–40. <https://doi.org/10.1080/00958964.1982.9942653>

REVELLE, W. 2018. *Psych: Procedures for Psychological, Psychometric, and Personality Research*. Evanstone, IL,

Northwestern University. <https://CRAN.R-project.org/package=psych>

Ríos, J. and WELLS, C. 2014. Validity evidence based on internal structure. *Psicothema* 26. (1): 108–116. <https://doi.org/10.7334/psicothema2013.260>

Rosa, C.D., COLLADO, S. and LARSON, L.R. 2022. The utility and limitations of the new ecological paradigm scale for children. *The Journal of Environmental Education* 53. (2): 87–98. <https://doi.org/10.1080/00958964.2022.2044281>

SCHAAP, W. and van STEENBERGEN, F. 2001. *Ideas for Water Awareness Campaigns*. Stockholm, GWP.

SEELEN, L.M.S., FLAIM, G., JENNINGS, E. and DE SENERPONT DOMIS, L.N. 2019. Saving water for the future: Public awareness of water usage and water quality. *Journal of Environmental Management* 242. 246–257. <https://doi.org/10.1016/j.jenvman.2019.04.047>

SHI, D., LEE, T. and MAYDEU-OLIVARES, A. 2019. Understanding the model size effect on SEM fit indices. *Educational and Psychological Measurement* 79. (2): 310–334. <https://doi.org/10.1177/0013164418783530>

SINDIK, J. and ARAYA, Y.N. 2013. Raising awareness about water issues: The role of water symbolism and proverbs. *Journal of Water Resource and Protection* 5. (4): 34–39. <https://doi.org/10.4236/jwarp.2013.54A006>

SLANEY, K. 2017. *Validating Psychological Constructs*. Cham, Palgrave Macmillan. <https://doi.org/10.1057/978-1-37-38523-9>

STREINER, D.L., NORMAN, G.R. and CAIRNEY, J. 2015. *Health Measurement Scales*. Oxford, Oxford Medicine Online. <https://doi.org/10.1093/med/9780199685219.001.0001>

SUTTON, S.G. and GYURIS, E. 2015. Optimizing the environmental attitudes inventory. *International Journal of Sustainability in Higher Education* 16. (1): 16–33. <https://doi.org/10.1108/IJSHE-03-2013-0027>

TAVAKOL, M. and WETZEL, A. 2020. Factor analysis: A means for theory and instrument development in support of construct validity. *International Journal of Medical Education* 11. 245–247. <https://doi.org/10.5116/ijme.5f96.0f4a>

THOMPSON, B. and DANIEL, L.G. 1996. Factor analytic evidence for the construct validity of scores: A historical overview and some guidelines. *Educational and Psychological Measurement* 56. (2): 197–208. <https://doi.org/10.1177/0013164496056002001>

United Nations 1978. Intergovernmental Conference on Environmental Education, Tbilisi, USSR, 14–26 October 1977. Final report. United Nations.

United Nations 2010. Resolution adopted by the General Assembly on 28 July 2010. Resolution A/RES/64/292. United Nations.

United Nations 2023. The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water. United Nations.

United Nations 2024. The United Nations World Water Development Report 2024: Water for Prosperity and Peace. United Nations.

VARJAS, J. 2021. A fenntartható fejlődés megjelenése Magyarország és Anglia földrajztanterveiben (Sustainable development in the geography curricula of Hungary and England). *Modern Geográfia* 16. (2): 21–41. <https://doi.org/10.15170/MG.2021.16.02.02>

VARJAS, J. 2022. The presence of sustainability in Hungarian geography textbooks. *European Journal of Geography* 13. (1): 22–46. <https://doi.org/10.48088/EJG.J.VAR.13.1.22.46>

VDOVIĆ, M., HAGEN, M., SIMONOVIĆ, A., AVRAMOVIĆ, N. and MILOŠEVIĆ-ĐORĐEVIĆ, J. 2024. Psychometric properties of the new ecological paradigm scale (NEP). *Psiholoska Istrazivanja* 27. (2): 267–295. <https://doi.org/10.5937/PSISTRA0-47664>

VINCENT, S. and FOCHT, W. 2009. US higher education environmental program managers' perspectives on curriculum design and core competencies. *International Journal of Sustainability in Higher Education* 10. (2): 164–183. <https://doi.org/10.1108/14676370910945963>

VUCETICH, J.A., BRUSKOTTER, J.T., GHASEMI, B., RAPP, C.E., NELSON, M.P. and SLAGLE, K.M. 2024. A flexible inventory of survey items for environmental concepts generated via special attention to content validity and item response theory. *Sustainability* 16. (5): 1916. <https://doi.org/10.3390/su16051916>

WALSH-DANESHMANDI, A. and MACLACHLAN, M. 2006. Toward effective evaluation of environmental education: Validity of the children's environmental attitudes and knowledge scale using data from a sample of Irish adolescents. *The Journal of Environmental Education* 37. (2): 13–23. <https://doi.org/10.3200/JEEE.37.2.13-23>

WILFONG, M., PAOLISSO, M. and TROMBLEY, J. 2023. Introduction: Applying anthropology to water. *Human Organization* 82. (3): 197–208. <https://doi.org/10.17730/1938-3525-82.3.197>

YEAP, C.H., NG KHAR, T., WAHYUDI, Y., CHEAH, U.H. and DEVADSON, R.P. 2007. Development of a questionnaire to assess student's perceptions in values-based water education. Paper to the International Conference on Science and Maths Education (COSMED), Penang, Malaysia, 13–16 November 2007. <https://www.researchgate.net/publication/228640245>

YU, J.-H., LIN, H.-H., LO, Y.-C., TSENG, K.-C. and HSU, C.-H. 2021. Measures to cope with the impact of climate change and drought in the Island Region: A study of the water literacy awareness, attitude, and behaviour of the Taiwanese public. *Water* 13. (13): 1799. <https://doi.org/10.3390/w13131799>

ZHU, Z., WANG, H. and LI, A. 2019. On the factors influencing public knowledge and acceptance of reclaimed water from a survey of three cities in northern China. *Journal of Water Reuse and Desalination* 9. (2): 193–202. <https://doi.org/10.2166/wrd.2018.049>

Appendix A

The modified WAS scale. (Questions to be deleted by CFA are marked in red)

Grade: _____

Gender: _____ (boy/girl)

Circle where you live!

- a.) Municipality
- b.) Village
- c.) City

Circle what type of living environment you live in!

- a.) Single-family house
- b.) Apartment building (panel)

Other: _____

		Statement				Strongly Disagree	Disagree	Agree	Strongly Agree
Strongly Disagree	Disagree	Agree	Strongly Agree						
				I would like to work together with others to clean wells, sinks (sanitary) – faucets, showers, bathtubs etc.)					
				Maintaining the cleanliness of the toilet is too difficult. I can leave it to my parents or family to do that.					
				I would persuade others to save water even though I must try very hard.					
				Tempering with water meter measures water consumption in a house/apartment)					
				17 I appreciate the beauty of lakes, rivers and sea.					
				18 The water cycle stabilizes our environment. (without the water cycle, the ecosystem would be harmed)					
				19 Water is important to health.					
				20 Since there is no shortage of water in my school or home, I do not have to take much care about saving water.					
				21 Supplying water to homes is the responsibility of the government only.					
				22 Even there is enough water now, we should save water for future use.					
				23 Rich and poor people should be charged the same water tariff.					
				24 It is important for girls to have proper water supply and sanitation facilities as for boys.					
				25 I often make facilities clean for the next users.					
				26 Cutting down too many trees causes more erosion. (erosion = the degradation of land surfaces)					
				27 I like to walk along streams, rivers or beaches.					
				28 It is better not to report cases of water theft. One theft case does not cost much to the authority concerned.					
				29 It is as important for the poor to have proper water supply and sanitation facilities as for the rich.					
				Thank you very much for filling this out! If you have any additional comments, you can share them with us below:					

Decide whether you agree or disagree with the following statements! Mark the box with an X!

		Statement				Strongly Disagree	Disagree	Agree	Strongly Agree
Strongly Disagree	Disagree	Agree	Strongly Agree						
				1 It is alright to keep tap water running when brushing teeth.					
				2 Using high quality water or saltic water for gardening is wasteful.					
				3 It is important not to dirty drains, rivers, lakes, sea or catchment area.					
				4 I should report cases of water pipe leakage, water pump or any sanitation facility defects to my teachers or parents.					
				5 I would report water theft if I saw it. (e.g., someone uses a neighbor's water without paying for it)					
				6 Only people who cannot afford to pay water bill should try to save water.					
				7 I read books or follow news about water issues.					
				8 It is not necessary to discuss the values of water in school.					
				9 I like to share my knowledge about how to save water.					
				10 Water is cheap, we do not have to try hard to save it.					
				11 I have the responsibility to save water even there is enough for use.					
				12 I would like to participate in a water-saving campaign. (The purpose of this would be to encourage people to save water)					

Appendix B

The modified WAS scale (Final version)

1	It is all right to keep tap water running when brushing teeth.	14	Tampering with a water meter, or manipulating it, is wrong (a water meter measures household water use).
2	It is important not to dirty drains, rivers, lakes, sea, or catchment area.	15	I appreciate the beauty of lakes, rivers, and the sea.
3	If I see leakage in water pipes or at the toilet, I should tell my parents or teachers.	16	The water cycle stabilizes our environment (without the water cycle, ecosystems would be harmed).
4	I would report water theft if I see it (e.g. someone uses a neighbour's water without paying).	17	Water is important to health.
5	Only people who cannot afford to pay water bill should try to save water.	18	Since there is no water shortage in my school or home, I do not have to care much about saving water.
6	I read books or follow news about water issues.	19	Even if there is enough water now, we should still save water for future use.
7	It is not necessary to discuss the values of water in school.	20	Rich and poor people should be charged the same water tariff.
8	I like to share my knowledge about how to save water.	21	It is important for girls to have proper water supply and sanitation facilities just like boys.
9	Water is cheap, we do not have to try hard to save it.	22	I usually clean the sanitary facilities after use for the next user (sanitary facilities: taps, bathtubs, showerheads, etc.).
10	I have the responsibility to save water even when there is enough for use.	23	Cutting down too many trees causes more erosion (erosion: the degradation of soil/land).
11	I would like to participate in a water-saving campaign (whose goal is to encourage people to save water).	24	I like to walk along streams and rivers, and along lake shores.
12	I would like to work together with others to clean drinking fountains, sinks, or other sanitary fixtures (e.g. taps, showerheads, soap dispensers, etc.).	25	It is just as important for the poor to have proper water supply and sanitation facilities as for the rich.
13	I would persuade others to save water even though I have to try very hard.		

Note: The original Hungarian version of the validated questionnaire (mWAS) is available in *University of Pécs Institutional Repository* under <http://doi.org/10.15170/modifiedwasscale-2025>

Human-forest relationship in the Budapest agglomeration: an urban-rural divide among forest visitors

PRISZCILLA HAFENSCHER¹, GYÖRGY KUKELY², Árpád JÁNOS BÁRDI³,
LAURA BAZSÓ-BERTALAN¹, JUDIT PAPP-VANCSÓ¹ and FERENC JANKÓ⁴

Abstract

This paper conducted 1000n survey comprising 27 questions at five urban and semi-natural sample sites to analyse the human-forest relationship in Budapest and its suburban areas. The study examines the relationship between the respondent residence types – the urban-rural divide – forest use, human-nature connectedness (HNC), environment-related well-being, and activities categorized under pro-environmental behaviour (PEB). The present study employed statistical analysis with the R statistical program. The results revealed significant differences between respondents living in Budapest, suburban areas, and rural areas. Budapest residents and suburban dwellers spend less time visiting forests but hold more positive views of Hungary's environmental status. People living in Budapest also had a significantly lower nature dependency score determined by living conditions (-) and education (+). Moreover, pro-environmental habits were slightly higher among city dwellers but lower among suburban newcomers. Education levels also proved to be a more significant variable in determining whether respondents supported green policies. A further finding indicates surveys conducted in natural settings may also influence and fortify respondents' forest valuation, HNC, and PEB.

Keywords: forest, Budapest, suburbanization, pro-environmental behaviour, human-nature connectedness

Received April 2025, accepted November 2025.

Introduction

Natural environments serve various social functions in cities and provide fundamental ecosystem services to urban populations. Related research has increasingly addressed environmental attitudes and climate change adaptation involving nature-based solutions or green infrastructure in cities (Szkordilisz, F. *et al.* 2018;

ČOREJOVÁ, T. *et al.* 2021; KOLCSÁR, R.A. *et al.* 2022; CEROVČEKI, M.T. and STIPERSKI, Z. 2024; PRÖBSTL-HAIDER, U. *et al.* 2024). Forests within and in the vicinity of urban agglomerations have faced a larger environmental load since the COVID-19 pandemic (WEINBRENNER, H. *et al.* 2021; CIESIELSKI, M. *et al.* 2023; PICHLEROVÁ, M. *et al.* 2023). Although some research on the environment-related urban-rural divide has

¹ Institute of Ecological Economics Alexandre Lamfalussy Faculty of Economics, University of Sopron, Erzsébet u. 9. H-9400, Sopron, Hungary. E-mails and ORCIDs: haf.viktoria@gmail.com, ORCID: 0000-0002-5618-8773; bertalan.laura@uni-sopron.hu, ORCID: 0000-0002-1199-9257; vancso.judit@uni-sopron.hu, ORCID: 0009-0003-2053-3883

² Department of Social and Economic Geography, Institute of Geography and Earth Sciences, Faculty of Science, ELTE Eötvös Loránd University, Pázmány P. st. 1/c. H-1117 Budapest, Hungary. E-mail: gyorgy.kukely@ttk.elte.hu, ORCID: 0000-0002-2259-6584

³ Institute of Pedagogy, Faculty of Pedagogy, Károli Gáspár University of the Reformed Church in Hungary, Hősök tere 5. H-2750 Nagykőrös, Hungary. E-mail: bardi.arpad@kre.hu, ORCID: 0009-0007-7001-9937

⁴ Department of Social and Economic Geography, Institute of Geography and Earth Sciences, Faculty of Science, ELTE Eötvös Loránd University, Pázmány P. st. 1/c. H-1117 Budapest, Hungary; Institute of Ecological Economics Alexandre Lamfalussy Faculty of Economics, University of Sopron, Erzsébet u. 9. H-9400 Sopron, Hungary. Corresponding author's e-mail: janko.ferenc@ttk.elte.hu, ORCID: 0000-0003-1149-6745

been conducted (ARCURY, T.A. and CHRIS-TIANSON, E.H. 1993; BERENGUER, J. *et al.* 2005; YU, X. 2014; DĄBROWSKI, L.S. *et al.* 2022), few studies have focused on how various geographical factors, such as distance from forests and residence types, influence forest use. Furthermore, knowledge in this field is still incomplete, particularly concerning how forest use influences environment-related well-being and activities (BOWLER, D. *et al.* 2010; OH, B. *et al.* 2017). The role of forests in human-nature connectedness (HNC) and pro-environmental behaviour (PEB) is underrepresented in the literature (HÄYRINEN, L. and PYNNÖNEN, S. 2020). Filling this gap is vital and contributes to the research questions in the present study on forest use in Budapest and its suburban zone. The research questions are: (1) How does residence type influence forest use habits and environmental consciousness? (2) How do residence type and forest use behaviour influence environment-related well-being and activities? (3) What is the role of forests in HNC and PEB?

Budapest and its suburban zone are vital, continuously monitored areas where the post-socialist (sub)urban transformation has been intensely analysed since the country's political transition (BARTA, Gy. 1999; KOK, H. and Kovács, Z. 1999; Kovács, Z. and Tosics, I. 2014; Kocsis, J.B. 2015; Kovács, Z. *et al.* 2019; EGEDY, T. *et al.* 2024). Many environmental aspects have been raised, including environmental conflicts, ecological footprint comparisons, and others (ILLYÉS, Z. *et al.* 2016; Kovács, Z. *et al.* 2020, 2022); however, research has not addressed urban or peri-urban forest use.

Theoretical background

Environmental studies have developed various concepts to grasp the essence of the human relationship with nature and human behaviour related to the environment. Concepts like human-nature-connectedness (HNC, sometimes as "connectedness to nature") and pro-environmental behaviour (PEB) form the theoretical signposts of our

study. In a psychological sense, HNC could be understood as how close humans feel towards nature and how we include our relationship to nature in our identities. Relatedly, the way humans think about nature's values and utilities also modifies the human-nature relationship (LENGIEZA, M.L. and AVISTE, R. 2025). Under pro-environmental behaviour, we include many actions that mitigate environmental impact via consumption, mobility, energy use, green activism, or foster adaptation to environmental challenges (LANGE, F. and DEWITTE, S. 2019). A central issue behind these concepts is whether and how the natural environment affects our daily lives, routines, activities, and thinking, as well as our direct behaviour towards nature. Consensus in environmental psychology literature indicates that our relationship with nature impacts our environmental behaviour (LENGIEZA, M.L. and AVISTE, R. 2025), and stronger connectedness aligns with greater engagement in PEB (WHITBURN, J. *et al.* 2019). There is also evidence that socio-economic and geographical factors (place of residence) impact HNC and PEB (MACIAS-ZAMBRANO, L. *et al.* 2024); however, whether and how environmental education reinforces our ties to nature and motivates PEB remains under debate (FLETCHER, R. 2017).

Another theoretical concept of the present study is the human–forest relationship (HFR), which is a particular formulation of HNC since forests play a determining role in our relationship with nature. Interestingly, only a few studies address forests in this sense (HÄYRINEN, L. and PYNNÖNEN, S. 2020). HFR "depicts a reciprocal relationship between humans and forests that is formed through personal experiences, life histories, as well as cultural and societal backgrounds and environmental settings" (HALLA, T. *et al.* 2023). A strong HFR entails understanding the vital roles of forests that extend beyond technical and economic tools for effective sustainable forestry and address the cultural and spiritual values of forests (RITTER, E. and DAUKSTA, D. 2013; HAFENSCHER, P. and JANKÓ, F. 2022).

Forest functions and types must also be considered to ensure a better understanding of HFR and form our perceptions about nature. Notable differences in human utilization, attitudes, and ecosystem services exist between urban forests, semi-natural forests, and forest reserves. Urban forests are part of the urban ecosystem and are ecologically, economically, and socially essential to sustainable urban development. Consequently, their main roles are anthropocentric and include climate change acclimatization, water purification, flood control, carbon storage, and recreation services (SOLOMU, A.D. *et al.* 2018). Semi-natural forests, which include secondary forests, also possess these capabilities; however, biodiversity preservation or economic interests play a far more prominent role in semi-natural forests (BIRÓ, M. *et al.* 2022). Tourists are usually banned from entering forest reserves to protect the self-regulating, natural ecosystems that are vital for gene preservation. Nevertheless, perceptions of natural forests might depend on residence locations and other factors (LUTZ, A.R. *et al.* 1999).

Perceptions about forests and nature depend on numerous factors, such as residence, media consumption habits, education, quality of life, cultural heritage, and individual experiences about being in nature and climate change impacts (HALLA, T. *et al.* 2023; LENGIEZA, M.L. and AVISTE, R. 2025). A European project revealed differences in local views of forests and their impact on the quality of life between macroregional rural regions. People who live in declining but forested areas, especially in Atlantic countries, view forests as a disadvantage. In contrast, Central European and Mediterranean countries with traditional forest areas hold positive views about forests (ELANDS, B.H.M. *et al.* 2004). Similarly, residents in timber-dependent rural regions are more informed, concerned about forest outputs, and regard forests from a practical perspective (GOULA, M. *et al.* 2015). Conversely, people in urban and non-timber-dependent rural areas are more concerned about maintaining recreational opportunities for personal use (RACEVSKIS,

L.A. and LUPI, F. 2006). Living conditions and education are also key factors in HFR (similarly in HNC and PEB). Higher socio-economic status enhances the willingness to pay for forest protection or sustainable forestry. However, in urban areas, opportunity also plays a role in the frequency and duration of forest visits (Kc, A. *et al.* 2014; ZHANG, M. 2022). On the other hand, demographic and employment factors might be insignificant for HNC (CARTWRIGHT, K. and MITTEN, D. 2017). Finally, exceptional events, such as bushfires, energy crises, or epidemics, also affect perceptions of forests. For instance, people visited forests more frequently but for shorter durations during the COVID-19 lockdown (WUNDERLICH, A.C. *et al.* 2023).

Although the literature has investigated social differences in environmental concerns, awareness, and PEB, it presents no unified method. Thus, findings are often controversial and difficult to compare (LANGE, F. and DEWITTE, S. 2019). For instance, GIFFORD, R. and NILSSON, A. (2014) found that PEB or environmental concern is usually greater among urban residents, whereas anthropocentric ecological views and sustainable practices are more common among rural people. Using a Polish sample, DĄBROWSKI, L.S. *et al.* (2022) also claimed that settlement type significantly influences the PEB of Generation Z. National cultural conditions are also decisive. Countries themselves may have a more pronounced effect than regions within a country. A survey in Chinese and Japanese cities found that Japanese people were satisfied with the state of the environment, while Chinese residents focused more on local problems (YINGCHAO, L. *et al.* 2011; see also YU, X. 2014).

Recent research also highlights distinct factors. Some studies demonstrated that the education factor and urban-rural differences are better indicators of climate change attitudes and skepticism (JANKÓ, F. *et al.* 2018; WECKROTH, M. and ALA-MANTILA, S. 2022). However, based on a national survey in England, ALCOCK, I. *et al.* (2020) reported that time spent in nature counted much more than residence in PEB. DEVILLE, N.V. *et al.*

(2021) reinforced this assumption in a narrative review but cautioned against the lack of longitudinal studies, since personal and social factors may also be important (see also: DUROY, Q.M. 2005; GIFFORD, R. and NILSSON, A. 2014). Overall, the literature reveals that research on how exposure to nature affects long-term attitudes toward nature and PEB is still incomplete.

Differences within the agglomeration population may stem from migration status, i.e. whether residents are newcomers or locals. For example, wealthy newcomers expressed the strongest environmental attitudes in Idaho, suggesting that newcomers from big cities could improve the environmental state of rural areas, but their proportion was negligible compared to the low-income, poorly educated locals (MCBETH, M.K. and FOSTER, R.H. 1994). However, this should not be the case in other neighbourhoods. Other studies used the urban gradient approach to identify varying attitudes toward urban forests but reported only slight value changes between urban and rural dwellers (SU, K. et al. 2022). Another open question is how suburban migration changes the environmental attitudes in urban agglomerations. Another research study from a vastly different place and time found that environmental and climate change concerns and pro-environmental norms are stronger in urban areas, independent of socio-economic status or political orientation (LARSON, L.R. et al. 2015).

Hungarian studies also demonstrate the crucial role of socio-economic background in determining environmental awareness (MÓNUS, F. 2019); however, a gap between environmental concern and PEB also exists as the correlation between the two is weak (JANKÓ, F. et al. 2018). KÓNYA, Gy. (2016) reinforced this weak correlation by concluding that studying environmental problems shaped emotions rather than behaviour. The “justification of non-behaviour” concept highlights the gap between positive environmental concern and lack of pro-environmental behaviour, i.e. lack of actions (KOLLMUSS, A. and AGYEMAN, J. 2002). For ex-

ample, one study investigating Americans and Hungarians discovered that the concept was valid for Americans, who justified their non-behaviour by dismissing individual actions as insignificant and claimed that recycling consumes more energy and creates more pollution than landfilling. Hungarians refused to justify non-behaviour despite high environmental concerns. Thus, the cognitive dissonance remained unresolved. Moreover, Hungarians had higher environmental concern and PEB, but these findings were gender-independent (KOVÁCS, J. et al. 2014).

Methods

Questionnaire survey

The present study is based on a 1000n questionnaire survey conducted in forests (urban and semi-natural forests), i.e. hot spot venues with touristic-recreational relevance. More broadly, the study area is part of the designated Budapest agglomeration area with 80 settlements, which more or less covers the area of suburbanization. Our basic aim was to address forest visitors and investigate their forest attitudes. Hence, the sample could not be representative of the entire population. Furthermore, it was also methodologically significant for us to survey within forests because we believe that respondents' environmental engagement and response abilities are better if the interviews occur *in situ* (LAKKONEN, A. et al. 2018).

Among the survey locations, two were in semi-natural forests in the Budapest surroundings, i.e. Dobogókő (200n, Pilis Mountains) and Királyréti (200n, Börzsöny Mountains). There were also three urban forest locations, one in the Buda Mountains closer to the city (200n, Normafa), and two on the Pest side of the Danube in outer quarters with strong local significance (Naplás-tó and Farkas-erdő, 200–200n). The paper-based survey was conducted in person with the help of BA university students, who were trained beforehand, in the autumn months of 2023.

The questionnaire included 27 questions and required about 20 minutes for respondents to complete. It covered diverse topics, but we tried to keep it brief to avoid a low response rate and interrupted fillings. Questions addressing socio-economic status were single-choice and open-ended. The 10-point Likert-scale questions were designed on Hungary's environmental state, respondents' mental and physical health, and nature dependency (connectedness). Single choice questions addressed forest-use habits on the goals, frequency, duration of, and travelling modes to forests. Another two questions focused on environmental valuation of forest use, and three focused on pro-environmental behaviour. Instead of using the travel cost method, we asked the respondents to choose from pre-given, market-based non-forest activities (in order from the cheapest to the most expensive) to determine the usefulness and enjoyment value of forest visits. Also, taking an opposing viewpoint, we asked the respondents to rate the environmental value of forests through their willingness to volunteer in forest maintenance. Finally, a group of 19 5-point Likert-scale questions addressed forest-related environmental knowledge (4 questions), the mindset about climate change (2), the support of green policy (10), or orthodox energy policy options (2).

The raw data were digitized in MS Excel, and the database was processed (filtering, categorization of open-ended questions, classification of respondents' residence types). Statistical analysis was conducted using the R statistical program.

Statistical analysis

The present study applied two grouping variables in the statistical analysis. It classified the respondents based on their situation and migration status in the Budapest area. Residence type distribution (Budapest, natives, and newcomers in the

suburban zone, countryside) was highly uneven among the respondents. Still, the statistical analysis was reliable due to the vast sample size (Table 1). Lines where residence was inapplicable were excluded from further analysis. The percentages of further variables were calculated separately for every residence type.

In line with our endeavours to conduct the survey *in situ* in forest locations, the second grouping variable was the location where the questionnaire was completed. RIECHERS, M. et al. (2021) also noted that landscape complexity and sense of place may influence HNC. Other explanatory variables were also used where relevant. Demographic features may affect behaviour and ideology; however, time spent in forests may have been decisive in some cases. Concerning the latter, a forest visit intensity index was calculated (Appendix 1).

Dependent variables were present at different scales: nominal, ordinal, Likert-scale, and numeric variables. Nominal variables were analysed with Fisher's exact test, which assesses whether the proportions of one variable are different depending on the value of the other variable. Ordinal variables were analysed with the Kruskal-Wallis H test, a nonparametric method (thus, appropriate for ordinal variables) for testing whether samples originated from the same distribution.

Variance analysis was applied to numeric variables (ANOVA). A further pairwise comparison was conducted when needed with Tukey's Honest Significant Difference test (Tukey HSD).

The 5-point Likert-scale data were examined using the special Likert-package from R (<https://CRAN.R-project.org/package=likert>). Here, the relevant Likert-scale question scores were summed to create a Green policy support score index (see Appendix 1).

Table 1. Distribution of residence types, %

Capital (Budapest)	Suburban (native)	Suburban (newcomer)	Countryside	No answer
61.13	21.76	7.12	7.91	2.08

Results

Environmental awareness and forest use

Assessment of the *environmental status of Hungary* varied widely between and within residence types. The most frequent scores on a 1 to 10 scale were 5, 6, and 7. However, 20 percent of the Budapest residents only gave a 4. At the same time, Budapest residents were the only ones who did not give less than a 4 on this question. Rural residents were the most likely to think that the environmental condition of Hungary was poor. Hungary's environmental status assessment was independent of the time and frequency of forest visits; most people scored middle values (4–6).

Relatedly, assessment of the *most serious local environmental problems* showed similarities between the residence types, as *Waste/dirt* was considered the most severe problem. In the capital and the suburb, the second most severe problem was *Air pollution*, while the third was the lack or scarcity of *Green areas*.

Countryside residents thought vice versa, while they also mentioned *industry* more. Other problems received only a negligible number of votes (Figure 1).

Forest activity was independent of residence type and forest visit intensity. Countryside respondents used forests for *food gathering* at a higher rate than others, but the difference was not significant. Similarly, time spent in the forest was not connected to residence type. Most noted "more than half of the free time" and "approximately half of the free time." If we consider forest visit frequency and free time activities other than forest visits together, we see that countryside dwellers visit forests to the greatest extent followed by native dwellers in the suburb (Figure 2). "Close to nature" activities (including implicitly forest related hiking, fishing, but also gardening etc.) were chosen to a greater extent by suburban residents, independent of whether they are native or newcomers. Third, urban habits like *sport/training* and *hobbies* showed higher rates among capital residents and suburban newcomers.

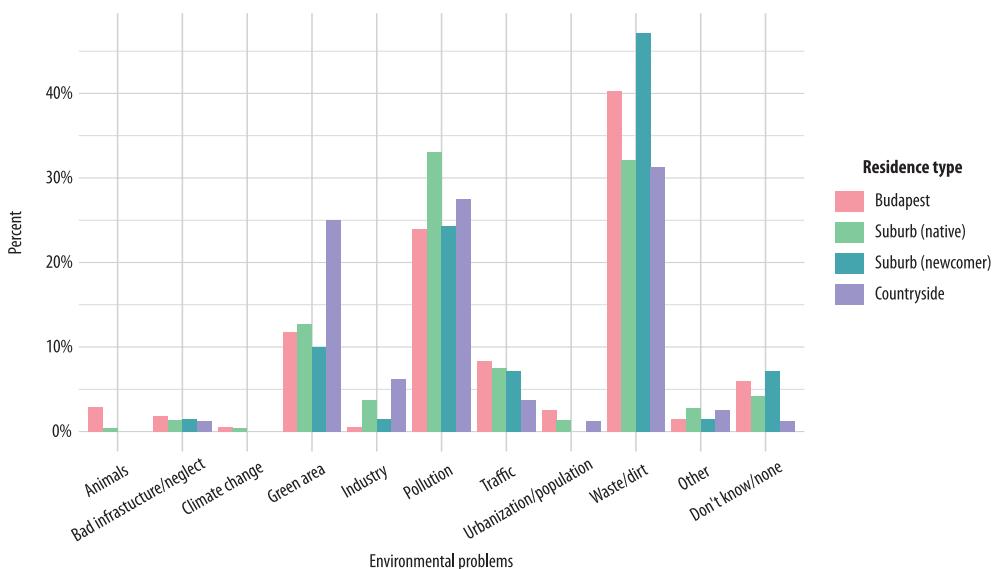


Fig. 1 The most serious environmental problems in the respondents' locality. Source: Authors' own elaboration.

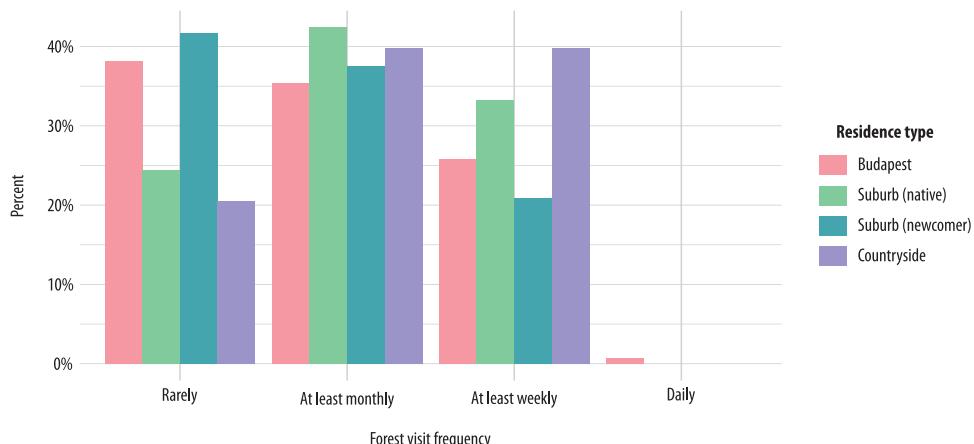


Fig. 2. The frequency of forest visits. Source: Authors' own elaboration.

Environment-related well-being, and nature connectedness

It was also vital for our research to address the respondents' environment-related well-being in connection with forest use and related activities. Our data showed that *mental health* was independent of residence type and *forest visit intensity*. Those living in the capital or the suburban zone (native) had better *physical health*, but *physical health* was independent of *forest visit intensity*. Many factors affect physical and mental health; however, residence type and forest visit intensity were not significant.

On the other hand, residence type was a decisive factor in nature dependency. Budapest residents had a significantly lower *nature dependency* score (ANOVA $F = 22.5$, $p < 0.001$) (Figure 3). *Forest visit intensity* also significantly affected the strength of nature dependency. Those who barely visited forests had a much weaker nature dependency score (ANOVA, $F = 24.56$, $p < 0.01$). However, those who rarely visited the forests were nearly as dependent on nature as those who spent much time in the woodlands.

Concerning demographic factors, nature dependency decreases with living condition improvement (Kruskal-Wallis chi-squared =

24.666, $df = 9$, p -value = 0.003) and increases with education level (Kruskal-Wallis chi-squared = 30.979, $df = 9$, p -value < 0.001). The place where people completed the questionnaire also had a significant effect. The highest nature dependency score was observable at *Dobogókő*, which is a spiritual place for many. Interestingly, *Farkas-erdő*, an urban forest, was in second place, while *Királyréth*, a semi-natural woodland, had the least nature-dependent visitors (Kruskal-Wallis chi-squared = 22.048, $df = 4$, $p < 0.001$) (Figure 4).

Role of forests in HNC and PEB

Some questions addressed the environmental valuation of the forests. The results showed that adding value to the forests was independent of residence type. People choose mostly the cheapest option (fitness, gym, yoga, dance, etc.) Suburban dwellers – both natives and newcomers – chose the medium-price option (having coffee or a beer with friends) at a slightly higher rate compared to capital and countryside residents. On the other hand, the frequency of forest visits had an inverse effect. Those who spent less time in forests were more willing to choose a more expensive option for a forest value equivalent. The venue

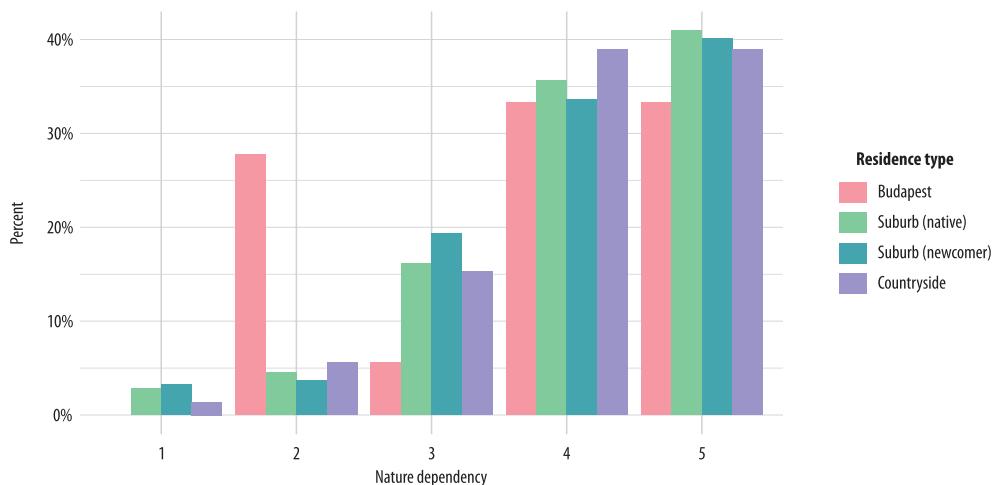


Fig. 3. Self-reported nature dependency of the respondents by residence types. Source: Authors' own elaboration.

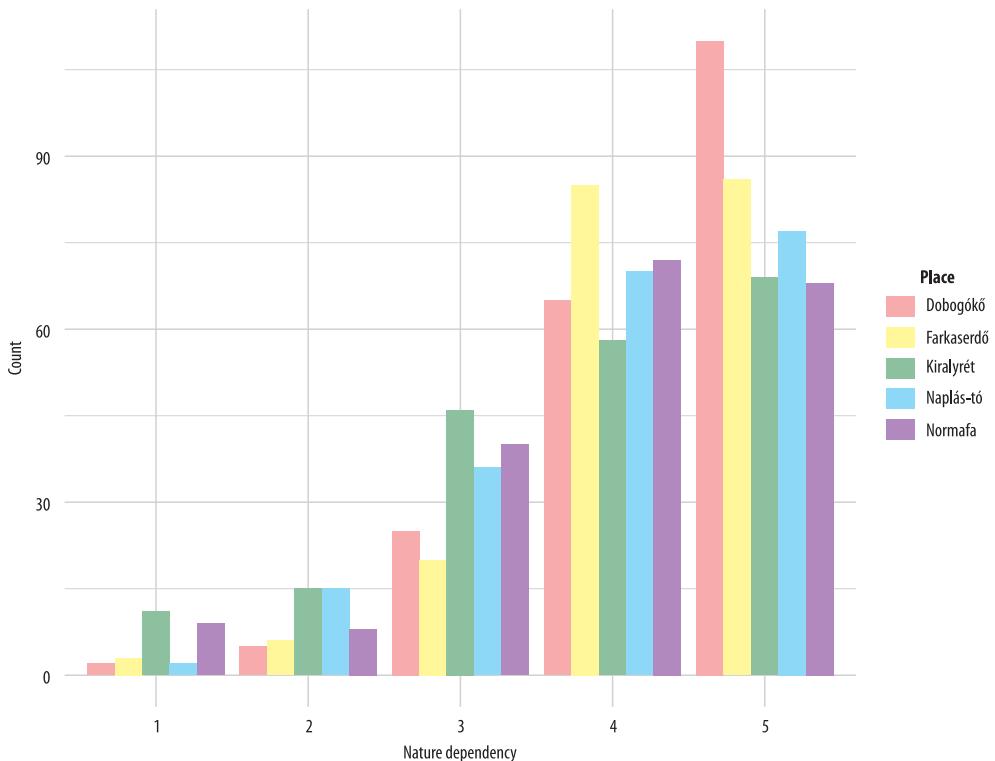


Fig. 4. Self-reported nature dependency of the respondents by the location of the survey. Source: Authors' own elaboration.

where questionnaires were completed also affected the value people assigned to forests. Although people chose the cheapest option at a higher rate at every location, this rate was the highest at *Királyrét*. At *Naplás-tó*, people were more willing to opt for slightly higher-priced options, followed by *Farkas-erdő* and *Normafa*. *Dobogókő* hikers most often chose the two most expensive forest value equivalents (Figure 5).

In the case of willingness to volunteer for forest maintenance and the questions addressing PEB, there were only slight, insignificant differences. Suburban newcomers garden the least and buy the least unpackaged goods. In volunteering, most respondents picked the choice that they would contribute to forest maintenance financially. However, if we consider the four questions on volunteering, food shopping, and garden-

ing as a PEB index, the difference would be significant; Budapest respondents have the highest and suburban newcomers have the lowest scores (see Appendix 1).

Knowledge and green policy support

As mentioned in the methods section, forest-related environmental knowledge, climate change, and willingness to support green policy/orthodox energy policy were addressed with 5-point Likert-scale questions (Figure. 6). Knowledge about Hungarian environmental issues was good; however, it was independent of all the explanatory variables (residence type, education, forest visit frequency).

Most respondents were willing to support green policy options. The green policy

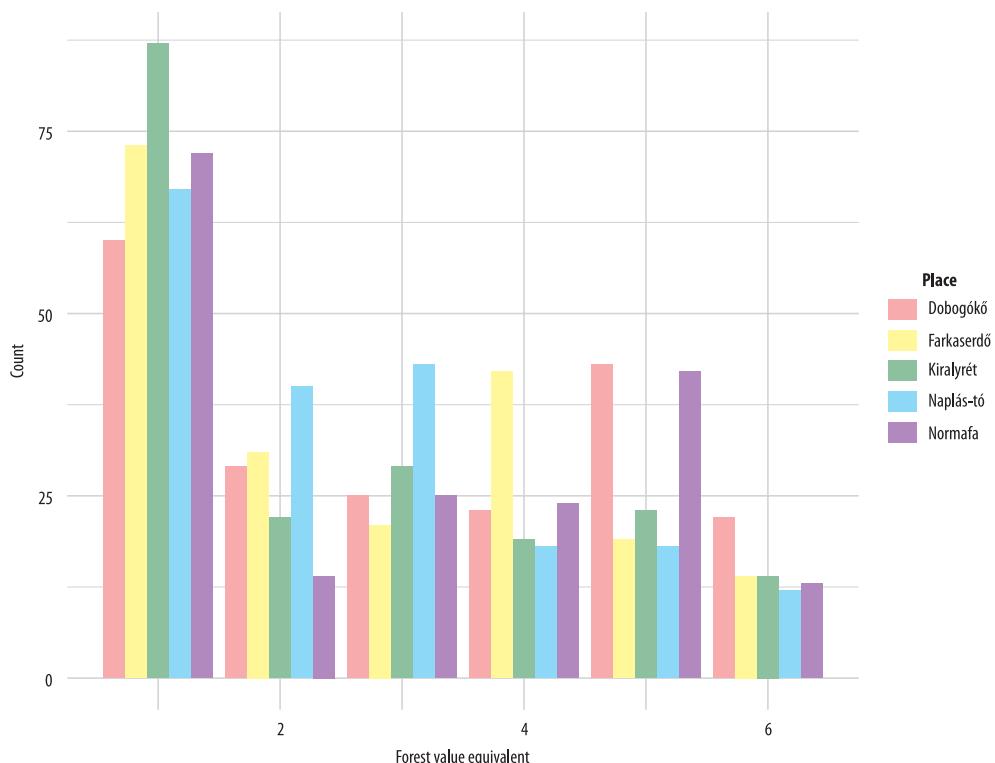


Fig. 5. Forest value equivalent scores in the light of the venue of the survey. Source: Authors' own elaboration.

Fig. 6. Answers to the Likert-scale questions. Source: Authors' own elaboration.

support score index was independent of the residence type and forest visit frequency; however, education level affected it positively. People with high school graduation and higher levels of education were more likely to support green policy initiatives (e.g. green area development, enlargement of nature conservation areas, wetland rehabilitations, wind energy developments, etc.) than those with only an elementary school degree (ANOVA $F = 4.64$, $p = 0.003$; Tukey HSD: Appendix 2). However, the reintroduction of large predators (wolves, bears, lynx) was a highly divisive issue. But again, the location of the survey had a significant effect on green policy support (Figure 7), as respondents expressed stronger green policy support at Dobogókő and Farkas-erdő (ANOVA $F = 13.41$, $p < 0.001$; Tukey HSD: Appendix 3).

Discussion

While the respondents were in general uncertain about the environmental status of the country, countryside respondents tended to regard the environmental situation in Hungary more negatively, perhaps due to so-called environmental amnesia (MILLER, J.R. 2005), i.e. urban residents have looser tights

to nature and experience the visibility problem (JANKÓ, F. et al. 2018; HAFENSCHER, P. and JANKÓ, F. 2022; VENNARI, E. and VENNARI, M. 2022), which could be factors in not seeing air pollution as a problem. However, it should be noted that the rural residents surveyed do not represent the whole countryside population of Hungary. Notably, climate change is not visible from bottom-up perspectives and only received a few mentions by the respondents.

Unsurprisingly, our data showed that (sub) urban residents have fewer opportunities to visit forests. Relatedly, those who moved

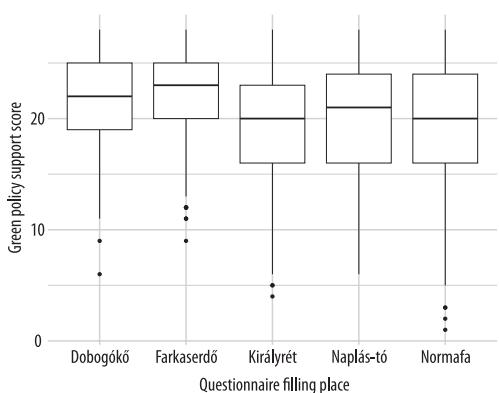


Fig. 7. Green policy support score in light of the venue of the survey. Source: Authors' own elaboration.

to the countryside from Budapest were not motivated explicitly by the proximity to forests but rather by other nature-related activities like gardening, which supplements the findings of the existing literature (KOK, H. and KOVÁCS, Z. 1999; BAJMÓCY, P. et al. 2011). However, suburban newcomers have fewer opportunities to practice gardening. Time-use patterns could explain these differences.

Although the literature provides evidence that nature exposure significantly contributes to physical and mental health (JMENEZ, M.P. et al. 2021; SCHÖNBACH, D.M.I. et al. 2022; WICKS, C. et al. 2022; NGUYEN, P.-Y. et al. 2023), our sample only partly supports this. The respondents' subjective self-scoring could explain these discrepancies.

Nature connectedness and dependence are at the forefront of research in environmental education. Our basic results using only one 10-point Likert-scale question correspond with the main arguments that countryside respondents feel closer to nature and depend more on it (NAVARRO, O. et al. 2022). Our data also showed that financial security reduces feelings of nature dependence. Education level revealed the opposite. People with higher education levels were more sensitive to environmental concerns. The frequency of forest visits also fortified feelings of nature dependency. Those who barely visited forests had a much weaker nature dependency score. This result concords with SCHÖNBACH, D.M.I. et al.'s one (2022); therefore, forests play a vital role in HNC; however, other factors are also meaningful, like socio-economic factors, living conditions, and education. These findings offer an interesting area for development in communication. The more prosperous should understand that the long-term maintenance of prosperity depends on natural resources. However, the relationship between HNC and demographic factors is uncertain in the literature (CARTWRIGHT, K. and MITTEN, D. 2017; WHITBURN, J. et al. 2020; MARCIAS-ZAMBRANO, L. et al. 2024).

The effect of the surveying locations on responses is also under investigation (CHIANG, Y.-C. et al. 2017). Our positive results here

on HNC could be explained by the fact that *Dobogókő* is a historic and transcendental place of the Hungarian hiking movement, while *Farkas-erdő* is a venue of natural beauty in contrast with the large housing estate nearby. *Normafa* and *Királyréth* are over-urbanized "forest gates" with added infrastructures. The surveying locations showed a notably similar pattern in the case of forest valuation and green policy support. However, our findings here are incomplete, and the issue should be investigated more fully in the future.

Furthermore, it is not surprising that respondents mostly chose the cheapest option in forest valuation. Also, it seems that those who spend less time in the forest tend to value the occasions more. When the valuation was modelled with the respondents' contingent volunteering action, respondents showed only a bit more willingness, hence a bit higher valuation. Concerning the pro-environmental indicators, there was only a slight difference, where Budapest residents showed higher engagement. These results are somewhat contradictory with their low nature connection; however, together with all our results, they strengthen the opinion in the reviewed literature that supports the existing urban-rural divide in environment-related attitudes. Infrastructure differences could be institutional barriers that hinder PEB (see in review: DIOBA, A. et al. 2024), i.e. people in Budapest have more opportunities to buy packaging-free products or fruits and vegetables from farmers' markets, while gardening is more accessible in the agglomeration and rural areas.

Our results raise the question of whether background factors like education, socio-economic status, ages of residents in residence types, and migration status explain the connections between HNC and PEB. To address this question, we applied an interaction and an additive model. Although the interaction between settlement type and income level (living conditions) proved to be statistically significant (e.g. Suburb.Q: Living.conditions⁵, $p = 0.0289$), the interaction model

resulted only in a modest improvement in explanatory power compared to the additive model (e.g. a minimal increase in R^2). This suggests that while some interaction effect may be present, the more complex model does not offer substantially better predictive accuracy. Therefore, the additive model was kept as the primary analytical framework.

The present paper faced some study limitations. First, Budapest residents comprise a more heterogeneous population compared to the other subsamples scattered across a wide spectrum according to livelihood, local environments, etc. The study could not control these in its sample. Second, our survey ignored the effects of politico-environmental ideologies on respondents' thinking about the topic; Hungarian political circumstances hardly contribute to meaningful dialogues in an explicit form. Third, our survey addressed forest visitors and not the entire population. Thus, the study is non-representative; however, the sample size made it possible to analyse some correlation in the suburban area of Budapest.

Conclusions

The present study aimed to fill a research gap concerning the role of forests in environment-related well-being and activities and better understand how residence type and related factors affect forest use, HNC, and PEB in the Hungarian capital and its suburban area. Our results showed that there are some significant connections; the urban-rural divide was most visible in the case of environmental awareness and problems, self-reported HNC, and some PEB measures; however, other cases did not offer clear explanations in this direction. What is more, our results not only underscore the importance of sociodemographic factors that could have a role in considering some issues, but the venue of the survey could also have a decisive effect in some cases; thus, this problem should be addressed with more focused research.

Beyond the explanatory factors, the perception of the Hungarian environmental

situation is positive; however, the visibility-invisibility issues and ecosystem services benefits should be addressed and highlighted through environmental communication efforts. Similarly, the localization of climate change is an urgent task for environmental experts and politicians. Relatedly, urban development should use the newest, nature-based initiatives, not only for climate change adaptation, but also to engage and reconnect local people with nature, i.e. the environment. Forests are vital, especially in and around urban areas with high environmental impact and visitor expectations. Developing their public relations and mutual recognition is an urgent issue for forestry professionals and environmental educators.

Acknowledgements: This work was supported by the project TKP2021-NKTA-43 which has been supported by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.

REFERENCES

- ALCOCK, I., WHITE, M.P., PAHL, S., DUARTE-DAVIDSON, R. and FLEMING, L.E. 2020. Associations between pro-environmental behaviour and neighbourhood nature, nature visit frequency and nature appreciation: Evidence from a nationally representative survey in England. *Environment International* 136. 105441. <https://doi.org/10.1016/j.envint.2019.105441>
- ARCURY, T.A. and CHRISTIANSON, E.H. 1993. Rural-urban differences in environmental knowledge and actions. *The Journal of Environmental Education* 25. (1): 19–25. <https://doi.org/10.1080/00958964.1993.9941940>
- BAJMÓCY, P., HOSSZÚ, Sz., DUDÁS, R. and BALIZS, D. 2011. New migration trends and their motivation in Hungary. *Geographica Timisiensis* 20. (2): 29–40.
- BARTA, Gy. 1999. Industrial restructuring in the Budapest agglomeration. *Discussion Papers* 30.9–53. <https://tet.rkk.hu/index.php/DP/article/view/2154>
- BERENGUER, J., CORRALIZA, J.A. and MARTÍN, R. 2005. Rural-urban differences in environmental concern, attitudes, and actions. *European Journal of Psychological Assessment* 21. (2): 128–138. <https://doi.org/10.1027/1015-5759.21.2.128>
- BIRÓ, M., MOLNÁR, Zs., ÖLLERER, K., DEMETER, L. and BÖLÖNI, J. 2022. Behind the general pattern of forest

loss and gain: A long-term assessment of semi-natural and secondary forest cover change at country level. *Landscape and Urban Planning* 220. 104334. <https://doi.org/10.1016/j.landurbplan.2021.104334>

BOWLER, D., BUYUNG-ALLI, L.M., KNIGHT, T.M. and PULLIN, A. 2010. A systematic review of evidence for the added benefits to health of exposure to natural environments. *BMC Public Health* 10. 456. <https://doi.org/10.1186/1471-2458-10-456>

CARTWRIGHT, K. and MITTEN, D. 2017. Examining the influence of outdoor recreation, employment, and demographic variables on the human-nature relationship. *Journal of Sustainability Education* 12. https://www.susted.com/wordpress/content/examining-the-influence-of-outdoor-recreation-employment-and-demographic-variables-on-the-human-nature-relationship_2017_01/

CEROVČEKI, M.T. and STIPERSKI, Z. 2024. The influence of urban green and recreational areas on the price of housing in Zagreb. *Hungarian Geographical Bulletin* 73. (3): 249–268. <https://doi.org/10.15201/hungeobull.73.3>

CHIANG, Y-C., LI, D. and JANE, H-A. 2017. Wild or tended nature? The effects of landscape location and vegetation density on physiological and psychological responses. *Landscape and Urban Planning* 167. 72–83. <https://doi.org/10.1016/j.landurbplan.2017.06.001>

CIESIELSKI, M., TKACZYK, M., HYCZA, T. and TACZANOWSKA, K. 2023. Was it really different? COVID-19-pandemic period in long-term recreation monitoring. A case study from Polish forests. *Journal of Outdoor Recreation and Tourism* 41. 100495, <https://doi.org/10.1016/j.jort.2022.100495>

ČOREJOVÁ, T., HAEAMOVÁ, E., MADLEŇÁK, R. and NESZMÉLYI, G.I. 2021. The concept of smart city and the perceptions of urban inhabitants: A case study from Žilina, Slovakia. *Hungarian Geographical Bulletin* 70. (2): 113–128. <https://doi.org/10.15201/hungeobull.70.2.2>

DĄBROWSKI, L.S., ŚRODA-MURAWSKA, S., SMOLIŃSKI, P. and BIEGAŃSKA, J. 2022. Rural-urban divide: Generation Z and pro-environmental behaviour. *Sustainability* 14. (23): 16111. <https://doi.org/10.3390/su142316111>

DEVILLE, N.V., TOMASSO, L.P., STODDARD, O.P., WILT, G.E., HORTON, T.H., WOLF, K.L., BRYMER, E., KAHN, P.H. and JAMES, P. 2021. Time spent in nature is associated with increased pro-environmental attitudes and behaviors. *International Journal of Environmental Research and Public Health* 18. (14): 7498. <https://doi.org/10.3390/ijerph18147498>

DIOMA, A., KROKER, V., DEWITTE, S. and LANGE, F. 2024. Barriers to pro-environmental behavior change: A review of qualitative research. *Sustainability* 16. (20): 8776. <https://doi.org/10.3390/su16208776>

DUROY, Q.M. 2005. The determinants of environmental awareness and behavior. *Rensselaer Working Papers* in *Economics* January 2005. 0501. <https://core.ac.uk/download/pdf/7084451.pdf>

EGEDY, T., SZIGETI, C. and HARANGOZÓ, G. 2024. Suburban neighbourhoods versus panel housing estates – An ecological footprint-based assessment of different residential areas in Budapest, seeking for improvement opportunities. *Hungarian Geographical Bulletin* 73. (2): 165–184. <https://doi.org/10.15201/hungeobull.73.2.4>

ELANDS, B.H.M., O'LEARY, T.N., BOERWINKEL, H.W.J. and FREERK WIERSUM, K. 2004. Forests as a mirror of rural conditions. Local views on the role of forests across Europe. *Forest Policy and Economics* 6. (5): 469–482. <https://doi.org/10.1016/j.forepol.2004.01.003>

FLETCHER, R. 2017. Connection with nature is an oxymoron: A political ecology of “nature-deficit disorder.” *The Journal of Environmental Education* 48. (4): 226–233. <https://doi.org/10.1080/00958964.2016.1139534>

GIFFORD, R. and NILSSON, A. 2014. Personal and social factors that influence pro-environmental concern and behaviour: A review. *International Journal of Psychology* 49. 141–157. <https://doi.org/10.1002/ijop.12034>

GOULA, M., LADIAS, C.A., GIOTI-PAPADAKI, O. and HASANAGAS, N. 2015. The spatial dimension of environment-related attitudes: Does urban or rural origin matter? *Regional Science Inquiry* 7. (2): 115–129.

HAFENSCHER, P. and JANKÓ, F. 2022. Environmental communication, from engagement to action: lessons from interviews with environmental experts, Hungary. *Environmental Education Research* 28. (12): 1777–1788. <https://doi.org/10.1080/13504622.2022.2068506>

HALLA, T., HOLZ, J., KARHUNKORVA, R. and LAINE, J. 2023. The concept of the human-forest relationship (HFR) – Definition and potentials for forest policy research. *Forest Policy and Economics* 153. 102995. <https://doi.org/10.1016/j.forepol.2023.102995>

HÄYRINEN, L. and PYNÖNEN, S. 2020. A review of the concepts and measurements for connection to nature and environmentally responsible behaviour – A call for research on human-forest relationships. *Current Forestry Reports* 6. (4): 323–338. <https://doi.org/10.1007/s40725-020-00131-6>

ILLYÉS, Z., TÖRÖK, É., NÁDASSY, L., FÖLDI, Z., VASZÓCSKI, V. and KATÓ, E. 2016. Tendencies and future of urban sprawl in two study areas in the agglomeration of Budapest. *Landscape and Environment* 10. 75–88. <https://doi.org/10.21120/LE/10/2/3>

JANKÓ, F., BERTALAN, L., HOSCHEK, M., KOMORNOKI, K., NÉMETH, N. and PAPP-VANCSÓ, J. 2018. Perception, understanding, and action: attitudes of climate change in the Hungarian population. *Hungarian Geographical Bulletin* 67. (2): 159–171. <https://doi.org/10.15201/hungeobull.67.2.4>

JIMENEZ, M.P., DEVILLE, N.V., ELLIOTT, E.G., SCHIFF, J.E., WILT, G.E., HART, J.E. and JAMES, P. 2021.

Associations between nature exposure and health: A review of the evidence. *International Journal of Environmental Research and Public Health* 18. (9): 4790. <https://doi.org/10.3390/ijerph18094790>

KC, A., JOSHI, G.R. and ARYAL, S. 2014. Opportunity cost, willingness to pay and cost benefit analysis of a community forest of Nepal. *International Journal of Environment* 3. (2): 108–124. <https://doi.org/10.3126/ije.v3i2.10522>

KOCIS, J.B. 2015. Patterns of urban development in Budapest after 1989. *Hungarian Studies* 29. 3–20. <https://doi.org/10.1556/044.2015.29.1-2.1>

KOK, H. and KOVÁCS, Z. 1999. The process of suburbanization in the agglomeration of Budapest. *Netherlands Journal of Housing and the Built Environment* 14. 119–141. <https://doi.org/10.1007/BF02496818>

KOLCSÁR, R.A., CSETE, Á.K., KOVÁCS-GYÖRI, A. and SZILASSI, P. 2022. Age-group-based evaluation of residents' urban green space provision: Szeged, Hungary. A case study. *Hungarian Geographical Bulletin* 71. (3): 249–269. <https://doi.org/10.15201/hungeobull.71.3.3>

KOLLMUSS, A. and AGYEMAN, J. 2002. Mind the gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? *Environmental Education Research* 8. (3): 239–260. <https://doi.org/10.1080/13504620220145401>

KÓNYA, Gy. 2016. Changes in the environmental attitudes of secondary school students. *Hungarian Educational Research Journal* 6. (2): 99–112. <https://doi.org/10.14413/HERJ.2016.02.08>

KOVÁCS, J., PÁNTYA, J., MEDVÉS, D., HIDEKGUTI, I., HEIM, O. and BURSAVICH, J.B. 2014. Justifying environmentally significant behavior choices: An American-Hungarian cross-cultural comparison. *Journal of Environmental Psychology* 37. 31–39. <https://doi.org/10.1016/j.jenvp.2013.11.001>

KOVÁCS, Z. and TÓSICS, I. 2014. Urban sprawl on the Danube: The impacts of suburbanization in Budapest. In *Confronting Suburbanization: Urban Decentralization in Post-Socialist Central and Eastern Europe*. Eds.: STANILOV, K. and SÝKORA, L., Chichester, UK, Wiley Blackwell, 33–64. <https://doi.org/10.1002/9781118295861.ch2>

KOVÁCS, Z., FARKAS, J.Zs., EGEDY, T., KONDOR, A.Cs., SZABÓ, B., LENNERT, J., BAKA, D. and KOHÁN, B. 2019. Urban sprawl and land conversion in post-socialist cities: The case of metropolitan Budapest. *Cities* 92. (1): 71–81. <https://doi.org/10.1016/j.cities.2019.03.018>

KOVÁCS, Z., HARANGÓZÓ, G., SZIGETI, C., KOPPÁNY, K., KONDOR, A.Cs. and SZABÓ, B. 2020. Measuring the impacts of suburbanization with ecological footprint calculations. *Cities* 101. 102715. <https://doi.org/10.1016/j.cities.2020.102715>

KOVÁCS, Z., FARKAS, J.Zs., SZIGETI, C. and HARANGÓZÓ, G. 2022. Assessing the sustainability of urbanization at the sub-national level: The ecological footprint and biocapacity accounts of the Budapest Metropolitan Region, Hungary. *Sustainable Cities and Society* 84. 104022. <https://doi.org/10.1016/j.scs.2022.104022>

LAKKONEN, A., ZIMMERER, R., KÄHKÖNEN, T., HUJALA, T., TAKALA, T. and TIKKANEN, J. 2018. Forest owners' attitudes toward pro-climate and climate-responsive forest management. *Forest Policy and Economics* 87. 1–10. <https://doi.org/10.1016/j.forepol.2017.11.001>

LANGE, F. and DEWITTE, S. 2019. Measuring pro-environmental behaviour: Review and recommendations. *Journal of Environmental Psychology* 63. 92–100. <https://doi.org/10.1016/j.jenvp.2019.04.009>

LARSON, L.R., STEDMAN, R.C., COOPER, C.B. and DECKER, D.J. 2015. Understanding the multi-dimensional structure of pro-environmental behavior. *Journal of Environmental Psychology* 43. 112–124. <https://doi.org/10.1016/j.jenvp.2015.06.004>

LENIEZA, M.L. and AVISTE, R. 2025. Relationships between people and nature: Nature connectedness and relational environmental values. *Current Opinion in Psychology* 62. 101984. <https://doi.org/10.1016/j.copsyc.2024.101984>

LUTZ, A.R., SIMPSON-HOUSLEY, P. and DEMAN, A.F. 1999. Wilderness: Rural and urban attitudes and perceptions. *Environment and Behavior* 31. (2): 259–266. <https://doi.org/10.1177/00139169921972092>

MACIAS-ZAMBRANO, L., CUADRADO, E. and CARPIO, A.J. 2024. Factors that determine the connectedness with nature in rural and urban contexts. *PLOS One* 19. (8): e0309812. <https://doi.org/10.1371/journal.pone.0309812>

MCBETH, M.K. and FOSTER, R.H. 1994. Rural environmental attitudes. *Environmental Management* 18. (3): 401–411. <https://doi.org/10.1007/BF02393869>

MILLER, J.R. 2005. Biodiversity conservation and the extinction of experience. *Trends in Ecology & Evolution* 20. (8): 430–434. <https://doi.org/10.1016/j.tree.2005.05.013>

MÓNUS, F. 2019. Comparing environmental awareness of Hungarian students in high-schools with different socio-economical background. *Journal of Applied Technical and Educational Sciences* 9. (1): 17–27. <https://doi.org/10.1080/13504622.2020.1842332>

NAVARRO, O., GALHARRET, J.-M., OLIVOS, P., LOUREIRO, A., WITTENBERG, I., LEMÉE, C. and FLEURY-BAHI, G. 2022. The brief version of the "Connectedness to Nature Scale": Factorial structure and invariance study across seven European cities. *Ecopsychology* 14. (3): <https://doi.org/10.1089/eco.2021.0058>

NGUYEN, P.-Y., ASTELL-BURT, T., RAHIMI-ARDABILI, H. and FENG, X. 2023. Effect of nature prescriptions on cardiometabolic and mental health, and physical activity: A systematic review. *The Lancet Planetary Health* 7. (4): e313–328. [https://doi.org/10.1016/S2542-5196\(23\)00025-6](https://doi.org/10.1016/S2542-5196(23)00025-6)

OH, B., LEE, K.J., ZASLAWSKI, C. and YEUNG, A. 2017. Health and well-being benefits of spending time in forests: systematic review. *Environmental Health and*

Preventive Medicine 22. (71): <https://doi.org/10.1186/s12199-017-0677-9>

PICHLEROVÁ, M., VÝBOŠTOK, J., ÖNKAL, D. and LAMATUNGGA, K.L. 2023. Increased appreciation of forests and their restorative effects during the COVID-19 pandemic. *Ambio* 52. (17): 647–664. <https://doi.org/10.1007/s13280-022-01816-x>

PRÖBSTL-HAIDER, U., WANNER, A., FEILHAMMER, M., MOSTEGL, N. and DĄBROWSKA, K. 2024. The right fit: Acceptance of nature-based solutions across European cities. *Landscape and Urban Planning* 252. 105189. <https://doi.org/10.1016/j.landurbplan.2024.105189>

RACEVSKIS, L.A. and LUPI, F. 2006. Comparing urban and rural perceptions of and familiarity with the management of forest ecosystems. *Society & Natural Resources* 19. (6): 479–495. <https://doi.org/10.1080/08941920600663862>

RIECHERS, M., PĂTRU-DUŞE, I.A. and BALÁZSI, Á. 2021. Leverage points to foster human–nature connectedness in cultural landscapes. *Ambio* 50. (9): 1670–1680. <https://doi.org/10.1007/s13280-021-01504-2>

RITTER, E. and DAUKSTA, D. 2013. Human–forest relationships: ancient values in modern perspectives. *Environment, Development and Sustainability* 15. (3): 645–662. <https://doi.org/10.1007/s10668-012-9398-9>

SCHÖNBACH, D.M.I., TISCARENO-OSORNO, X., MACINTYRE, T.E., SMITH, S., MACINTYRE, D., and DEMETRIOU, Y. 2022. What socio-demographic characteristics of university students in Southern Germany predict their urban nature connectedness? *PLOS One* 17. (8): e0272344. <https://doi.org/10.1371/journal.pone.0272344>

SOLOMU, A.D., TOPALIDOU, E.T., GERMANI, R., ARGIRI, A. and KARESTOT, G. 2018. Importance, utilization and health of urban forests: A review. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* 47. (1): 10–16. <https://doi.org/10.15835/nbha47111316>

SU, K., ORDÓÑEZ, C., REGIER, K. and CONWAY, T.M. 2022. Values and beliefs about urban forests from diverse urban contexts and populations in the Greater Toronto area. *Urban Forestry & Urban Greening* 72. 127589. <https://doi.org/10.1016/j.ufug.2022.127589>

SZKORDILISZ, F., BOUZOUIDJA, R., KOCSSIS, J.B., KÖRMÖNDI, B., KÓSA, E., BODÉNAN, P., BEAUJOUAN, V., BÉCHET, B., BOURNET, P.-E., BULOT, A., CANNAVO, P., CHANTOISEAU, E., DANIEL, H., LEBEAU, T., VIDAL-BEAUDET, L., GUENON, R., MUSVY, M. and ADELL, G. 2018. How to use nature-based solutions in urban planning systems of Europe? In *ICUC10 – 10th International Conference on Urban Climate / 14th Symposium on the Urban Environment*, Aug 2018, New York, US, ICUC, 1–6. <https://institut-agro-rennes-angers.hal.science/hal-02394207/document>

VINNARI, E. and VINNARI, M. 2022. Making the invisibles visible: Including animals in sustainability (and) accounting. *Critical Perspectives on Accounting* 82. 102324. <https://doi.org/10.1016/j.cpa.2021.102324>

WECKROTH, M. and ALA-MANTILA, S. 2022. Socio-economic geography of climate change views in Europe, *Global Environmental Change* 72. 102453. <https://doi.org/10.1016/j.gloenvcha.2021.102453>

WEINBRENNER, H., BREITHUT, J., HEBERMEHL, W., KAUFMANN, A., KLINGER, T., PALM, T. and WIRTH, K. 2021. „The forest has become our new living room“ – The critical importance of urban forests during the COVID-19 pandemic. *Frontiers in Forests and Global Change* 4. <https://doi.org/10.3389/ffgc.2021.672909>

WHITBURN, J., LINKLATER, W. and ABRAHAMSE, W. 2020. Meta-analysis of human connection to nature and pro-environmental behavior. *Conservation Biology* 34. 180–193. <https://doi.org/10.1111/cobi.13381>

WICKS, C., BARTON, J., ORBELL, S. and ANDREWS, L. 2022. Psychological benefits of outdoor physical activity in natural versus urban environments: A systematic review and meta-analysis of experimental studies. *Applied Psychology: Health and Well-Being* 14. (3): 1037–1061. <https://doi.org/10.1111/aphw.12353>

WUNDERLICH, A.C., SALAK, B., HEGETSCHWEILER, K.T., BAUER, N. and HUNZIKER, M. 2023. Impacts of rising COVID-19 incidence and changed working conditions on forest visits in early 2020 of the pandemic: Evidence from Switzerland. *Forest Policy and Economics* 153. 102978. <https://doi.org/10.1016/j.forepol.2023.102978>

YINGCHAO, L., MASAHIKO, F. and PENG, W. 2011. Study on comparison of citizens' environmental awareness among four cities in China and Japan. *Management Science and Engineering* 5. (3): 126–131.

YU, X. 2014. Is environment 'a city thing' in China? Rural-urban differences in environmental attitudes, *Journal of Environmental Psychology* 38. 39–48. <https://doi.org/10.1016/j.jenvp.2013.12.009>

ZHANG, M. 2022. Households' willingness to accept forest conservation and ecosystem services. *Forests* 13. (9): 1399. <https://doi.org/10.3390/f13091399>

Appendix 1

Variables of the analysis

Variable types				
Grouping variables	Residence type	Venue of questionnaire survey	Demographic features	Forest visit intensity*
			Education	Q10 + Q11
			Income	
			Age	
			Gender	
Dependent variables	Nominal	Ordinal	Numeric	Likert-scale***
	Q2	Q1	Q17–20: PEB**	Environmental knowledge: L2–4, L7–8
	Q8	Q5		Green policy support: L5–6, L9–13, L16, L18
	Q9	Q6		Other
		Q7		
		Q10		

* The index was created by summing two questions. The first one was “How often do you visit forests?” (Q10). The choices were scored based on frequency: daily (score: 5); at least weekly (score: 4); at least monthly (score: 3); less often (score: 2); never (score: 1). The second was “How much time do you usually spend in the forest per occasion?” (Q11) The choices were scored based on duration: more than two hours (score: 5); 1.5–2 hours (score: 4); around 1 hour (score: 3); around half an hour (score: 2); around 15 minutes (score: 1). The new variable was created by summing the scores of the two questions.

** Pro-environmental behaviour (PEB) index was derived from ordered variables (Q17, 18, 19, 20). Answers for question 19 – “Where do you usually get your vegetables and fruits from?” – were converted to scale, depending on the level of environmental consciousness: the most conscious choice was self-grown or a relative grows the fruits and vegetables; while the less conscious choice was the supermarket. Then, the scores of questions (17) to (20) were summarized to create a new variable: *Pro-environmental behaviour score*.

*** These questions were classified in two groups: environmental knowledge regarding Hungary (L2–4, L7, L8) and willingness of green policy support (L5, L6, L9–13; L16, L18). L1, L17 and L19 measured mindset about climate change, hydroelectric power plant and development of coal and natural gas mining; L14 measured opinion about the reintroduction of large predators (wolves, bears, lynx), but whereas it is a highly controversial topic, it was omitted from further analysis (see *Figure 7*).

Appendix 2

Turkey HSD – Green policy support

Education	Difference	Lower	Upper	p-value
Secondary school, no graduation – Elementary school	1.88	-0.31	4.08	0.123
Secondary school, graduation – Elementary school	2.49	0.60	4.36	0.004
University/Collage – Elementary school	2.60	0.73	4.48	0.002
Secondary school, graduation – Secondary school, no graduation	0.60	-0.85	2.05	0.708
University/Collage – Secondary school, no graduation	0.72	-0.72	2.17	0.571
University/Collage – Secondary school, graduation	0.12	-0.76	1.00	0.985

Appendix 3

Turkey HSD – Green policy support

Place of filling the Qa	Difference	Lower	Upper	p-value
Farkas-erdő–Dobogókő	0.17	-1.17	1.52	0.997
Királyrét–Dobogókő	-2.53	-3.88	-1.19	<0.001
Naplás-tó–Dobogókő	-1.72	-3.06	-0.38	0.004
Normafa–Dobogókő	-2.30	-3.65	-0.96	<0.001
Királyrét–Farkas-erdő	-2.71	-4.06	-1.35	<0.001
Naplás-tó–Farkas-erdő	-1.89	-3.25	-0.54	0.001
Normafa–Farkas-erdő	-2.47	-3.83	-1.12	<0.001
Naplás-tó–Királyrét	0.81	-0.54	2.17	0.474
Normafa–Királyrét	0.23	-1.13	1.59	0.990
Normafa–Naplás-tó	-0.58	-1.94	0.78	0.769

A possible strategy for the economic restructuring of a rural region based on wine tourism: Case study of Blue Mountains, Moravia

ANTONÍN VAISHAR¹ and MILADA ŠŤASTNÁ¹

Abstract

The article deals with the restructuring of a region focused on intensive agriculture at a time when agriculture ceases to be a source of wealth. It explores the possibilities of using tourism in an area with a high proportion of arable land without either significant historical heritage nor natural attractions. The study method is a complex geographical analysis that determines the conditions under which the transformation of the microregion takes place. This analysis results in an overview of the microregion's most significant strengths and weaknesses, opportunities and threats. The applied solution is the use of a specific brand, using the significant presence of wine culture. The use of this brand for marketing is presented. The increase in competition ability is based on the introduction of the idea to promote the area under the brand Blue Mountains and the use of other ideas that significantly differentiate the studied region from its neighbours. The key prerequisites are the cooperation of the actors. The main contribution of the article lies in the study of local experiences with tourism promotion and place marketing as one of the possibilities for transformation into a post-productive economy.

Keywords: agricultural region, economic restructuring, wine tourism, brand marketing, Moravia

Received December 2024, accepted November 2025.

Introduction

In connection with the transition to a post-productive economy, labour productivity is increasing in the manufacturing sectors that were crucial for rural employment in Czechia. Workers are moving into services, both within manufacturing sectors and into the service sector in general. One of the proposed options is the development of tourism. As the most economically affected rural areas are peripheral microregions, this is a seemingly appropriate strategy as these regions tend to have a less disturbed natural environment. However, what about rural microregions in fertile areas, which are characterised by a high degree of ploughing, and their landscape is highly transformed and unattractive?

A certain advantage of these microregions is the better transport accessibility of regional centres compared to peripheral mountain microregions, so their inhabitants can conveniently commute to work. However, it is probably not possible to build the economy of entire microregions on commuting alone. The combination of commuting with own activities of villages in at least some settlements is desirable. Therefore, it is necessary to look for local or regional aspects that can create a competitive advantage. In the sphere of tourism, it is then necessary to look for such an advantage in the cultural forms of tourism.

There has been strong discourse aimed at transforming rural places from venues of production into truly diverse socioeconomic landscapes (ALMSTED, Å. *et al.* 2014). In areas with intensive agricultural production,

¹ Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia. E-mails and ORCIDs: a.vaishar@seznam.cz, ORCID: 0000-0003-3754-7600; stastna@mendelu.cz, ORCID: 0000-0002-4507-6207

some authors speak about hyper-production (BROUDER, P. *et al.* 2015), which means introducing additional economic activities and branches, among other factors. Rural areas and rural landscapes are increasingly becoming areas of consumption. One of the most frequent areas of rural consumption is rural tourism (EUSÉBIO, C. *et al.* 2017). However, MACKAY, M. and PERKINS, H.S. (2019) point out that these areas are also the residence of their inhabitants.

In general, economic transformation in the countryside means a transfer of workers to services. However, services generally tend to be concentrated in cities or resort villages. In rural areas, tourism services or social services in particular come into consideration in rural areas. Examples of post-socialist countries with developed tourism services is, for example, Slovenia (GAJIĆ, T. *et al.* 2018), and Hungary (KÓRÓDI, M. and DÁVID, L.D. 2019). The question is, of course, whether tourism services can compensate, either quantitatively or qualitatively, for job losses in agriculture and industry.

European rural peripheries see the development of tourism as a potential for stabilising and revitalising settlements (REICHERT-SCHICK, A. 2016). On the other hand, in the fertile flat rural areas, which have a high portion of arable land, relatively few forests and pastures and unattractive terrain, the focus remains on cultural tourism. The United Nations World Tourism Organisation defines cultural tourism as a movement of people essentially for cultural motivations, such as study tours, performing arts and cultural tours, travel for festivals and other events, visit to sites and monuments, travel to study nature, folklore or art and pilgrimages. MCKERCHER, B. (2020) identifies four segments of cultural tourism: the purposeful cultural tourist, the sightseeing cultural tourist, the serendipitous cultural tourist, the casual cultural tourist and the incidental cultural tourist. Major research trends include the shift from tangible to intangible heritage, more attention on indigenous and other minority groups and a geographical

expansion in the coverage of cultural tourism research (RICHARDS, G. 2018). In our case, we will consider cultural tourism as those forms that significantly include cognitive function (ŠŤASTNÁ, M. *et al.* 2020). This is the interaction between the destination and the traveller depending on whether the tourist is interested and has the potential to explore the destination. It can concern learning about history, architecture and art, nature, the way of life for the locals, customs and gastronomy.

Individual rural microregions can compete in tourism on various factors. This can be price, quality of services, various accompanying attractions, information and marketing, infrastructure, accessibility etc. (DEMIROVIĆ, D. *et al.* 2017). In reality, however, these options are limited, because internal micro-regional resources are usually limited. An important competitive factor is also the institutional support of municipalities (ROMAN, M. *et al.* 2020). Under these circumstances, the character of one's own place remains as one of the possible effective and real resources. However, this needs to be asserted in competition with other places. A possible form is place marketing through a brand.

Area with intensive agriculture looking for an economic restructuring is represented by South Moravia in our study, namely the microregions located in the Dolnomoravská and Dyjskrosravatecká lowlands. It is a non-central part of the Hodonín, Břeclav and Znojmo districts (LAU 1). The comparative advantage of this area is viticulture. However, this advantage applies to the entire region. The question is what specialty to offer visitors to encourage them to visit certain municipalities or a group of municipalities. In our case, another element of competitiveness comes into play – a unifying destination marketing (HANNA, S. *et al.* 2020), idea that allows, on the one hand, cooperation and the interconnection of service providers and residents, and on the other hand, the promotion of a place under one heading and identity (DASZKIEWICZ, M. and WOŁOSECKA, A. 2019).

The paper tests such a possibility using the example of five municipalities in the district

of Břeclav, which created a voluntary association called Blue Mountains and devised a proposal to create a recessionary republic in their territory focusing on viticulture and wine tourism.

Theoretical background

Although rural transformation was overshadowed by urban changes, its progress was rapid and radical in the second half of the 20th century (SCHMIED, D. 2005). Although structural changes affect both cities and rural areas, rural areas have certain specificities in this process – environmental, social and cultural (CLOKE, P. 2006). The change from a productive to a post-productive countryside specifically means, among other things, the partial replacement (in terms of labour and wealth creation) of productive sectors (in the case of rural areas, especially agriculture) by consumption sectors, which in rural areas can be represented, among other things, by tourism.

The commodification of the countryside through tourism takes a range of forms from purely passive to those that are associated with the activities of tourists (WOODS, M. 2011). Tourism is an increasingly important component of rural development, which can act as an economic engine. However, MARCOUILLE, D. (2013) warns that this sector increases social differentiation, as it produces low-paid and low-skilled employment opportunities and, on the other hand, increasing profits for entrepreneurs who are often not even resident in the region. The issue of target groups is also important. SZÖRÉNYINÉ KUKORELLI, I. (2011) documents using the example of Hungary that although entrepreneurs would like to expect foreign tourists, rural tourism still depends more or less on domestic visitors. Food and wine tourism is one of the progressive forms of rural tourism. Recently, the offer has expanded towards experiences such as wine trails, folkloric events, direct sales and consumption, and the like (HALL, D. 2005). However, the development of wine tourism can also be associated with

certain risks, such as overcrowding, land speculation, and loss of local identity (COSTA DA SILVA, M.A. *et al.* 2024).

However, it should be noted that the countryside is not a homogeneous space. For example, MURDOCH, J. *et al.* (2003) identify four types of countryside in Great Britain, each with different characteristics and requiring a different approach. Similarly, in Moravia, different rural areas can be identified (STONAWSKÁ, K. and VAISHAR, A. 2018), such as suburbanized rural areas, intermediate rural areas (usually intensively used for agriculture), and peripheral rural areas (which can be divided into inner and border peripheral areas).

In Czechia, the share of employees in primary sectors in municipalities with less than 2,000 inhabitants have fallen below 7 percent. In some rural regions, declining job opportunities in manufacturing sectors may be associated with depopulation and/or aging trends (e.g. LABIANCA, M. and NAVARRO VALVERDE, F. 2019). Alternatively, there may be a departure of young and educated people from the countryside and, thus, a deterioration of its social structure compared to cities (VAISHAR, A. and PAVLŮ, A. 2018). In Moravia, this development mainly concerns the most peripheral rural areas (VAISHAR, A. *et al.* 2020).

The European Union is spending considerable resources on slowing down the downward trend in jobs in agriculture (GARRONE, M. *et al.* 2019). These efforts are, however, directed against natural economic and social development. The rapid reduction in the number of jobs in the manufacturing sectors is inevitable and requires the restructuring of the countryside. HRUŠKA, V. and PÍŠA, J. (2019) identified six models of rural restructuring in post-socialist Czechia: globally integrated, service-oriented, entrepreneurial, industrialised, post-productivist and de-industrialised, including post-mining and energy-producing rural localities.

Vine growing, wine production and related tourism belong to possibilities of the rural tourism development. The scientific litera-

ture concerning this topic has been collected by GÓMEZ, M. *et al.* (2019). However, even in these cases, according to BRUWER, J. and RUEGER-MUCK, E. (2018), the scenic charm is crucial for the attractiveness of the site. Wine tourism can be considered as part of gastronomic tourism. However, it is often associated with folklore elements, whether living or artificial. It often includes wine trails via walking or cycling (PROKEŠ, M. 2019). In Czechia, wine tourism is considered an important factor in rural development, especially in southern Moravia (ŠÍP, J. *et al.* 2018).

However, wine tourism is usually covered by relatively large rural regions; therefore, it is necessary to find a factor that would increase the competitiveness of the site. Place marketing is the tool (SCORRANO, P. *et al.* 2019). Destination brand development has been described by ALMEYDA-IBÁÑEZ, M. and GEORGE, B.P. (2017). Recently, more and more participatory approaches have been promoted in this direction (SAN EUGENIO-VELA, J. *et al.* 2020). Some authors speak about community-based tourism (DURKIN, J. *et al.* 2017), which includes the incorporation of different local stakeholders.

The geography of branding is approached by PIKE, A. (2009). He presents three basic components of this aspect: geographical origin and socio-spatial history, spatial circulation of values and meanings in uneven development, and territorial-relational spaces and places. Some politicians even consider place branding to be a key part of regional development strategies. On the other hand, MEDARIČ, Z. *et al.* (2021) found, using the example of Lake Balaton, that brand marketing is the worst rated factor in this destination. Geography uses the concept of place to study it (ANDERSSON, I. 2014). MICHAELIS AHARON, K. and ALFASI, N. (2022) proposed a case study methodology to analyse a brand in a hierarchical structure.

Branding in geography is linked to the theory of sense of place. According to ASHWORTH, G.J. and GRAHAM, B. (2017), sense of place is inextricably linked to time and heritage. JEPSON, D. and SHARPLEY, R. (2018) studied

the relationship between sense of place and deeper emotional experience of tourists in the Lake District in rural England. They concluded, among other things, that being in the landscape, preferably through physical activities, is fundamental to the emotional connection. However, according to LIU, S. and CHEUNG, L.T.O. (2016), the sense of place also influences the interest of local small and medium-sized entrepreneurs to engage in tourism. The place-based approach contributes to increasing the resilience of small rural communities (SALVIA, R. and QUARANTA, G. 2017) through three interrelated aspects: the restoration of previously disrupted social relations, the cascading effect of initial activity, and the adoption of a systemic approach that connects sectors. WALKER, K. and MOSCARDO, G. (2018) move the issue from the level of sense of place to the level of care for the place with the aim of preserving values.

The essence of the place-based approach lies in overcoming the sectoral approach in favour of a holistic understanding of place (VASTA, A. *et al.* 2019). From this perspective, it is a highly geographical issue. According to KASTENHOLZ, E. *et al.* (2020), place attachment is very important in rural tourist destinations with a loyal customer base. JARRATT, D. *et al.* (2018) point out that current branding processes may miss the target groups of rural tourists and therefore introduce the concept of a sense of place. In the competition between destinations, the uniqueness of a place and its use play a significant role (ROMÃO, J. 2018).

The local development strategy in the European Union is implemented primarily in the LEADER program, and more recently through community-led local development. Its basic idea is a bottom-up approach. The organizational units are local action groups (LAGs), the creation of which is subject to relatively strict rules. The most important of which, from our perspective, is the participation of the public, private and non-governmental sectors and the prohibition of the majorisation of one of them. The creation of local strategies and their evaluation is also important.

One of the objectives of this activity is to strengthen the sense of belonging to the micro-region, its natural, agricultural, historical and cultural traditions (MENCONI, M.E. *et al.* 2018). This can of course work provided that the LAGs are created in accordance with these traditions. However, in many cases the view is promoted that the LEADER programme serves mainly as an additional subsidy source and belonging is not preferred. One of the obstacles is the excessive institutionalization by which individual states or regional activities try to control the activities of LAGs (CHMIEŁIŃSKI, P. *et al.* 2018; TIRADO BALLESTEROS, J.G. and HERNÁNDEZ, M.H. 2018). A covert top-down approach is still being pursued (KONEČNÝ, O. *et al.* 2020).

Local action groups also have a role to play in the development of local tourism. TRINAJSTIĆ, M. *et al.* (2023) state that their contribution lies not so much in direct investment in tourism, as the conditions set would limit the future flexibility of entrepreneurs, but rather in building infrastructure and various supporting activities. The possibilities of using community-led local development in the development of gastronomic tourism were pointed out, for example, by MURMURA, F. *et al.* (2024). However, in some countries, especially in Southern and South-eastern Europe, great emphasis is still placed rather on the development of agriculture (KONEČNÝ, O. 2019).

Tourism depends on the reputation of destinations (DARWISH, A. and BURNS, P. 2019), which minimizes possible traveller's disappointment. A destination brand helps with this, the purpose of which is to simply distinguish the respective destination from its competitors. A destination brand usually includes a name, symbol, logo or other graphic eventually a story that emphasizes the uniqueness of the area for tourism and differentiates it from competitors (KELLER, K.L. 2002). Destination marketing combines a geographical unit (region) and a tourism product. According to the author, brand equity is studied from the perspective of three approaches: customer psychology, economics, and a biological-sociological approach.

TASCI, A.D.A. (2021) distinguishes between financial and non-financial brand equity as well as brand value from the perspective of the customer, provider, employee and resident. GULISOVA, B. (2021) points out that states, large cities and important tourist destinations apply branding similarly to companies, that is, with a centralized approach. Rural areas, which often do not form a strong administrative unit, are looking for differentiated paths. MURRAY, A. and KLINE, C. (2015) identified three main factors of brand loyalty using the example of analogue rural beer tourism in North Carolina: connection to the community, quality product and satisfaction.

In modern times, e-branding is becoming increasingly popular (KAVOURA, A. and BITSANI, E. 2013). Its advantage lies in the ease of use, the intimacy of search, interactivity, access to comments of previous visitors. Potential visitors can view the destination through aerial or street views. Visitors' familiarity with the use of IT technologies is a prerequisite. The analysis by BONAROU, C. *et al.* (2019) focused on the analysis of the place marketing of wine tourism through the Internet. SCORRANO, P. *et al.* (2019) believe that the level of convergence between online brand identity and online brand image is of increasing importance for the adoption of an effective territory promotion strategy. Online applications (DIMITROVSKI, D. *et al.* 2019) are increasingly being used for branding purposes.

The question of brand marketing in wine tourism was raised by GÓMEZ, M. *et al.* (2015), who stated that the study of this problem was in its infancy. The role of wine tourism in shaping brand image and brand loyalty was later studied by JOY, A. *et al.* (2021) based on TripAdvisor data. They emphasized the importance of social interactions. MADEIRA, A. *et al.* (2019) state three dimensions of such interaction: guest, host and place. In some cases, the brand in wine tourism is represented by the certification of protected brands (MOLLEVÍ, G. *et al.* 2020). Telling oral stories from the cellar door is an important strategy to strengthen heritage and differentiate a winery from its competitors.

(FROST, W. *et al.* 2020). FOUNTAIN, J. *et al.* (2020) point out certain problems in this regard. This is a contradiction between local culture (preserving authenticity) and the global demands of tourists (increasing professionalism).

The following theoretical assumptions result from the above:

- The structural transformation of rural regions towards a shift from production to consumption is part of the general transformation of society and is inevitable.
- One of the possibilities for consuming the countryside and its landscape is the development of tourism, which uses not only general but also local attractions and peculiarities.
- This activity is connected with the sense of place and destination marketing, eventually using an appropriate brand.
- In this sense, the participation of local citizens, building a sense of place and institutional support of municipalities are extremely important.
- The commercialization of tourism by external entities must be mostly avoided,

because the departure of benefits from the place and, conversely, burdening the place with negative accompanying phenomena of tourism threats.

Methodology and area under study

From a methodological point of view, this work is based on a case study. It includes a comprehensive geographical analysis of the selected territory with a special regard to tourism. This analysis was prepared on the basis of public statistical data, the study of secondary sources and repeated field research made in the summer season of 2022. At that time, the impact of COVID-19 anti-pandemic measures on tourism was also relevant. The knowledge gained made it possible to emphasize the urgency of the solved problem and to name the strengths and weaknesses of the studied region, opportunities and threats to its further development and to discuss possible strategy as parts of the SWOT analysis.

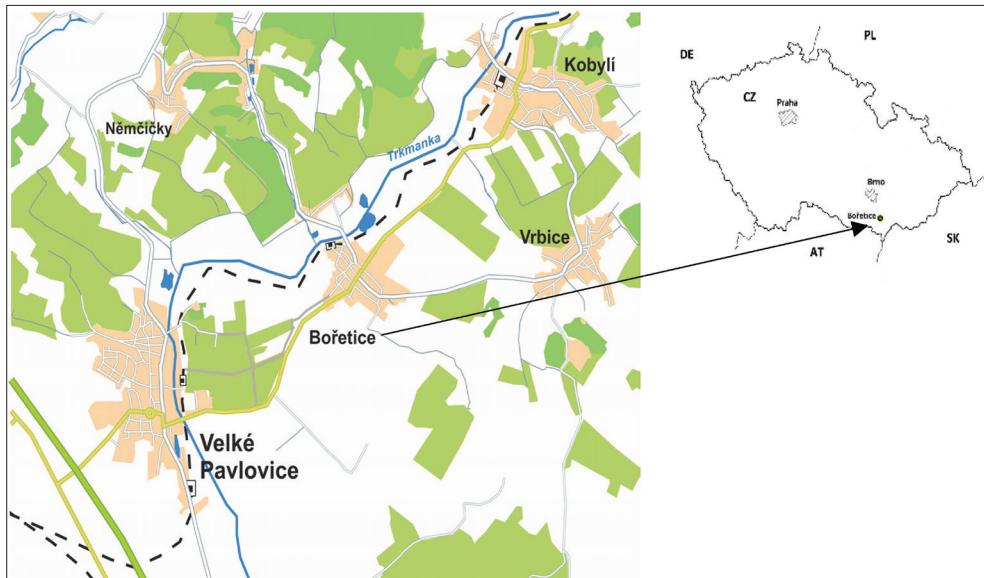


Fig. 1. Map of the study area. Source: Authors' own elaboration.

This basic geographical analysis of the studied area is followed by a description of the marketing approach of the association of municipalities of the selected territory, specifically the Blue Mountains microregion and within it the Free Federal Republic of Kraví Hora. Local experience was used in this process. Furthermore, the importance of the implemented marketing approach for the development of the microregion was discussed. This assessment can only be indirect, as there is no comparison of how tourism in the region would develop without this brand.

The area under study is located in the Velké Pavlovice wine region. It consists of five municipalities (Figure 1). All villages have a positive migration balance and a negative natural balance (Table 1) which indicates a relatively high average age of the population. The total population growth over the last five years was 2.2 percent. Together 200 new dwellings have been built in the last five years, i.e. 24 dwellings per thousand inhabitants. Further growth can be expected in connection with the immigration of Ukrainians, which statistics have apparently not yet captured.

The ratio of children to seniors is 0.75. The educational structure of the population over 15 is dominated by apprenticeships (39.3%), followed by graduates (25.2%) and people with basic education (23.2%). This corresponds more to a moderately skilled industry. In total, 30 percent of the economically

active population, commute to work. The studied municipalities therefore provide a significant majority of job opportunities for their inhabitants in the area.

According to the 2021 census, the area employed a highly above-average 9.8 percent of the population in the primary sector (the national average for rural municipalities was 6.5%). The share of employees in industry and construction was 39.3 percent (the national average for rural municipalities is 37.4%). 15.7 percent of economically active persons were employed in business and transport activities, 11.8 percent of people were employed in education and healthcare. Catering and accommodation services, which can be related to tourism, employed 4.6 percent of economically active persons (nationally 2.8% in rural municipalities). The share of workers in manufacturing has slightly increased since the 2011 census, contradicting the transition to a post-productive economy. Unemployment has fluctuated between 2.5 and 4 percent in the last years with a seasonal increase in winter (Figure 2).

The area geomorphologically belongs mainly to the Ždánický Les highland. The terrain rises towards the east. The lower parts of the area are used for agriculture due to fertile soils, viticulture and arboriculture of thermophilic species, such as apricots, peaches, hawthorns and almonds. There are also forest-steppe and steppe communities. The climate is relatively

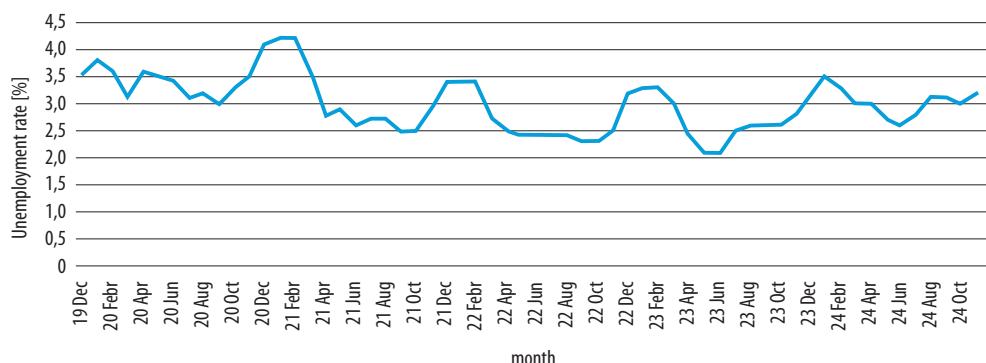


Fig. 2. Unemployment rate in the area under study during the period December 2019 – April 2023. Source: Ministry of Labour and Social Affairs of the Czech Republic. Authors' own elaboration.

Table 1. Population of the area

Municipality	Population, 2023	Population balance, 2019–2023		
		Natural	Migration	Total
Bořetice	1,379	-2	+115	+113
Kobylí	2,001	-35	+1	-34
Němcíčky	792	-13	+117	+114
Velké Pavlovice	3,072	-38	+40	+2
Vrbice	1,087	-26	+24	-2
<i>Total</i>	8,331	-114	+297	+183

Source: Czech Statistical Office Prague and authors' own calculations.

warm and dry. The axis of the area is formed by the small river Trkmanka.

The total area is 7,055 ha, which represents a population density of 114 people per km². The macrostructure of land use is shown in *Figure 3*. More than half of the territory is occupied by arable land. The second most common land use is vineyards, followed by gardens and orchards. Forests and permanent grasslands occupy negligible areas in the highest positions, while water areas are minimal. The studied area, thus, represents an unattractive landscape with a minimum of forests, meadows and water areas.

The area is accessible by the road number 421, which connects to the D2 highway Brno–Bratislava. The second transport axis is the local railway line. The village of Bořetice,

located roughly in the middle of the studied area (*Photo 1*), can be reached from the district town of Břeclav by car in 23 minutes, by public transport in 34 minutes and by bike in 106 minutes. It can be reached from the regional centre of Brno in 40 minutes by car, 43 minutes by public transport and in 200 minutes by bike. From Bratislava, the area can be reached in 63 minutes and from Vienna in 86 minutes by car. Within the integrated transport system of the South Moravian region, the entire area is connected by the bus line 551 and the train line S52. The frequency is 31 pairs of connections on working days and 12 pairs of connections on free days. In the vicinity, there are other small towns: Velké Bílovice (12 minutes by car), Podivín (14 minutes) and Hustopeče (15 mi-

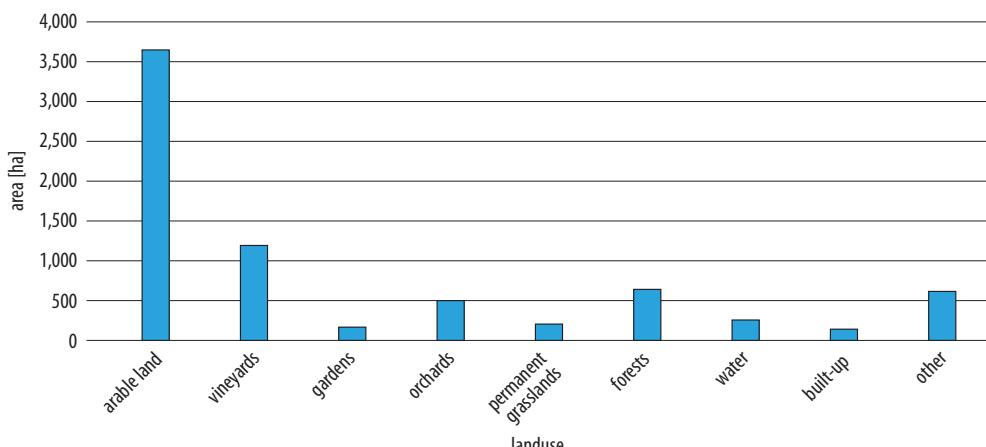


Fig. 3. Land use of the study area, 2024. Source: Czech Statistical Office, Prague. Authors' own elaboration.

Photo 1. Hotel Blue Mountains in Bořetice in a rustic style. The flag in the left side is the flag of the Free Federal Republic of Cow hill.

nutes). The last one ensures some administrative functions for the area and has a grammar school and a hospital.

The most important manufacturing companies are Scott Automation Bořetice (custom industrial automation projects), LOMAX Bořetice, (manufacture of metal doors and windows with 80 branches in Czechia and abroad), and PATRIA Kobylí (plastic constructions, building materials). Agriculture is represented by the agricultural cooperatives Velké Pavlovice (plant and animal production), Němčičky (viticulture), and Bořetice (plant production, fattening of broilers). Food processing includes Czech Wineries Velké Pavlovice, and Velké Pavlovice Poultry Plants. There are also about 60 registered wine growers in the area. It can be stated that the microregion is home to companies that process mostly local products but strive for value-added production.

The data show that the studied microregion manages the restructuring of manufacturing industries with problems. Its companies strive for primary production and for the processing of local resources. Individual municipalities have a sufficient population to maintain basic services.

Tourism development

The municipalities have decided to use key ideas to support microregional marketing.

In 2008, the municipalities founded a voluntary association called Blue Mountains. The name symbolises the fact that wine production is based mainly on 'blue' varieties (Blaufränkisch, Saint Laurent and Blauer Portugieser). This is an example of terroir tourism (MARLOWE, B. and LEE, S. 2018), i.e. a travel destination based on natural conditions for growing grapes in combination with tradition and the art of winemakers.

Although the association's goals are defined as general microregional development, its promotion is strongly focused on the development of tourism. As the microregion does not have significant monuments of historical heritage (perhaps only the baroque church of the Assumption of the Virgin Mary and the Theresian contribution granary in Velké Pavlovice), it based its promotion on viticulture, gastronomy, folklore and on attractions of various types, which have been created at present. These include lookout towers, a sports complex in Němčičky, an ethnographic museum in Kobylí, a salt cave, the Trkmanka eco-centre, the Zahájka biocentre, the Vrbice Peace Cairn and more. *Table 2* summarises the strengths and weaknesses of the microregion in terms of tourism development. Based on the knowledge obtained, we came to the idea of a SO strategy, which consists in using strengths and opportunities to eliminate weaknesses and threats.

Wine culture in South Moravia is often linked to still partially alive folklore.

Table 2. Strengths and weaknesses of the microregion in terms of tourism development

Strengths	Weaknesses
Developed viticulture	Low natural attractiveness of the landscape
Satisfactory availability and infrastructure	Absence of significant architectural monuments
Cooperation	
Occasions	Threats
Rising demand for adventure tourism	Competition from similar microregions
European, national and regional grants	External influences (political, epidemics)

Source: Authors' own elaboration.

Intangible heritage is realised through events (costumed feasts, vintage, open-cellar days, wine and spirit tastings, harvest festivals). The microregion is part of the ethnographic region Hanakian Slovakia, which is represented by typical costumes, wind and dulcimer music and men's dances. Together with other municipalities, the microregion is part of the Hustopeče local action group. The development of wine tourism is one of its priorities.

Physical activities should be part of the tourist offer. The Němčíčky sports complex in particular fulfils this role in the Blue Mountains. The curious thing is that it is the lowest Alpine skiing area in Europe, located at an altitude of 180 metres. This activity extended the period of tourism in the Blue Mountains to include the winter season, which is crucial in Czech conditions. However, the area mostly offers opportunities for summer tourism. These are swimming pools, playgrounds and courts for various ball games and a bobsled track with a length of 825 metres. The microregion is interwoven with wine trails, the best-known being the André trail. It is an increasingly popular way of combining physical activity and gastronomic tourism.

The problem with excellent accessibility may be that visitors may prefer one-day visits without an overnight stay. This always means that the financial benefit for local businesses is significantly smaller. This disadvantage is partially offset by the orientation towards wine tourism, where events usually take place until late into the evening, and tourists often prefer to spend the night in the same location. Therefore, the wine cellars also provide the possibility for guests to stay overnight.

In terms of mass tourism facilities, there are 39 collective accommodation facilities in hotels, boarding houses or hostels in the microregion. There were 1,275 beds in 485 rooms in 2023. They accommodated a total of 41,967 guests (5 guests per resident), who spent 79,622 guest nights here. The share of foreigners was 9.3 percent. A large part of the 375 unoccupied flats can also be used to accommodate guests. Therefore, it can be assumed that the total accommodation capacity of the microregion is at least 2,000 beds, and their actual use can be up to twice that of the statistics. These capacities are followed by a number of catering facilities of various types (except the most expensive ones, as the microregion is not aimed at a large clientele). Highly popular are corporate events, such as teambuilding or training, as well as weddings. One of the other impulses may be the reconstruction and creation of a new centre of the largest municipality Velké Pavlovice, which will reflect the Blue Mountains microregion. The construction of the conference centre will support corporate tourism.

A specific urban form is wine cellars, which can occur individually but more often create entire streets or groups. They were originally intended for the production and storage of wine. Today, many of them have acquired commercial and recreational functions, including accommodation. The wine cellars in Bořetice and Vrbice (Photo 2), or the so-called drunk cellars in Velké Pavlovice (Photo 3) are famous.

An interesting question is the impact of the coronavirus pandemic on the prosperity of tourism in the area. The first results (VAISHAR, A. and ŠŤASTNÁ, M. 2020) suggest that it may not be fatal. Tourism in the microregion is largely

Photo 2. Traditional wine cellars in Vrbice

Photo 3. Wine cellars in Velké Pavlovice. Whereas some cellars reflect the traditional form, others are modern residences with the accommodation function on the second floor. (Photos taken by the authors.)

focused on domestic tourism, which has not been so severely affected. On the contrary, in the summer season 2022, the number of overnight stays increased by 42 percent compared to 2019. In any case, the COVID-19 pandemic can be seen as a challenge to certain changes in the tourism industry (SIGALA, M. 2020). MARINO, A. and PARISO, P. (2022) assume that wine tourism can help to overcome the COVID-19 pandemic. However, the development of the number of overnight stays over the last three years was 76,992 in 2021, 86,988 in 2022 and 79,622 in 2023. It seems that during the COVID-19 pandemic, interest in domestic accommodation increased, but is now returning to normal.

Within the scope of Destination management of the Lednice-Valtice Area and the Hustopeče Region (Garden of Europe), the Blue Mountains, offering 50 tourist attractions, are one of three recommended destinations. The Blue Mountains Tourist Product (www.modrehory.cz) has been in operation since 2011, and includes a web portal interconnected with an information kiosk in each of the five municipalities with not only a general information but also a range of services and events. This product is in Czech and Polish, which defines the expected range of visitors. KRÁLIKOVÁ, A. *et al.* (2021) attempted to measure visitor satisfaction, who identified seven key loyalty factors for a sample of the entire Moravian wine region. Namely, the factors include: quality of wine, relaxation, information about wine, natural attractions, friendly acceptance by the locals, wine culture and traditions, as well as vineyard excursion. The Blue Mountains Association focuses on these factors.

When evaluating the success of this activity, we proceed from the fact that the primary goal was not economic profit, but micro-regional development. Therefore, we see success in the stabilization of demographic development, employment and cultural and social life of the micro-region and the improvement of its image. An example is the awarding of the title of Village of the Year 2005 to the municipality of Bořetice. However, it must be admitted that external

conditions contributed to the positive development to a certain extent. This is a large increase in immigration from abroad, especially in connection with the war in Ukraine, and measures against the COVID-19 pandemic, which temporarily redirected tourist flows from foreign to domestic tourism.

The fact that this is an initiative of municipalities in cooperation with local entrepreneurs ensures that investments and, thus, profits mostly remain in the region. Direct income of municipalities from accommodation (local fees) is not significant, the benefit is rather overall development.

Free Federal Republic of Kraví hora (Cow hill) as an example

The problem is that the surrounding micro-regions are in a similar situation. 96 percent of Czech vineyards are concentrated in South Moravia. So the question is how to highlight the studied microregion compared to its neighbours so that it stands up to their competition (CARMICHAEL, B.A. and SENESE, D.M. 2012). To promote wine tourism in the microregion the brand marketing approach has been used. The Free Federal Republic of Cow Hill at the cadastre in the village of Bořetice has been established. It is a recessive micro-state without permanent residents. Formally, it is a voluntary association.

In November 2000, state officials were elected. At the same time, a Republic was proclaimed. Passports and postage stamps were also issued. On April 2001, the Republic was granted the right to use the emblem and the flag by the Subcommittee on Heraldry and Vexilology of the Chamber of Deputies of the Parliament of the Czech Republic. The Republic has its own constitution and currency, anthem, academy of sciences with the Research Institute for the Fight against Starlings, information service and the like. It is a member of the Moravian Rear Defense Association (MATO) together with other recessive states Wallachian Kingdom and Lacchian Margravate. The Republic has three consulates

in Czechia and one in Slovakia. (Recessive micro-states do have a head of state, a flag, an anthem, issue money and passports, but they lack the ability to enforce their respect. It is therefore more of a social and cultural phenomenon than a political one. The motivations of the founders vary, it can be a desire to rule something, even a fictitious one, or a joke in a group of friends; but also an ambitious social utopia or a conspiracy on the verge of organized crime. Such communities can be found all over the world and are often tourist attractions. The most known of them, in addition to the three Czech examples mentioned, include the Conch Republic in Florida, the Principality of Hutt River in Australia, Christiania in Copenhagen, Saugeais in eastern France or Liberland on the borders of Serbia and Croatia.)

The Republic consists of three groups of ca. 260 wine cellars (hence it is the federal one). Its mission is to take care of maintaining and improving the quality of local wine and the development of wine tourism. The government of the Republic organizes wine events, excursions to wine regions abroad, recessionary and cultural events. It has its own choir. In order to improve accessibility, an airport for small aircraft and rescue helicopters (code LKANDR) has been set up.

The Free Federal Republic of Kraví hora has existed for more than 20 years. Although, of course, the proclamation of the Republic and its first steps aroused the greatest attention and interest, the Republic still organizes events and has become an integral part of the folklore of South Moravia. The basic factor of success was a good idea and the availability of people who were willing to implement it. The second factor of success is the product, i.e. quality wines, a comprehensive offer, including opportunities for cultural, tourist and sports activities.

The Republic also organizes recessionist events. For example, there was an anti-referendum demanding the stop of the Ferris wheel in Vienna's Prater because it was driving frost into the vineyards of Bořetice, in response to the Austrian referendum on the Czech Temelín nuclear power plant. There was also a referendum on EU accession with a positive result.

This type of marketing supports participation, defined as the involvement of local people in activities (MCAREAVEY, R. 2009), which is one of the essential prerequisites for any rural development.

The Free Federal Republic of Kraví hora and the voluntary association of the Blue Mountains municipalities solve one of the biggest problems in the development of Czech tourism, namely the cooperation of municipalities and service providers. Stakeholders have confidence that they will benefit from the joint work.

Discussion

The transformation of the economy in post-socialist states was perceived as a post-socialist or post-communist transformation at the beginning of the 21st century. However, at the same time, structural changes were also taking place, caused by the development of productive forces. CSURGÓ, B. *et al.* (2018) show, using the example of Hungary, a sharp decline in the importance of agriculture for GDP generation and a simultaneous decline in the number of jobs in this sector. One of the consequences is also a significant differentiation of the countryside and the transformation.

There is not a wide range of possible strategies. Rural microregions close to regional centres and on major transport routes are likely to benefit from their location and co-operate with the centres and with each other, while having to overcome the risk of losing their rural identity. The rural periphery can benefit from a less disturbed environment and attractive landscapes, while having to deal with remoteness, which limits investment and the availability of services. Intermediate regions with intensive agriculture need to restructure their economic base. Developing tourism is one option.

However, the importance of tourism for rural development cannot be overestimated. HRUŠKA and PİŞA (2019) state that only a few rural locations in the most attractive positions of national parks have experienced

an increase in the number of job opportunities. This is also consistent with our findings, which indicate stabilization of the microregion rather than its growth. However, the question arises whether the goal should be development in quantitative terms. If we were to conclude that quality of life is more important, then stabilization at a certain (perhaps even lower than the current) level could be the right goal. Therefore, the development of tourism brings rather a slowing down of negative developments in a sense of resilience (HEIJMAN, W. *et al.* 2019) and a necessary reorientation of the countryside from a productive to a post-productive economy.

It should not be forgotten that the main goal of tourism development is to improve the quality of life for the local population (BÁNDI, A. *et al.* 2020). So what benefits does the development of tourism bring to the local population? It is generally said that these are job opportunities that prevent people from leaving the countryside. However, these job opportunities can create 1–2 percent of the total number of jobs only. Another possible benefit may be tax revenues and fees. Czech municipalities may receive income from recreational fees and income from real estate tax. None of these revenues is (with the exception of very extreme cases) crucial for the municipal budget.

Far more interesting can be the direct profits of business entities, either directly through tourism or through induced activities. However, this assumes that businesses are predominantly local. This seems to be a key issue for the importance of tourism for rural development. The specific financial benefits of these individual local entrepreneurs are, of course, unknown. However, the crucial thing is that these are mostly local entities so the finances stay in the region. However, the activity of municipalities, cooperation (for example within voluntary associations or local action groups) and grant support from the European, national or regional levels are necessary. Another possible benefit is the increase of the general awareness of the region, which may attract other

activities or increase the attractiveness of the area for residential preferences.

In the past, the Blue Mountains microregion was part of a fertile region, whose wealth was based on highly fertile soils and a favourable climate. Today, agriculture is no longer a wealth-rich sector competing with other regions, and the local climate is struggling with drought, which is caused by higher evaporation due to rising temperatures.

Nevertheless, our microregion shows quite a successful restructuring. Of course, it can be argued that in our case, wine growing played an important role, which other areas in Czechia do not have. However, we believe that this advantage has been strongly supported by a unifying idea and cooperation. This possibility exists practically everywhere. But it requires ideas and activity. If a specific idea is a leading element of development, it must be systematically developed in the future, otherwise its main meaning will disappear. Maintaining the initial impulses is often a more complex task than their original establishment.

For the sake of completeness, it is necessary to mention the possible negative effects of tourism development. In this case, it is an increased movement of tourists, their means of transport and the associated noise and garbage in sense of overtourism (BUTLER, R.W. 2020). This may be of particular concern to residents who are not interested in the economic development of the microregion (for example seniors, pensioners). It is a question of the carrying capacity of the territory (BAÑOS-PINO, J.F. *et al.* 2024).

Conclusions

The article tries to use the strengths and opportunities of economic and social transition in the microregion under study to eliminate its weaknesses and possible threats using the place marketing idea in condition of the existing wine culture, relatively easy accessibility (for domestic tourists) and existing cooperation, which is also institutionally anchored. This aim of the study was fulfilled.

From a theoretical point of view, the contribution draws attention to brand marketing in the rural area, which is characterized by a less centralized approach and more horizontal cooperation. Another important aspect – so far little appreciated – is the importance of brand marketing for previously intensively farmed agricultural regions. These regions used to be considered rich and therefore less problematic compared to the peripheries. However, even these regions are going through structural changes and since their attractiveness for tourism is not high, brand marketing is one of the possible solutions.

Although the presented case study discusses the specific use of place branding for rural transformation, we are convinced that the general findings, i.e. the use of a sense of place, original ideas of branding and cooperation between local residents and stakeholders, are applicable in any traditional rural microregion. The condition is the cohesion of rural residents.

The paper attempted to emphasise that the original idea and cooperation of stakeholders in the promotion of the microregion is crucial for the successful development of tourism in a less attractive microregion. The process of restructuring former agricultural or agro-industrial microregions into post-productive regions with a higher share of tourism requires significant endogenous activity. The study can also serve as an example of good practice.

Monitoring this process is an important task for the future. In the near future, an interesting issue will be the resilience of the nascent new economic structure due to the consequences of the COVID-19 pandemic and the anti-pandemic measures. The changing position of the microregion in the process of Europeanisation and globalisation will also be important.

Acknowledgement: This paper is one of the results of the HORIZON 2020 project “Social and Innovative Platform On Cultural Tourism and its Potential Towards Deepening Europeanisation” (<https://cordis.europa.eu/project/id/870644>), ID 870644, funding scheme Research and Innovation action, call H2020-SC6-TRANSFORMATIONS-2019.

REFERENCES

ALMEYDA-IBÁÑEZ, M. and GEORGE, B.P. 2017. The evolution of destination branding: A review of branding literature in tourism. *Journal of Tourism, Heritage & Services Marketing* 3. (1): 9–17.

ALMSTEDT, Å., BROUDER, P., KARLSSON, S. and LUNDMARK, L. 2014. Beyond post-productivism: From rural policy discourse to rural diversity. *European Countryside* 6. (4): 293–306. <https://doi.org/10.2478/euco-2014-0016>

ANDERSSON, I. 2014. Placing place branding: An analysis of an emerging research field in human geography. *Geografisk Tidsskrift / Danish Journal of Geography* 114. (2): 143–155. <https://doi.org/10.1080/00167223.2014.895954>

ASHWORTH, G.J. and GRAHAM, B. (eds.) 2017. *Senses of Place: Senses of Time*. Abingdon-on-Thames, Routledge. <https://doi.org/10.4324/9781315243467>

BĂNDOI, A., JIANU, E., ENESCU, M., AXINTE, G., TUDOR, S. and FIROIU, D. 2020. The relationship between development of tourism, quality of life and sustainable performance in EU countries. *Sustainability* 12. (4): 1628. <https://doi.org/10.3390/su12041628>

BAÑOS-PINO, J.F., BOTO-GARCÍA, D., ZAPICO, E. and MAYOR, M. 2024. Optimal carrying capacity in rural tourism: Crowding, quality deterioration, and productive inefficiency. *Tourism Management* 105. 104968. <https://doi.org/10.1016/j.tourman.2024.104968>

BONAROU, C., TSARTAS, P. and SARANTAKOU, E. 2019. E-storytelling and wine tourism branding: Insights from the wine roads of Northern Greece. In *Wine Tourism Destination Management and Marketing*. Eds.: SIGALA, M. and ROBINSON, R.N.S., Cham, Palgrave Macmillan, 77–98. https://doi.org/10.1007/978-3-030-00437-8_7

BROUDER, P., KARLSSON, S. and LUNDMARK, L. 2015. Hyper-production: A new metric of multifunctionality. *European Countryside* 7. (3): 134–143. <https://doi.org/10.1515/euco-2015-0009>

BRUWER, J. and RUEGER-MUCK, E. 2018. Wine tourism and hedonic experience: A motivation-based experiential view. *Tourism and Hospitality Research* 19. (4): 488–502. <https://doi.org/10.1177/1467358418781444>

BUTLER, R.W. 2020. Overtourism in rural areas. In *Overtourism*. Eds.: SÉRAPHIN, H., GLADKIKH, T. and VO THANH, T., Cham, Palgrave Macmillan, 27–43. https://doi.org/10.1007/978-3-030-42458-9_3

CARMICHAEL, B.A. and SENESE, D.M. 2012. Competitiveness and sustainability in wine tourism regions: The application of a stage model of destination development to two Canadian wine regions. In *The Geography of Wine*. Ed.: DOUGHERTY, P., Dordrecht, Springer, 159–178. https://doi.org/10.1007/978-94-007-0464-0_9

CHMIELIŃSKI, P., FACCILONGO, N., FIORE, M. and LA SALA, P. 2018. Design and implementation of the

local development strategy: A case study of Polish and Italian local action groups in 2007–2013. *Studies in Agricultural Economics* 120. (1): 25–31. <https://doi.org/10.7896/j.1726>

CLOKE, P. 2006. Conceptualizing rurality. In *Handbook of Rural Studies*. Eds.: CLOKE, P., MARSDEN, T. and MOONEY, H., London, Sage, 18–28. <https://doi.org/10.4135/9781848608016.n2>

COSTA DA SILVA, M.A., BRUCH, K.L., DUARTE, F.F. and BETLEN COURT, A.F. 2024. Wine tourism and sustainable territorial development in Vale dos Vinhedos: An analysis of the different perceptions and conflicts of the territory. *Revista Brasileira de Gestão e Desenvolvimento Regional* 20. (1): 586–615. <https://doi.org/10.54399/rbgdr.v20i1.7143>

CSURGÓ, B., KOVÁCH, I. and MEGYESI, B. 2018. After a long march: The results of two decades of rural restructuring in Hungary. *Eastern European Countryside* 24. 81–109. <https://doi.org/10.2478/eec-2018-0005>

DARWISH, A. and BURNS, P. 2019. Tourist destination reputation: An empirical definition. *Tourism Recreation Research* 44. (2): 153–162. <https://doi.org/10.1080/02508281.2018.1558754>

DASZKIEWICZ, M. and WOŁOSECKA, A. 2019. Development of a brand idea as the basis for region branding. A case study of the Jizera mountains and the foreground region. *Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska* 139. 107–121.

DEMIROVIĆ, D., KOŠIĆ, K., SURD, V., ŽUNIĆ, L. and SYROMIATNIKOVA, Y.A. 2017. Application of tourism destination competitiveness model on rural destinations. *Journal of the Geographical Institute "Jovan Cvijić" SASA*. 67. (3): 279–295. <https://doi.org/10.2298/IJGI1703279D>

DIMITROVSKI, D., JOUKES, V., RACHÃO, S. and TIBÉRIO, M.L. 2019. Wine tourism apps as wine destination branding instruments: Content and functionality analysis. *Journal of Hospitality and Tourism Technology* 10. (2): 136–152. <https://doi.org/10.1108/JHTT-10-2017-0115>

DURKIN, J., PERIĆ, M. and KLIJAIĆ-ŠEBREK, J. 2017. Addressing organisational challenges of cultural tourism in rural areas through community-based tourism model. *ToSEE – Tourism in Southern and Eastern Europe* 4. 145–157. <https://doi.org/10.20867/tosee.04.29>

EUSÉBIO, C., CARNEIRO, M.J., KASTENHOLZ, E., FIGUEIREDO, E. and SOARES DA SILVA, D. 2017. Who is consuming the countryside? An activity-based segmentation analysis of the domestic rural tourism market in Portugal. *Journal of Hospitality and Tourism Management* 31. 197–210. <https://doi.org/10.1016/j.jhtm.2016.12.006>

FOUNTAIN, J., CHARTERS, S. and COGAN-MARIE, L. 2020. The real Burgundy: Negotiating wine tourism, relational place and the global countryside. *Tourism Geographies* 23. (5–6): 1116–1136. <https://doi.org/10.1080/14616688.2020.1713880>

FROST, W., FROST, J., STRICKLAND, P. and SMITH MAGUIRE, J. 2020. Seeking a competitive advantage in wine tourism: Heritage and storytelling at the cellar-door. *International Journal of Hospitality Management* 87. 102460. <https://doi.org/10.1016/j.ijhm.2020.102460>

GAJIĆ, T., PENIĆ, M., VUKO, A. and PETROVIĆ, M.D. 2018. Development perspectives of rural tourism policy – A comparative study of rural tourism competitiveness based on perceptions of tourism workers in Slovenia and Serbia. *Eastern European Countryside* 24. (1): 143–154. <https://doi.org/10.2478/eec-2018-0007>

GARRONE, M., EMMERS, D., OLPER, A. and SWINNEN, J. 2019. Jobs and agricultural policy: Impact of the common agricultural policy on EU agricultural employment. *Food Policy* 87. 101744. <https://doi.org/10.1016/j.foodpol.2019.101744>

GÓMEZ, M., LOPEZ, C. and MOLINA, A. 2015. A model of tourism destination brand equity: The case of wine tourism destinations in Spain. *Tourism Management* 51. 210–222. <https://doi.org/10.1016/j.tourman.2015.05.019>

GÓMEZ, M., PRATT, M.A. and MOLINA, A. 2019. Wine tourism research: A systematic review of 20 vintages from 1995 to 2014. *Current Issues in Tourism* 22. 2211–2249. <https://doi.org/10.1080/13683500.2018.1441267>

GULISOVA, B. 2021. Rural place branding processes: A meta-synthesis. *Place Brand Public Diplomacy* 17. 368–381. <https://doi.org/10.1057/s41254-020-00187-y>

HALL, D. 2005. Rural wine and food tourism sector. In *Rural Tourism and Sustainable Business*. Eds.: HALL, D., KIRKPATRICK, I. and MITCHELL, M., Clevedon, Channel View Publisher, 149–164. <https://doi.org/10.2307/jj.27195513.14>

HANNA, S., ROWLEY, J. and KEEGAN, B. 2020. Place and destination branding: A review and conceptual mapping of the domain. *European Management Review* 18. 105–117. <https://doi.org/10.1111/emre.12433>

HEIJMAN, W., HAGELAAR, G. and VAN DER HEIDE, M. 2019. Rural resilience as a new development concept. In *EU Bioeconomy Economics and Policies. Volume II*. Eds.: DRIES, L., HEIJMAN, W., JONGENEEL, R., PURNHAGEN, K. and WESSELER, J., Cham, Palgrave Macmillan, 195–211. https://doi.org/10.1007/978-3-030-28642-2_11

HRUŠKA, V. and PŘÍSA, J. 2019. Winning and losing rural localities of the post-socialist economic restructuring. Case study of Czechia. *Hungarian Geographical Bulletin* 68. (4): 373–389. <https://doi.org/10.15201/hungeobull.68.4.4>

JARRATT, D., PHELAN, C., WAIN, J. and DALE, S. 2018. Developing a sense of place toolkit: Identifying destination uniqueness. *Tourism and Hospitality Research* 19. (4): 408–421. <https://doi.org/10.1177/1467358418768678>

JEPSON, D. and SHARPLEY, R. 2018. More than sense of place? Exploring the emotional dimension of rural tourism experiences. In *Rural Tourism*. Eds.: LANE, B. and KASTENHOLZ, E., London, Routledge, 25–46. <https://doi.org/10.4324/9781315111865>

Joy, A., YOON, S., GROHMAN, B. and LATOUR, K. 2021. How winery tourism experience builds brand image and brand loyalty. *Wine Business Journal* December, 2021. E-publication. <https://doi.org/10.26813/001c.30210>

KASTENHOLZ, E., PEIXEIRA MARQUES, M. and CARNEIRO, M.J. 2020. Place attachment through sensory-rich, emotion-generating place experiences in rural tourism. *Journal of Destination Marketing & Management* 17. 100455. <https://doi.org/10.1016/j.jdmm.2020.100455>

KAVOURA, A. and BITSANI, E. 2013. E-branding of rural tourism in Carinthia, Austria. *Tourism: An International Interdisciplinary Journal* 61. (3): 289–312.

KELLER, K.L. 2002. Branding and brand equity. In *Handbook of marketing*. Eds. WEITZ, B. and WINSLEY, R., London, Sage, 155–178. <https://doi.org/10.4135/9781848608283.n8>

KONEČNÝ, O. 2019. The LEADER approach across the European Union: One method of rural development, many forms of implementation. *European Countryside* 11. (1): 1–16. <https://doi.org/10.2478/euco-2019-0001>

KONEČNÝ, O., ŠILHAN, Z., CHALOUPKOVÁ, M. and SVOBODOVÁ, H. 2020. Area-based approaches are losing the essence of local targeting: LEADER/CLLD in the Czech Republic. *European Planning Studies* 29. (4): 619–636. <https://doi.org/10.1080/09654313.2020.1764913>

KÓRÓDI, M. and DÁVID, L.D. 2019. The uniqueness of the Hungarian rural tourism supply. *Journal of Tourism and Services* 10. 24–39. <https://doi.org/10.29036/jots.v10i19.93>

KRÁLIKOVÁ, A., KUBÁT, P. and RYGOVÁ, K. 2021. Visitors' happiness and loyalty in the Moravian wine region. *European Countryside* 13. (4): 750–767. <https://doi.org/10.2478/euco-2021-0040>

LABIANCA, M. and NAVARRO VALVERDE, F. 2019. Depopulation and aging in rural areas in the European Union: Practices starting from the LEADER approach. *Perspectives on Rural Development* 3. 223–252. Doi: <https://doi.org/10.1285/i26113775n3p223>

LIU, S. and CHEUNG, L.T.O. 2016. Sense of place and tourism business development. *Tourism Geographies* 18. (2): 174–193. <https://doi.org/10.1080/14616688.2016.1149513>

MACKAY, M. and PERKINS, H.S. 2019. Making space for community in super-productivist rural settings. *Journal of Rural Studies* 68. 1–12. <https://doi.org/10.1016/j.jrurstud.2019.03.012>

MADEIRA, A., CORREIA, A. and FILIPE, J.A. 2019. Wine tourism: Constructs of the experience. In *Trends in Tourist Behavior*. Eds.: ARTAL-TUR, A., KOZAK, M. and KOZAK, N., Cham, Springer, 93–108. https://doi.org/10.1007/978-3-030-11160-1_6

MARCOUILLER, D. 2013. The rural development attributes of tourism. In *Handbook of Rural Development*. Ed.: GREEN, G.P., Cheltenham, Edward Elgar, 158–178. <https://doi.org/10.4337/9781781006719.00018>

MARINO, A. and PARISO, P. 2022. The digital platform experience of a leading country in wine tourism: From COVID-19 to the new era. *International Journal of Innovation and Technology Management* 19. (7): 2250021. <https://doi.org/10.1142/S0219877022500213>

MARLOWE, B. and LEE, S. 2018. Conceptualizing terroir wine tourism. *Tourism Review International* 22. (2): 143–151. <https://doi.org/10.3727/154427218X15319286372298>

MCAREAVAY, R. 2009. *Rural Development Theory and Practice*. New York, Routledge. <https://doi.org/10.4324/9780203878125>

MCKERCHER, B. 2020. Cultural tourism market: A perspective paper. *Tourism Review* 75. (1): 126–129. <https://doi.org/10.1108/TR-03-2019-0096>

MEDARIĆ, Z., SULYOK, J., KARDOS, S. and GABRUČ, J. 2021. Lake Balaton as an accessible tourism destination – the stakeholders' perspectives. *Hungarian Geographical Bulletin* 70. (3): 233–247. <https://doi.org/10.15201/hungeobull.70.3.3>

MENCONI, M.E., ARTEMI, S., BORGHI, P. and GROHMAN, D. 2018. Role of local action groups in improving the sense of belonging of local communities with their territories. *Sustainability* 10. (12): 4681. <https://doi.org/10.3390/su10124681>

MICHAELIS AHARON, K. and ALFASI, N. 2022. The geographical aspect of place branding: Interactions between place brands in the spatial hierarchy. *Applied Geography* 139. 102650. <https://doi.org/10.1016/j.apgeog.2022.102650>

MOLLEVÍ, G., NICOLAS-SANS, R., ÁLVAREZ, J. and VILLORO, J. 2020. PDO certification: a brand identity for wine tourism in Catalonia (Spain). *Geographicala* 72. 87–109. https://doi.org/10.26754/ojs_geoph/geoph.2020724595

MURDOCH, J., LOWE, P., WARD, N. and MARDEN, T. 2003. *The Differentiated Countryside*. London, Routledge.

MURMURA, F., PISCÈ, G.C. and FRABONI, C. 2024. Enhancing tourism through local development strategies (LDSs): A study of FLAG Marche Sud area. In *Driving Quality Management and Sustainability in VUCA Environments*. Eds.: GONÇALVES DOS REIS, J.C., PINHO, T., BARBOSA, V. and BARRETO, L., Cham, Springer, 259–272. https://doi.org/10.1007/978-3-031-52723-4_20

MURRAY, A. and KLINE, C. 2015. Rural tourism and the craft beer experience: Factors influencing brand loyalty in rural North Carolina, USA. *Journal of Sustainable Tourism* 23. (8–9): 1198–1216. <https://doi.org/10.1080/09669582.2014.987146>

PIKE, A. 2009. Geographies of brands and branding. *Progress in Human Geography* 33. (5): 619–645. <https://doi.org/10.1177/0309132508101601>

PROKEŠ, M. 2019. Wine trails in the Czech Republic. In *Wine Tourism Destination Management and Marketing*. Eds.: SIGALA, M. and ROBINSON, R., Cham, Palgrave Macmillan, 341–355. https://doi.org/10.1007/978-3-030-00437-8_22

REICHERT-SCHICK, A. 2016. The village as a hotel. Tourism-oriented revitalization of rural settlements:

A good practice concept for European peripheries? In *European Rural Peripheries Revalued*. Eds.: GRABSKI-KIERON, U., MODE, I., REICHERT-SCHICK, A. and STEINFÜHRER, A., Berlin, LIT Verlag, 198–228.

RICHARDS, G. 2018. Cultural tourism: A review of recent research and trends. *Journal of Hospitality and Tourism Management* 36. 12–21. <https://doi.org/10.1016/j.jhtm.2018.03.005>

ROMAN, M., ROMAN, M., PRUS, P. and SZCZEPANEK, M. 2020. Tourism competitiveness of rural areas: Evidence from a region in Poland. *Agriculture* 10. (11): 569. <https://doi.org/10.3390/agriculture10110569>

ROMÃO, J. 2018. Tourism, a place-based activity. In *Tourism, Territory and Sustainable Development*. Ed.: ROMÃO, J., Singapore, Springer, 37–64. https://doi.org/10.1007/978-981-13-0426-2_3

SALVIA, R. and QUARANTA, G. 2017. Place-based rural development and resilience: A lesson from a small community. *Sustainability* 9. (6): 889. <https://doi.org/10.3390/su9060889>

SAN EUGENIO-VELA, J., GINESTA, X. and KAVARATZIS, M. 2020. The critical role of stakeholder engagement in a place branding strategy: A case study of the Empordà brand. *European Planning Studies* 28. (7): 1393–1412. <https://doi.org/10.1080/09654313.2019.1701294>

SCHMIED, D. (ed.) 2005. *Winning and Losing. The Changing Geography of Europe's Rural Areas*. Aldershot, Ashgate.

SCORRANO, P., FAIT, M., MAIZZA, A. and VRONTIS, D. 2019. Online branding strategy for wine tourism competitiveness. *International Journal of Wine Business Research* 31. (2): 130–150. <https://doi.org/10.1108/IJWBR-06-2017-0043>

SIGALA, M. 2020. Tourism and COVID-19: Impacts and implications for advancing and resetting industry and research. *Journal of Business Research* 117. 312–321. <https://doi.org/10.1016/j.jbusres.2020.06.015>

ŠÍP, J., RYŠKOVÁ, J. and SMŘČKA, F. 2018. Territorial connections of wine tourism to vine growing and wine produce in the winegrowing sub-regions of Slovácko and Znojemsko. *Czech Hospitality & Tourism Papers* 14. (3): 16–27.

ŠŤASTNÁ, M., VAISHAR, A., RYGOVÁ, K., RAŠOVSKÁ, I. and ZÁMEČNÍK, S. 2020. Cultural tourism as a possible driver of rural development in Czechia. Wine tourism in Moravia as a case study. *European Countryside* 12. (3): 292–311. <https://doi.org/10.2478/euco-2020-0017>

STONAWSKÁ, K. and VAISHAR A. 2018. Differentiation and typology of the Moravian countryside. *European Countryside* 10. (1): 127–140. <https://doi.org/10.2478/euco-2018-0008>

SZÖRÉNYINÉ KUKORELLI, I. 2011. Tourism and agriculture in Hungary: Post-productivist transition or new functions in rural space? In *Tourism and Agriculture*. Eds.: TORRES, R.M. and HENSHALL MOMSEN, J., Abingdon, Routledge, 13–27.

TASCI, A.D.A. 2021. A critical review and reconstruction of perceptual brand equity. *International Journal of Contemporary Hospitality Management* 33. (1): 166–198. <https://doi.org/10.1108/IJCHM-03-2020-0186>

TIRADO BALLESTEROS, J.G. and HERNÁNDEZ, M.H. 2018. Promoting tourism through the EU LEADER programme: Understanding local action group governance. *European Planning Studies* 27. (2): 396–414. <https://doi.org/10.1080/09654313.2018.1547368>

TRINAJSTIĆ, M., BADURINA, J.D. and KOŠČAK, M. 2023. The role of local action groups in the development of rural tourism. In *Edukacija Kakao Ključni Faktor Održivog i Odgovornog Razvoja Ruralnog Područja*. Moslavacka Slatina, Vimal Akademija, 153–165.

VAISHAR, A. and PAVLŮ, A. 2018. Outmigration intentions of secondary school students from a rural micro-region in the Czech inner periphery: A case study of the Bystřice nad Pernštejnem area in the Vysočina region. *Acta Universitatis Carolinae Geographica* 53. (1): 49–57. <https://doi.org/10.14712/23361980.2018.5>

VAISHAR, A. and ŠŤASTNÁ, M. 2020. Impact of the COVID-19 pandemic on rural tourism in Czechia. Preliminary considerations. *Current Issues in Tourism* 25. (2): 187–191. <https://doi.org/10.1080/13683500.2020.1839027>

VAISHAR, A., ŠŤASTNÁ, M., ZAPLETALOVÁ, J. and NOVÁKOVÁ, E. 2020. Is the European countryside depopulating? Case study Moravia. *Journal of Rural Studies* 80. 567–577. <https://doi.org/10.1016/j.jrurstud.2020.10.044>

VASTA, A., FIGUEIREDO, E., VALENTE, S., VIHINEN, H. and NIETO-ROMERO, M. 2019. Place-based policies for sustainability and rural development: The case of a Portuguese village "Spun" in traditional linen. *Social Sciences* 8. (10): 289. <https://doi.org/10.3390/socsci8100289>

WALKER, K. and MOSCARDO, G. 2018. Moving beyond sense of place to care of place: The role of Indigenous values and interpretation in promoting transformative change in tourists' place images and personal values. In *Sustainable Tourism and Indigenous Peoples*. Eds.: CARR, A., RUHANEN, L., WHITFORD, M. and LANE, B., London, Routledge, 177–195. <https://doi.org/10.4324/978131512053-11>

WOODS, M. 2011. *Rural*. London, Routledge. <https://doi.org/10.4324/9780203844304>

"Good neighbours are worth their weight in gold" – The role of familiarity on the revisit intention to neighbouring countries

LÁSZLÓ KÖKÉNY¹, BORBÁLA SZÜLE¹, ZOLTÁN BIRKNER² and GÁBOR MICHALKO^{2,3}

Abstract

The aim of this study is to narrow down the research gap identified while uncovering the impact mechanism of destination familiarity on the revisit intention to the neighbouring countries. The research, justifies the hypothesis established based on the literature review by placing the analysis in the context of Hungary, located in the heart of East-Central Europe, and its relations with the seven neighbouring countries. In addition to the database of the Hungarian Central Statistical Office on the outbound travels of the Hungarian population, we build on the database of a survey conducted in 2023, with representative sampling, under which 400 Hungarian citizens with outbound travel experience were interviewed. The analysis was executed using simple and multivariate statistical methods. It was concluded that travellers of a non-neighbouring country perceive higher familiarity with the given destination, but it is not affecting more the revisit frequency than it is in a neighbouring country. The results will help to understand the tourist mobility between countries in a particular geopolitical situation due to the storms of history. The study highlights management implication and limitations; moreover, proposes directions for future research.

Keywords: tourism, destination familiarity, revisit intention, neighbourhood, East-Central Europe, Hungary

Received May 2025, accepted November 2025.

Introduction

The establishment and the maintenance of good relations with neighbours is a universal value. Dozens of proverbs, all around the world, highlight that the coexistence with the neighbours affects the quality of life. Social experiences based on visiting neighbours positively influence well-being (TSAI, M.C. 2021). These get-togethers bring significant mental health benefits with relatively little efforts (BREEDVELT, J.J. *et al.* 2022). Among the impacts of a change of environment related to tourism, the improvement of the quality of life holds a prominent place (SMITH, M.K. and DIEKMANN, A. 2017). The proximity of the

tourist destination and the familiarity associated with it often play a decisive role in travel decisions, and domestic tourism, among other things, is also built on this (JEURING, J. and HAARTSEN, T. 2018). National border crossing can strengthen the travellers' awareness of involvement in tourism (TIMOTHY, D.J. 2020). Visiting neighbouring countries often simultaneously provides proximity and familiarity, however, is consciously perceived as international tourism (VERMA, T. *et al.* 2019). Just as proximity and familiarity can play a role in maintaining strong relations with the neighbouring residents, these factors may also influence travel to neighbouring countries and the revisit intentions.

¹ Corvinus University of Budapest. Fővám tér 8, H-1093 Budapest, Hungary. E-mails: laszlo.kokeny2@uni-corvinus.hu, borbala.szule@uni-corvinus.hu

² University of Pannonia, Veszprém. Egyetem utca 1, H- 8200 Veszprém, Hungary. E-mails: birkner.zoltan@pen.uni-pannon.hu, michalko.gabor.istvan@gtk.uni-pannon.hu

³ HUN-REN CSFK Geographical Institute. Budaörsi út 45, H-1112 Budapest, Hungary. Corresponding author's e-mail: michalko.gabor@csfk.org

Although distance has played a decisive role in travel decisions since the dawn of tourism, continuous advances in transportation infrastructure have significantly reduced the importance of mere geographical distance in destination choice (McKERCHER, B. *et al.* 2008). This shift is driven, on the one hand, by technological and technical innovations that have shortened the time required to cover the same physical distance, and on the other hand, by social and economic convergence, which has contributed to a decline in perceived distance (McKERCHER, B. and MAK, B. 2019). Although proximity in tourism can be interpreted as a rather relative, therefore, a subjective concept, neighbourhood, in the global perspective, covers the countries with common national border that are relatively easy to reach (of course, there are cases where a neighbouring country may be harder to access than a more distant one due to geopolitical and/or infrastructural reasons) (KOZAK, M. and BUHALIS, D. 2019). The tourism between two neighbouring countries is often characterized by cross-border shopping (TIMOTHY, D.J. 1999), the use of healthcare services (ÖSTERLE, A. 2009), business-motivated travels (CARVALHO, P. *et al.* 2016), gambling (HAUCAP, J. *et al.* 2023), prostitution (MARTTILA, A.M. 2008), and visiting friends and relatives (ROGERSON, C.M. and ROGERSON, J.M. 2019). However, if the countries involved possess attractions that are highly marketable within the international tourism (such as waterfronts, mountains, thermal baths, or World Heritage Sites), proximity can further stimulate mutual tourist flows. Neighbourhood ties, common historical background, cultural (language, religion) similarities can be accompanied by familiarity because of the previous travel experiences gained while visiting each other, which then can catalyse the benefits of proximity and strengthen revisit intention (BRUMEN, M. *et al.* 2014; XU, F. *et al.* 2024). At the same time, regional tensions and conflicts, present in many parts of the world, stemming exactly from the poor neighbouring relations, can hinder the development of familiarity and the unfolding of fruitful tourism relations (TUCLEA, C.E. *et al.* 2024).

The impact of familiarity on revisit intention to neighbouring countries is a surprisingly under-researched topic in the tourism literature. It is not easy to explain why this important issue has escaped the attention of tourism scholars, especially since the relationship between revisit intention and neighbourhood (ESQUIVIAS, M.A. *et al.* 2021; HELAL, E.A. *et al.* 2023), as well as between revisit intention and familiarity (WEN, J. and HUANG, S. 2019; SHI, H. *et al.* 2022) are examined in relevant studies separately. The topic gains a special context, if it is being examined in a geographical area like East-Central Europe, which, due to the Paris Peace Treaties concluded after World War I and World War II, remains burdened with latent, ethnically rooted tensions up until this day (TESSER, L.M. 2003).

The aim of the present study is to narrow down the research gap, identified while uncovering the impact mechanisms of familiarity on the revisit intention to neighbouring countries sharing a common national border. The study seeks to answer research questions emerging from the literature by placing the analysis in the context of Hungary as the sending country and its neighbouring countries as receiving destinations. In addition to the Hungarian Central Statistical Office's database on the outbound travels of the Hungarian population in 2023, the study is also based on the database of a sampling survey, representative of age, gender, and residence, conducted in late autumn 2023. Within the survey, 400 Hungarian citizens, living in Hungary, having previous international travel experience, and having spent at least one night in a preferred foreign country for tourism purposes during the summer of the given year were interviewed. The primary objective of the research was to answer, how neighbourhood affects familiarity-driven revisit intentions.

Theoretical background

One of the greatest challenges of tourism destination management is to create a tour-

ism product that encourages visitors to return, as beyond the different motivations, personal experience is the main driving force behind revisits (HUANG, S. and HSU, C.H. 2009; MAGHRIFANI, D. *et al.* 2022; WANG, X. *et al.* 2022; RAMOS, K. and CUAMEA, O. 2023). Consequently, the multifaceted exploration of factors influencing revisit intention carries significant practical value. Satisfaction with the offers of the destination plays a key role not only in the revisits but also in recommending the destination to others (XU, Y. *et al.* 2010). The revisit intention associated with the satisfaction cannot be considered static, it is dynamically influenced by the travellers' personality traits and sociodemographic characteristics (AGRUSA, J. *et al.* 2011; PARK, J.Y. and JANG, S. 2014). While KIM, H. *et al.* (2015) highlight that leisure life satisfaction and quality of life can be effective predictors of revisit intention, according to the model of LUNA-CORTÉS, G. *et al.* (2019) perceived social value leads to satisfaction, and satisfaction, in turn, leads to revisit intention and positive word-of-mouth. While destination branding positively and directly affects revisit intention, the mediating role of tourist satisfaction has an indirect effect on returning (SHI, H. *et al.* 2022). In their study on the impact of image on revisit intention, PARK, S. and NICOLAU, J.L. (2019) found that prior attitudes influence the level of tolerance, thus, also affecting satisfaction and revisit intention. Several studies emphasize that technological innovations (digitalization, smart destinations, etc.) stimulate revisit intention by intensifying visitor experiences (PAI, C.K. *et al.* 2020). Photographs taken and stored on smartphones promote the desire to return to the given destination, through autobiographical memory based on nostalgia (ZHANG, X. *et al.* 2021). Studies related to the COVID-19 pandemic have confirmed the importance of risk perception and the pursuit of the security in the traveller's decision to return (FAIRUZ, R.M. *et al.* 2021; AHMAD, N. *et al.* 2022). Digital nomads represent the transition between the frequent returnees and the second-home buyers (MIOCEVIC, D. 2025).

Familiarity plays a key role in the development of bonding to a destination. Numerous factors contribute to generating familiarity, including influential movies and TV series (THE, P.Y. and GOH, H.C. 2016; KIM, S. *et al.* 2009, 2019), social media (MOHD SALIM, M.N.H. *et al.* 2024), travel blogs (TAN, W.K. and CHANG, Y.G. 2016), the usage of VR technology (WEI, W. *et al.* 2019), behaviours associated with religious practices (SILVA, C. *et al.* 2023), storytelling, and tourist narration (YUAN, X. *et al.* 2024). Nevertheless, the factor having the strongest impact is undoubtedly personal experiences (MILMAN, A. and PIZAM, A. 1995; ALAM, S.S. 2025). SEO, S. *et al.* (2013) distinguishes the role of experiential and informational familiarity in tourism, with the former being more influential in improving, for example, the image of local food. The connection between bonding and familiarity can also be moderated by factors such as image (STYLDIS, D. *et al.* 2020) and authenticity (SCARPI, D. *et al.* 2019). MARINAO-ARTIGAS, E. *et al.* (2015) found a link between the mediating role of familiarity in the relationship between cognitive perception, affective evaluation, and destination reputation. TAN, W.K. and CHANG, Y.G. (2016) also pointed out that past experience with the destination is necessary for travel blog readers to use their credibility assessment of the article to recommend the destination to others, with place familiarity acting as a moderator. The topic of the link between bonding and familiarity also faces several paradoxes. PHILLIPS, J. *et al.* (2011) showed that even in an unfamiliar environment, older people can develop a sense of place through the aesthetics and usability of the environment as well as through shared memories. WILDISH, B. *et al.*'s study (2016) conducted in a youth hostel revealed that even first-time visitors developed a sense of familiarity, likely due to the intense social interactions characteristic of the junior generation (IRIMIÁS, A. 2023).

The study of the role of neighbourhood in tourism has a long history and is approached from multiple perspectives, in which supranational relations receive a prominent role with-

in Europe encompassing through borders, covering a multitude of nations (GRIMMEAU, J.P. 1980; LEIPER, N. 1989; TIMOTHY, D.J. and SAARINEN, J. 2013). The exploration of tourism opportunities arising from border connections is also extensive (STOFFELEN, A. and TIMOTHY, D.J. 2023). TIMOTHY, D.J. (1995) even interprets the border itself as a tourist attraction. Neighbourhood, especially by using healthcare services and smaller retail offerings (MICHALKÓ, G. et al. 2014), stimulates tourism in regions along borders, while VFR tourism, aimed at maintaining social ties based on ethnic connections, also has an impact on it (PROVENZANO, D. and BAGGIO, R. 2017).

Tourist flows between neighbouring countries within the European Schengen Area occur without border controls, making cross-border road and rail traffic almost imperceptible (WIĘCKOWSKI, M. and TIMOTHY, D.J. 2021). In the context of inbound tourism to Bulgaria, KOROL, O. and SKUTAR, T. (2019) found that the length of shared borders with neighbouring countries correlates with the number of arrivals from the sending countries. Neighbourhood can also stimulate travel through both geographical (PARK, C. et al. 2023) and cultural proximity (IREWATI, A. and NUFUS, H. 2024); moreover, it can be effectively utilized in destination marketing as well (KOZAK, M. and BUHALIS, 2019). The COVID-19 pandemic highlighted that, as travel restrictions eased, neighbouring countries were prioritized, creating the so-called tourist corridors (MICHALKÓ, G. et al. 2022), although, those destinations that were hosts of mass events, were not able to apply this opportunity, even in relation to neighbouring countries (FARIS, H. and GRIFFIN, K.A. 2020).

While the relationship between the triad of revisit intention, familiarity, and neighbourhood remains largely unexplored in the tourism literature, there are substantial precedents examining the link between revisit intention and familiarity. JANG, S.S. and FENG, R. (2008) typologized tourists across the novelty-familiarity continuum and developed the concept of Temporal Destination Revisit Behaviour (TDRB), distinguishing three types

of tourists: Continuous repeaters, deferred repeaters (tourists whose visits to a destination are occasionally repeated over time), and continuous switchers. SOLIMAN, M. (2021), by extending the model of the Theory of Planned Behaviour (TPB), aimed to predict tourists' revisit intention to Egypt and found that destination familiarity also played a role in returning. RAMESH, V. and JAUNKY, V.C. (2021), building on their concept of Intrinsic and Extrinsic Motivation, emphasize that pre-visit behaviour stimulates post-visit behaviour, which influences revisit intention, further moderated by familiarity and satisfaction experienced during the visit. XU, F. et al. (2024), using the Stimulus-Organism-Response and Construal Level theories, distinguish between culturally homologous and non-homologous destinations, finding that travelling to culturally different and immersive experiences is more likely to result in revisits and recommendations. WEN, J. and HUANG, S. (2019), studying Chinese cigar tourists travelling to Cuba, found that socialistic nostalgia acts as a pull factor among travel motivations and influences revisit intention, which is also affected by destination familiarity. KUHZADY, S. et al. (2020), based on their study among couch surfers travelling to Turkey, concluded that couch surfing improves destination familiarity and revisit intention.

When discussing the triad of revisit intention, familiarity, and neighbourhood, it is essential to evaluate the transformation of distance and its role in tourism. Despite the fact that advances in transport infrastructure have redefined the relationship between travel and distance, the majority of travellers still tend to visit destinations located closer to their residence, while only a smaller share venture to more distant locations (MCKERCHER, B. and MAK, B. 2019). The role of distance in tourism has become highly heterogeneous (LARSEN, G.R. 2017), as the traditional physical interpretation has been complemented by institutional (LI, C. et al. 2024), psychological (VERMA, T. et al. 2019), social (THYNE, M. et al. 2022), health-related (DÉDELÉ, A. et al. 2020), climatic (MASOUDI, M. 2021), and cultural di-

mensions (YANG, Y. et al. 2019). The gradual weakening of the classical distance-demand relationship (CROUCH, G.I. 1994) has brought renewed attention to the importance of tourist revisit behaviour, as the increasingly accessible and expanding global supply intensifies competition among destinations (ZULFIQAR, U. et al. 2024). In this context, familiarity grounded in neighbourhood can become a key factor in destination success (GONZÁLEZ-RODRÍGUEZ, M.R. et al. 2023).

Hungary provides an extremely appropriate context for investigating the role of familiarity in revisit intention to neighbouring countries, due to its central geographical position and stormy historical background (LIEBICH, A. 2021; ANDRÁS, E. 2024). For many years, the Hungarian government have been supporting the unique "Without Borders" travel program, aimed for seventh-graders (12–13-year-olds) with nation-building purposes, clearly illustrating the educational and socialization opportunities embedded in cross-border relations, which can serve as catalysts for both familiarity and return (RÁTZ, T. et al. 2020; MOLNÁR, V. 2023). The purchase of real estate in Hungary by foreign citizens living in neighbouring countries may also contribute to strengthening mutual trust based on cross-border connections (ILLÉS, S. and MICHALKÓ, G. 2008). Since trust is partly built on risk reduction, the sense of security plays a key role in encouraging return visits to countries neighbouring Hungary (KÖKÉNY, L. et al. 2024).

Research methodology

The scientific mission of this paper is to highlight the difference between tourists based on their international travel direction is either a neighbouring country to Hungary or not in case of the relationship between familiarity with a destination and the revisit frequency of the given country. The aim of the research is to measure the positive impact of familiarity on revisit frequency controlling the given country territorial aspect (neighbouring country or not to Hungary). This possible

relationship has only been hinted at by a few researchers (KUHZADY, S. et al. 2020; SOLIMAN, M. 2021; IREWATI, A. and NUFUS, H. 2024), but in the context of this study we would like to verify the legitimacy of this approach. With this approach, we hypothesise that those who travel into a neighbouring country to Hungary has higher positive impact of familiarity on revisit frequency than travelling into a non-neighbouring country (H_2). We measured this hypothesized relationship in general for any given country (H_1) without separated it into the two groups (neighbouring and non-neighbouring country). Based on the literature, we also assumed that for those who do not travel from the capital city, familiarity with a destination factor has a greater impact on revisit frequency (H_3). We also assumed a positive correlation in that people who don't live in the capital are more likely to travel to neighbouring countries (H_4). Furthermore, we created a control hypothesis to determine whether it is possible to create a familiarity with a destination factor (H_5). Based on this, the following hypotheses were formulated following the literature review (Figure 1):

H_1 : There is a positive impact of familiarity with that destination on revisit frequency to the given country.

H_2 : Those who travel into a neighbouring country of Hungary has higher positive impact of familiarity on revisit frequency to there than travelling into a non-neighbouring country.

H_3 : Those who travel from non-capital city has higher positive impact of familiarity on revisit frequency to there than travelling from the capital city.

H_4 : Those who travel from a non-capital city has a positive relationship with who travel into a neighbouring country, thus, a traveller from a non-capital city has higher probability for travelling into a neighbouring country.

H_5 : Familiarity with a destination factor can be created.

To test our hypotheses, we conducted a survey using the CATI (Computer-Assisted Telephone Interviewing) method, interviewing a representative sample of 400 individuals in

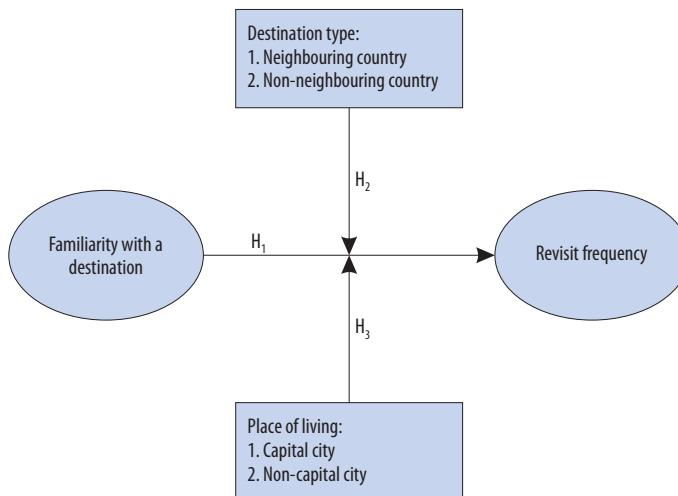


Fig. 1. Hypothesized model used in research methodology. Source: Authors' own elaboration.

Hungary. After data cleaning, the final sample consisted of 387 respondents. The survey targeted Hungarian citizens residing in Hungary who had spent at least one night abroad between 2019 and 2023. The key selection criterion was that respondents must have travelled abroad for tourism purpose at least once during the summer of 2023 (between 1 May and 30 September). The survey was conducted in late autumn 2023 and concentrated on this summer travel destination and tourists' behaviour.

For hypothesis testing, we employed quantitative research methods, including Pearson correlation and regression analysis, alongside

descriptive statistics. To assess familiarity, we used four validated items from DAYOUR, F. et al. (2019), and mainly MARINAO-ARTIGAS, E. et al. (2015), which were combined into a single factor through Confirmatory Factor Analysis (CFA) using the Maximum Likelihood method with Promax rotation. Revisit frequency were measured on a continuous scale, and all included variables were standardized for analysis.

We first constructed the Familiarity with a destination factor based on CFA results (*Table 1*), and we could accept H_1 . After standardizing all variables, we performed linear regression analyses to test the hypotheses (*Figure 2*). The analy-

Table 1. Demographic characteristic of the sample

Variables	Values	Details
Age	Average age, years	46.1 (std. 15.5)
Gender	Female, % Male, %	51.7 48.3
Residence type	Capital city, % County capital city, % City, % Village, %	26.6 19.1 29.7 24.5
Travel frequency between 2019–2023	Average travels quantity	4.6 (std. 1.6)
Revisit frequency between 2019–2023	Average revisits quantity	2.2 (std. 1.3)
Destination type in 2023	Neighbouring country, % Non-neighbouring country, %	35.9 64.1

Source. Compiled by the authors.

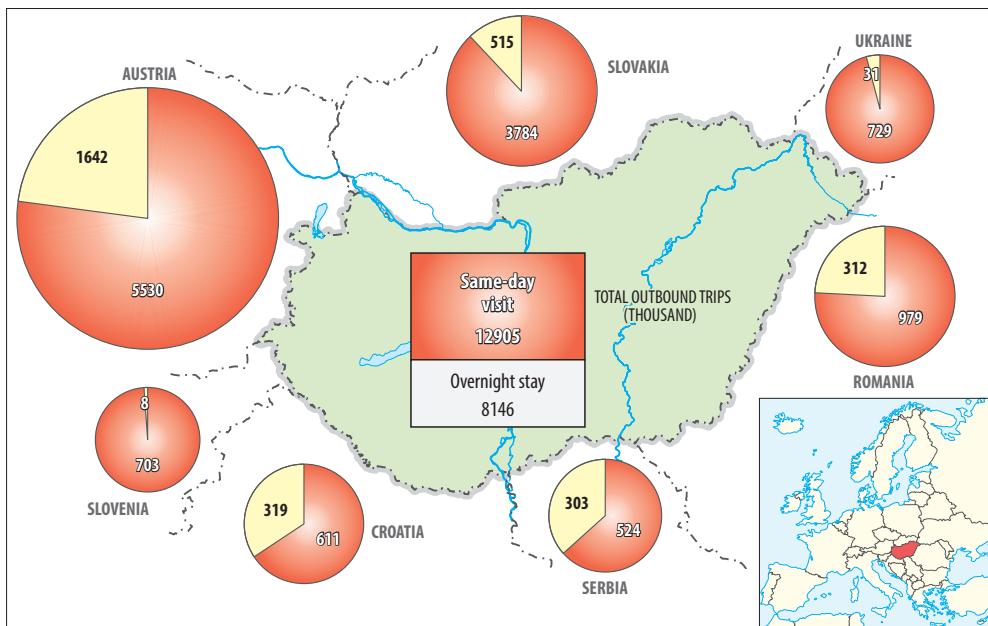


Fig. 2. Features of Hungarian travellers to neighbouring countries, 2023. Source: Authors based on the database of Hungarian Central Statistics Office.

sis focused on three key variables: Familiarity with a destination factor, standardized Revisit frequency, and categorical control variables of destination type as it is a neighbouring country of Hungary or not the given country (1 = Yes; 2 = No) and of residence of the respondents, where "1" means the capital city and "2" means a non-capital city.

To obtain a comprehensive understanding of the travel habits of Hungarian society, we utilized data from the Hungarian Central Statistical Office (HCSO). The HCSO conducts a representative quarterly survey on the domestic and international travel patterns of the Hungarian population, providing a reliable dataset for scientific analysis. For the purposes of this study, we focused on international travel undertaken by Hungarian residents in 2023. Specifically, we analysed data on the volume of same-day trips and overnight stays, the main motivations, as well as the distribution of visits to neighbouring versus non-neighbouring countries.

Results

Hungarians' travel to neighbouring countries and beyond

Hungary is among the European states with the highest number of bordering nations. Formerly part of the Austro-Hungarian Monarchy until the Treaty of Trianon in 1920 (a result of the Paris Peace Conference), it now shares frontiers with seven countries in East-Central Europe. Positioned at the crossroads of eastern and western, as well as northern and southern Europe, Hungary maintains good ties with its surrounding states, shaped by significant historical developments in the 20th century. Prior to the redrawing of borders in 1920, its territory encompassed different sizes areas of what are now neighbouring nations (Kovács, Z. 1989; Kocsis, K. and VÁRADI, M.M. 2016). The collective memory of territorial loss following the post-war agreements remains deeply rooted in na-

tional identity (ILG, B. 2021). Although often subtle, ethnic tensions continue to influence Hungary's interactions with neighbouring countries which may affects also tourism (Csapó, J. et al. 2019; RÁTZ, T. et al. 2020).

According to database of HCSO in 2023, Hungary's population of approximately 10 million undertook a total of 21.05 million international trips, indicating that, on average, each resident crossed the national border twice. Of these journeys, 61.3 percent were completed within a one day, with travellers returning to Hungary within 24 hours. The same-day excursions were directed toward neighbouring states (99.6%). Notably, 80.4 percent of visits to adjacent countries fell into the same-day travel category. Among those who travelled to bordering nations less than 24 hours, 45 percent chose Austria and 27 percent visited Slovakia. These two destinations accounted for 72 percent of all short-term outbound travel (see *Figure 2*). Day trips to neighbouring countries were predominantly motivated by cross-border shopping (35.8%), employment-related purposes (24.5%) and visiting friends and relatives (14.4%). A 24.0 percent of all outbound travels by Hungarians were beyond neighbouring countries, 99.1 percent of which were overnight stay. Surprisingly, 49.9 percent of trips with a stay of more than 24 hours in Austria are employment-related. VFR motivation during trips with an over-

night stay is very strong in Serbia (65.3%), Slovakia (46.4%) and Romania (32.1%).

The final representative sample was 387 people. *Table 1* summarizes the details of the final sample.

Factor analysis

Familiarity with a destination factor was measured using the validated scale of DAYOUR, F. et al. (2019) and MARINAO-ARTIGAS, E. et al. (2015) with four statements on a Likert scale of 1–7 (*Table 2*), where a value of „1” meant strongly disagree and a value of „7” meant strongly agree. The KMO indicator then took the correct value of 0.706 and the Bartlett test for sphericity and significance yielded significant results. The explained coefficient of variance of the four variables was 53.9 percent, Cronbach's alpha was 0.711, while each factor weight exceeded the minimum value of 0.6 as it is required (HAIR, J.F. et al. 2019).

Hypothesis testing

First, we checked the basic differences between revisit frequency and familiarity with a destination factor values based on control variable (destination type and residence) with ANOVA-test (*Table 3*). Here it can be seen that a neigh-

Table 2. Familiarity with a destination factor

Items by DAYOUR, F. et al. (2019), and MARINAO ARTIGAS, E. et al. (2015)	Factor weights	Means	Std. dev.	Explained variance, %	KMO value	Cronbach's alpha
This travel destination is very familiar to me.	0.675	6.0	1.1	53.9	0.706	0.711
I know this travel destination very well, because I follow the events there all year round.	0.809	4.5	1.7			
I also follow the events, developments and happenings at the travel destination outside of my stay there.	0.752	4.5	1.7			
My friends and family tell me that this travel location suits me well.	0.693	5.4	1.3			

Source. Compiled by the authors.

Table 3. ANOVA-test results

Country, city	Revisit frequency	Familiar factor
Neighbouring country	2.53 (std. 1.43)	-0.192
Non-neighbouring country	2.07 (std. 1.26)	0.108
p-value	0.001	0.004
Capital city	2.13 (std. 1.43)	0.041
Non-capital city	2.27 (std. 1.30)	-0.015
p-value	0.335	0.626

Source. Compiled by the authors.

bouring travel destination country has significantly higher average of revisit frequency (2.53 vs. 2.07) with moderate eta square explanation value (eta² value is 0.167). After it can be stated that the familiarity with a destination is significantly higher in a non-neighbouring country of Hungary with a moderate eta square explanation value (eta² value is 0.144). These differences are moderate but significant, which it could be counted for the regression model. Although, the residence does not have any significant difference neither in revisit frequency nor the familiarity factor.

Finally, we created a regression model with four different variables (Figure 3). The model has no multi-collinearity (VIF = 1.14), adjusted R-square of the model is 0.51, Durbin-Watson test is well operated with 1.631 value, the model is significant (F-test is significant with 0.001 p-value and 17.482 test value), there is normality based on residuals, and the variance of the errors are constant, which means homoscedasticity.

We can accept first, second and third hypotheses too. In the first hypothesis, there is a significant relationship between familiarity with a destination and revisit frequency, which means that if a traveller feels higher familiarity with a destination it increases the revisit frequency (0.201***). In the second hypothesis, there is a significant difference in the relationships between familiarity with a destination and revisit frequency based on the control variable, destination type (1st group: 0.283***; 2nd group: 0.189***). We could accept the second hypothesis because there is a significantly higher positive relationship between the two measured items in case of neighbouring country. Which means that in case of neighbouring country it could count more the familiarity with the destination to increase the revisit frequency than in a non-neighbouring country.

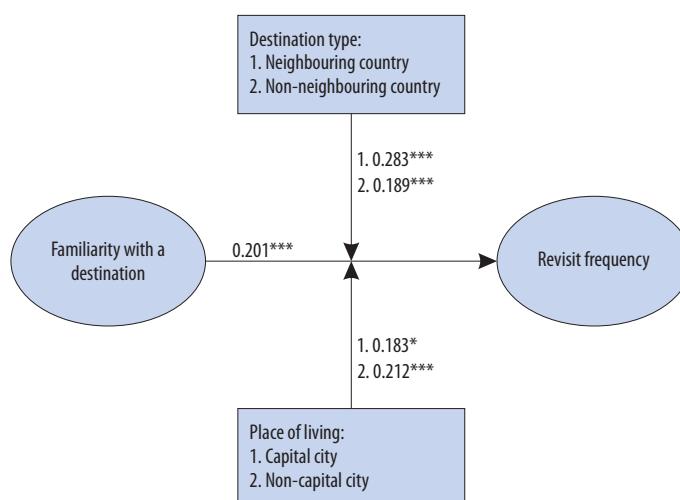


Fig. 3. Hypothesis testing results. *p-value < 0.05; ***p-value < 0.001. Source: Authors' own elaboration.

Although this result causes that there is also an increasing effect of familiarity on revisit frequency in case of non-neighbouring country, but lower than in a neighbouring country. Meanwhile, travellers of non-neighbouring countries perceive higher familiarity with the destination. Since, it can be stated that travellers of a non-neighbouring country perceive higher familiarity with the given destination but it is not affecting more the revisit frequency than it is in a neighbouring country. In other words, familiarity is a stronger determinant for a revisit to a neighbouring country than for a non-neighbouring one. In a non-neighbouring country other factors besides familiarity may be even stronger.

In the third hypothesis, there is a significant difference in the relationships between familiarity with a destination and revisit frequency based on the control variable, residence, but in case of the capital city it is slightly significant (1st group: 0.183*; 2nd group: 0.212**). This means that those who travel from a non-capital city familiarity with a destination has a higher positive impact on revisit frequency than in case of a traveller from the capital city. Although it does not mean that those travelling to neighbouring countries are those who do not live in the capital city. Furthermore, it cannot be said that residents outside the capital city revisit the same destination more often, as these results were not significant.

Finally, we cannot accept the fourth hypothesis, because with a chi-square test we cannot find any significant relationship between the two control variables (neighbouring or non-neighbouring country type and capital city or not) (p -value is 0.094, chi-square value is 2.812).

Discussion and conclusions

The present study, by recognizing five hypotheses based on the literature is the first to prove, that neighbourhood plays an influential role in familiarity-related revisit intention. The factors building the relationship between

familiarity and revisit intention have already been explored in previous research including the identification of infrastructural and technological (PAI, C.K. et al. 2020), linguistic and cultural (BRUMEN, M. et al. 2014; XU, F. et al. 2024), and perceived similarities within the service environment (TIMOTHY, D.J. 1999; FRISCHHUT, M. and LEVAGGI, R. 2024) – all of which can be moderated by various elements, including social media (LUNA-CORTÉS, G. et al. 2019). Earlier studies have also pointed out that, the increasingly differentiated tourism demand, the relationship between familiarity and revisit intention are not linear (ØGAARD, T. et al. 2019; MATHUR, G. et al. 2023).

Although being plausible, the role of neighbourhood-related familiarity in shaping international travel decisions – specifically revisit intention – has largely escaped scholarly attention. This is particularly surprising given that the role of neighbourhood, often interpreted by researchers as geographical proximity, has been recognized in domestic tourism. SCARPI, D. et al. (2019), for instance, emphasized the mediating role of place attachment by studying the visitors to Rome vicinity. Similarity derived from neighbourhood can influence return visits both positively and negatively, as it may evoke attraction as well as aversion (BAR-KOELLIS, D. and WENDT, J.A. 2018; KAZAKOVA, A. and KIM, I. 2021). Along artificially drawn borders, it is common to find communities with shared historical backgrounds, linguistic and cultural roots, and even familial ties. In such cases, that familiarity can foster the trust and sense of security essential for travel – while at the same time it offers little novelty (STOFFELEN, A. and TIMOTHY, D.J. 2023). Politics can also alter perceptions of familiarity between neighbouring countries, transforming it into stereotype-based hostility that inhibits travel (GELBMAN, A. and TIMOTHY, D.J. 2010; NARBUT, N.P. and TROTSUK, I.V. 2017).

The cross-border travel patterns of the Hungarian population confirm that familiarity driven revisit intention, beyond the previously identified control variables, can also be influenced by neighbourhood. Analysing

the source market, it can be stated that the Hungarian capital, Budapest's central location appears to play a less significant role in repeat visits driven by familiarity than the mobility patterns observed among tourists from rural areas of Hungary. Although the role of familiarity is higher in the case of travel to non-neighbouring countries, it has a stronger effect on revisit intention in relation to neighbouring countries. This apparent paradox can be explained, on the one hand, by Hungary's historical past and territorial changes being carried out in the 20th century (all seven neighbouring countries are home to Hungarian-speaking minorities of varying size, which explains VFR tourism), and on the other hand, by European integration process, materialized in the 21st century (Hungary's accession to the EU and the Schengen Area, which facilitates shopping tourism and cross-border commuting for work). Naturally, the influence of the so-called 'post-socialist mindset' cannot be overlooked (HOLLERAN, M. 2015). While it may be most apparent in the travel decisions of the older generation, processes of socialization suggest that its effects may also surface among middle-class and younger cohorts (IRIMIÁS, A. 2023).

Risk perception receives a special attention within the narrow intersection of studies contextualizing tourism and its geopolitical relations (COHEN, S.B. 2020; SEYFI, S. et al. 2023). Neighbourhood-related familiarity accordingly could positively influence this safety and security factor (KAZAKOVA, A. and KIM, I. 2021). It is the task of scholars examining tourism from a transdisciplinary perspective to recognize the challenges generated by the symbiosis of space and time (geography and history) affecting travel and to identify best practices in geopolitical model regions like East-Central Europe, which may offer solutions applicable to different regions (GILLEN, J. 2024). Should the effect of neighbourhood-induced familiarity on revisit intention gain recognition in international tourism practice, it could contribute to reducing tourism's negative impacts on sustainability (DOMÍNGUEZ, J.A. et al. 2015; DORNIER, R. and MAURI, C. 2018).

The main theoretical contribution of the present study lies in expanding the existing scientific discourse on the impact mechanisms of familiarity on revisit intention by introducing the neighbourhood factor as a control variable. In addition, it contributes to the broader discussion on the interpretation of distance in tourism by drawing attention to a previously underexplored component of the mechanisms shaping perceived distance (MCKERCHER, B. and MAK, B. 2019). The research findings are highly applicable for national and regional destination management organizations: the former can build on similarities and geographical proximity, while the latter can leverage synergies arising from borderland locations. The validity of the results is supported by the representativeness of the sample emerging from the survey and the reliability of the HCSO database. However, the study also has several limitations, most notably its focus on the relation of Hungary and its neighbouring countries, and the lack of broader international comparison. Future research directions include, first, exploring the expanding functions of travel to neighbouring countries in the context of the changing nature of tourism (e.g. strengthening competitiveness, integrating peaceful coexistence into value propositions); and second, further refining the historical context mentioned in several studies (KOZAK, M. and BUHALIS, D. 2019; PARK, C. et al. 2023).

Acknowledgements: This work was supported by the National Research, Development and Innovation Office under Grant K134877.

Disclosure statement: The authors report there are no competing interests to declare.

REFERENCES

AGRUSA, J., KIM, S.S. and WANG, K.C. 2011. Mainland Chinese tourists to Hawaii: Their characteristics and preferences. *Journal of Travel & Tourism Marketing* 28. (3): 261–278. <https://doi.org/10.1080/10548408.2011.562853>

AHMAD, N., HARUN, A., KHIZAR, H.M.U., KHALID, J. and KHAN, S. 2022. Drivers and barriers of travel behaviours during and post COVID-19 pandemic:

A systematic literature review and future agenda. *Journal of Tourism Futures* 07 July, E-publication. <https://doi.org/10.1108/JTF-01-2022-0023>

ALAM, S.S. 2025. Malaysian Chinese generation Z and intention to visit China: Moderating role of destination familiarity. *Journal of China Tourism Research* 24 March, E-publication. 1–32. <https://doi.org/10.1080/19388160.2025.2480596>

ANDRÁS, E. 2024. A shift from the geopolitics of place to the chrono-politics of time in East-Central Europe? In *Plural and Multiple Geographies of Modern and Contemporary Art in East-Central Europe*. Eds.: PREDA, C. and RADOMSAK, M., London, Routledge, 118–134. <https://doi.org/10.4324/9781003469575-11>

BAR-KOELIS, D. and WENDT, J.A. 2018. Comparison of cross-border shopping tourism activities at the Polish and Romanian external borders of European Union. *Geographia Polonica* 91. (1): 113–125. <https://doi.org/10.7163/GPol.0103>

BREDEVELT, J.J., TIEMEIER, H., SHARPLES, E., GALEA, S., NIEDZWIEDZ, C., ELLIOTT, I. and BOCKTING, C.L. 2022. The effects of neighbourhood social cohesion on preventing depression and anxiety among adolescents and young adults: Rapid review. *BJPsych Open* 8. (4): 1–12. <https://doi.org/10.1192/bjpo.2022.57>

BRUMEN, M., CAGRAN, B. and MULEJ, M. 2014. Education for responsible persons, tourists and hosts through knowledge of neighbouring countries' languages in cross-border areas. *Kybernetes* 43. (3–4): 614–628. <https://doi.org/10.1108/K-10-2013-0233>

CARVALHO, P., MÁRQUEZ, M.A. and DÍAZ, M. 2016. Do neighbouring countries encourage the demand of international business tourism? *European Journal of Tourism, Hospitality and Recreation* 7. (3): 156–167. <https://doi.org/10.1515/ejthr-2016-0018>

COHEN, S.B. 2020. *The Geopolitics of Israel's Border Question*. London, Routledge. <https://doi.org/10.4324/9780429311253>

CROUCH, G.I. 1994. The study of international tourism demand: A review of findings. *Journal of Travel Research* 33. (1): 12–23. <https://doi.org/10.1177/004728759403300102>

CSÁPÓ, J., TÖRZSÖK, A. and GALAMBOS, I. 2019. The major characteristics of the general development of the tourism industry in Hungary between the two world wars – The challenges of reorganising and repositioning tourism. *Hungarian Studies* 33. (2): 385–405. <https://doi.org/10.1556/044.2019.33.2.11>

DAYOUR, F., PARK, S. and KIMBU, A.N. 2019. Backpackers' perceived risks towards smartphone usage and risk reduction strategies: A mixed methods study. *Tourism Management* 72. 52–68. <https://doi.org/10.1016/j.tourman.2018.11.003>

DÉDELÉ, A., MIŠKINYTĖ, A., ANDRUŠAITYTĖ, S. and NEMANIŪTĖ-GUŽIENĖ, J. 2020. Dependence between travel distance, individual socioeconomic and health-related characteristics, and the choice of the travel mode: A cross-sectional study for Kaunas, Lithuania. *Journal of Transport Geography* 86. 102762. <https://doi.org/10.1016/j.jtrangeo.2020.102762>

DOMÍNGUEZ, J.A., NORONHA, T.D. and VAZ, E. 2015. Sustainability in the trans-border regions? The case of Andalucía-Algarve. *International Journal of Global Environmental Issues* 14. (1–2): 151–163. <https://doi.org/10.1504/IJGENVI.2015.067487>

DORNIER, R. and MAURI, C. 2018. Overview: Tourism sustainability in the Alpine region: The major trends and challenges. *Worldwide Hospitality and Tourism* 10. (2): 136–139. <https://doi.org/10.1108/WHATT-12-2017-0078>

ESQUIVIAS, M.A., SUGIHARTI, L., ROHMAWATI, H. and SETHI, N. 2021. Impacts and implications of a pandemic on tourism demand in Indonesia. *Economics & Sociology* 14. (4): 133–150. <https://doi.org/10.14254/2071-789X.2021/14-4/8>

FAIRUZ, R.M., ABDUL, R.M. and NAGWAN, A. 2021. Tourists' revisit intention during the COVID-19 pandemic recovery phase and the moderating role of perceived risk: The case of Kinabalu Mountain National Park in Sabah, Malaysia. *Academy of Strategic Management Journal* 20. (2): 1–14.

FARIS, H. and GRIFFIN, K.A. 2020. The impact of COVID-19 on religious tourism and pilgrimage to the holy city of Karbala. *International Journal of Religious Tourism and Pilgrimage* 8. (7–8): 75–84. <https://doi.org/10.21427/dk5-vt63>

FRISCHHUT, M. and LEVAGGI, R. 2024. With a little help from my (neighbouring) friends. 'Border region patient mobility' in the European Union: A policy analysis. *Health Policy* 146. 105114. <https://doi.org/10.1016/j.healthpol.2024.105114>

GELLMAN, A. and TIMOTHY, D.J. 2010. From hostile boundaries to tourist attractions. *Current Issues in Tourism* 13. (3): 239–259. <https://doi.org/10.1080/13683500903033278>

GILLEN, J. 2024. Tourism geopolitics: Roots and branches. *Tourism Geographies* 27. (3–4): <https://doi.org/10.1080/14616688.2024.2332354>

GONZÁLEZ-RODRÍGUEZ, M.R., DÍAZ-FERNÁNDEZ, M.C. and PULIDO-PAVÓN, N. 2023. Tourist destination competitiveness: An international approach through the travel and tourism competitiveness index. *Tourism Management Perspectives* 47. 101127. <https://doi.org/10.1016/j.tmp.2023.101127>

GRIMMEAU, J.P. 1980. Petite géographie du tourisme étranger en Belgique. *Revue Belge de Géographie* 104. 99–110.

HAIR, J.F., BLACK, W.C., BABIN, B.J. and ANDERSON, R.E. 2019. *Multivariate Data Analysis* Eighth edition. Boston, Cengage.

HAUCAP, J., NEDIC, R. and ŞİMŞEK, T. 2023. Regulatory objectives vs fiscal interests: Are German casino locations motivated by beggar-thy-neighbour policy? An empirical analysis. *European Journal of Law and Economics* 55. (2): 291–311. <https://doi.org/10.1007/s10657-022-09758-1>

HELAL, E.A., HASSAN, T.H., ABDELMOATY, M.A., SALEM, A.E., SALEH, M.I., HELAL, M.Y., ABUELNASR, M.S., MOHAMOUD, Y.A., ABDOU, A.H., RADWAN, S.H. and SZABO-ALEXI, P. 2023. Exploration or exploitation of a neighbourhood destination: The role of social media content on the perceived value and trust and revisit intention among world cup football fans. *Journal of Risk and Financial Management* 16. (3): 210. <https://doi.org/10.3390/jrfm16030210>

HOLLERAN, M. 2015. On the beach: The changing meaning of the Bulgarian coast after 1989. *City & Society* 27. (3): 232–249. <https://doi.org/10.1111/ciso.12066>

HUANG, S. and HSU, C.H. 2009. Effects of travel motivation, past experience, perceived constraint, and attitude on revisit intention. *Journal of Travel Research* 48. (1): 29–44. <https://doi.org/10.1177/0047287508328793>

ILG, B. 2021. The representation of Trianon trauma as a chosen trauma in political newspapers (1920–2010) in Hungary. *Corvinus Journal of Sociology and Social Policy* 12. (1): 51–93. <https://doi.org/10.14267/CJSP.2021.1.3>

ILLÉS, S. and MICHALKÓ, G. 2008. Relationships between international tourism and migration in Hungary: Tourism flows and foreign property ownership. *Tourism Geographies* 10. (1): 98–118. <https://doi.org/10.1080/14616680701825271>

IREWATI, A. and NURUS, H. 2024. Indonesia's efforts in developing halal tourism through the Indonesia-Malaysia-Thailand Growth Triangle (IMT-GT). *SUVANNABHUMI* 16. (1): 229–269. <https://doi.org/10.22801/svn.2024.16.1.229>

IRIMIÁS, A. 2023. *The Youth Tourist: Motives, Experiences and Travel Behaviour*. Leeds, Emerald Publishing Limited. <https://doi.org/10.1108/9781804551479>

JANG, S.S. and FENG, R. 2008. Understanding tourist revisit behaviour: From a temporal perspective. *Tourism Analysis* 13. (3): 317–321. <https://doi.org/10.3727/108354208786094816>

JEURING, J. and HAARTSEN, T. 2018. The challenge of proximity: The (un)attractiveness of near-home tourism destinations. In *Proximity and Intraregional Aspects of Tourism*. Eds.: JEURING, J. and SORIA, I.D., London, Routledge, 115–138. <https://doi.org/10.4324/9780203733141-8>

KAZAKOVA, A. and KIM, I. 2021. Geopolitical-risk and economic policy – Uncertainty impacts on tourist flows from neighbouring countries: A wavelet analysis. *Sustainability* 13. (24): 13751. <https://doi.org/10.3390/su132413751>

KIM, S., LONG, P. and ROBINSON, M. 2009. Small screen, big tourism: The role of popular Korean television dramas in South Korean tourism. *Tourism Geographies* 11. (3): 308–333. <https://doi.org/10.1080/14616680903053334>

KIM, H., WOO, E. and UYSAL, M. 2015. Tourism experience and quality of life among elderly tourists. *Tourism Management* 46. 465–476. <https://doi.org/10.1016/j.tourman.2014.08.002>

KIM, S., KIM, S. and PETRICK, J.F. 2019. The effect of film nostalgia on involvement, familiarity, and behavioural intentions. *Journal of Travel Research* 58. (2): 283–297. <https://doi.org/10.1177/0047287517746015>

KOCSIS, K. and VÁRADI, M.M. 2016. Borders and neighbourhoods in the Carpatho-Pannonian area. In *The Routledge Research Companion to Border Studies*. Ed.: WASTL-WALTER, D., London, Routledge, 607–628. <https://doi.org/10.4324/9781315612782-44>

KOROL, O. and SKUTAR, T. 2019. Theoretical approaches in the research of inbound tourism: The case of Bulgaria. *GeoJournal of Tourism & Geosites* 26. (3): 887–904.

KOVÁCS, Z. 1989. Border changes and their effect on the structure of Hungarian society. *Political Geography Quarterly* 8. (1): 79–86. [https://doi.org/10.1016/0260-9827\(89\)90022-0](https://doi.org/10.1016/0260-9827(89)90022-0)

KOZAK, M. and BUHALIS, D. 2019. Cross-border tourism destination marketing: Prerequisites and critical success factors. *Journal of Destination Marketing & Management* 14. 100392. <https://doi.org/10.1016/j.jdmm.2019.100392>

KÖKÉNY, L., BIRKNER, Z. and MICHALKÓ, G. 2024. Daring routine: Examining the tourists' risk perception attitudes through the characteristics of travel frequency and revisit frequency. *Current Issues in Tourism* 19 December, E-publication. <https://doi.org/10.1080/13683500.2024.2440819>

KUHZADY, S., ÇAKICI, C., OLYA, H., MOHAJER, B. and HAN, H. 2020. Couchsurfing involvement in non-profit peer-to-peer accommodations and its impact on destination image, familiarity, and behavioural intentions. *Journal of Hospitality and Tourism Management* 44. 131–142. <https://doi.org/10.1016/j.jhtm.2020.05.002>

LARSEN, G.R. 2017. Representations of distance: Differences in understanding distance according to travel method. *Journal of Spatial and Organizational Dynamics* 5. (4): 425–442.

LEIPER, N. 1989. Tourism and gambling. *GeoJournal* 19. 269–275. <https://doi.org/10.1007/BF00454571>

LI, C., HE, L., GUO, W., WANG, K. and TANG, S. 2024. A study on the influence of perceived distance on China's inbound tourism and the interaction of non-economic distance: An analysis of dynamic extended gravity model based on 61 countries' entry data (2004–2018). *PLOS One* 19. (5): e0297442. <https://doi.org/10.1371/journal.pone.0297442>

LIEBICH, A. 2021. *The Politics of a Disillusioned Europe: East-Central Europe after the Fall of Communism*. Cham, Springer Nature. <https://doi.org/10.1007/978-3-030-83993-2>

LUNA-CORTÉS, G., LÓPEZ-BONILLA, J.M. and LÓPEZ-BONILLA, L.M. 2019. Self-congruity, social value, and the use of virtual social networks by generation Y travellers. *Journal of Travel Research* 58. (3): 398–410. <https://doi.org/10.1177/0047287518755502>

MAGHRIFANI, D., LIU, F. and SNEDDON, J. 2022. Understanding potential and repeat visitors' travel intentions: The roles of travel motivations, destination image, and visitor image congruity. *Journal of Travel Research* 61. (5): 1121–1137. <https://doi.org/10.1177/00472875211018508>

MARINAO-ARTIGAS, E., VILCHES-MONTERO, S. and CHASCO YRIGOYEN, C. 2015. Antecedents of tourism destination reputation: The mediating role of familiarity. *Journal of Retailing and Consumer Services* 26. 147–152. <https://doi.org/10.1016/j.jretconser.2015.06.005>

MARTTILA, A.M. 2008. Desiring the 'other': Prostitution clients on a transnational red-light district in the border area of Finland, Estonia and Russia. *Gender, Technology and Development* 12. (1): 31–51. <https://doi.org/10.1177/097185240701200104>

MASOUDI, M. 2021. Estimation of the spatial climate comfort distribution using tourism climate index (TCI) and inverse distance weighting (IDW) (Case study: Fars Province, Iran). *Arabian Journal of Geosciences* 14. (5): 363. <https://doi.org/10.1007/s12517-021-06605-6>

MATHUR, G., BANERJEE, R., PATHAK, R. and GOSWAMI, P. 2023. Novelty vs familiarity: Identification of satisfaction and loyalty in context of visitors' perception. *International Journal of Hospitality and Tourism Systems* 16. (1): 97–104.

McKERCHER, B., CHAN, A. and LAM, C. 2008. The impact of distance on international tourist movements. *Journal of Travel Research* 47. (2): 208–224. <https://doi.org/10.1177/0047287508321191>

McKERCHER, B. and MAK, B. 2019. The impact of distance on international tourism demand. *Tourism Management Perspectives* 31. 340–347. <https://doi.org/10.1016/j.tmp.2019.07.004>

MICHALKÓ, G., RÁTZ, T., HINEK, M. and TÖMÖRI, M. 2014. Shopping tourism in Hungary during the period of the economic crisis. *Tourism Economics* 20. (6): 1319–1336. <https://doi.org/10.5367/te.2014.0387>

MICHALKÓ, G., NÉMETH, J., TOKODI, P., KAMAL ABBOUD, T. and BIRKNER, Z. 2022. The potential of the Visegrad Cooperation (V4) for the safe restarting of tourism in the region following the COVID-19 epidemic. *Scientia et Securitas* 2. (4): 452–458. <https://doi.org/10.1556/112.2021.00062>

MILMAN, A. and PIZAM, A. 1995. The role of awareness and familiarity with a destination: The Central Florida case. *Journal of Travel Research* 33. (3): 21–27. <https://doi.org/10.1177/004728759503300304>

MIOCEVIC, D. 2025. Baby come back: Resident-digital nomad conflicts, destination identification, and revisit intention. *Journal of Travel Research* 64. (3): 696–715. <https://doi.org/10.1177/00472875231220945>

MOHD SALIM, M.N.H., AZINUDDIN, M., MIOR SHARIFFUDDIN, N.S., WAN MOHD ZAIN, W.M.A., IBRAHIM, M.A. and ZAINUL, N.H. 2024. Destination social media foodscape and visit intention: Double mediation assessment of food destination attractiveness and familiarity among gastronomy tourists. *Journal of Culinary Science & Technology* 23. (3): 1–27. <https://doi.org/10.1080/15428052.2024.2414059>

MOLNÁR, V. 2023. Class trips beyond borders: Reimagining the nation through state-sponsored heritage tourism. *Comparative Studies in Society and History* 65. (3): 557–586. <https://doi.org/10.1017/S0010417523000087>

NARBUT, N.P. and TROTSUK, I.V. 2017. Neighbouring countries' images: Persistent stereotypes of the Russian student youth. *RUDN Journal of Sociology* 17. (3): 338–347. <https://doi.org/10.22363/2313-2272-2017-17-3-338-347>

ØGAARD, T., DORAN, R., LARSEN, S. and WOLFF, K. 2019. Complexity and simplification in understanding travel preferences among tourists. *Frontiers in Psychology* 10. 2302. <https://doi.org/10.3389/fpsyg.2019.02302>

ÖSTERLE, A., BALÁZS, P. and DELGADO, J. 2009. Travelling for teeth: Characteristics and perspectives of dental care tourism in Hungary. *British Dental Journal* 206. (8): 425–428. <https://doi.org/10.1038/sj.bdj.2009.308>

PAI, C.K., LIU, Y., KANG, S. and DAI, A. 2020. The role of perceived smart tourism technology experience for tourist satisfaction, happiness and revisit intention. *Sustainability* 12. (16): 6592. <https://doi.org/10.3390/su12166592>

PARK, C., KIM, Y.R. and YEON, J. 2023. Stronger together: International tourists "spill-over" into close countries. *Tourism Economics* 29. (5): 1204–1224. <https://doi.org/10.1177/13548166221098320>

PARK, J.Y. and JANG, S. 2014. Psychographics: Static or dynamic? *International Journal of Tourism Research* 16. (4): 351–354. <https://doi.org/10.1002/jtr.1924>

PARK, S. and NICOLAU, J.L. 2019. Image effect on customer-centric measures of performance. *Annals of Tourism Research* 76. 226–238. <https://doi.org/10.1016/j.annals.2019.04.007>

PHILLIPS, J., WALFORD, N. and HOCKEY, A. 2011. How do unfamiliar environments convey meaning to older people? Urban dimensions of placelessness and attachment. *International Journal of Ageing and Later Life* 6. (2): 73–102. <https://doi.org/10.3384/ijal.1652-8670.116273>

PROVENZANO, D. and BAGGIO, R. 2017. The contribution of human migration to tourism: The VFR travel between the EU 28 member states. *International Journal of Tourism Research* 19. (4): 412–420. <https://doi.org/10.1002/jtr.2127>

RAMESH, V. and JAUNKY, V.C. 2021. The tourist experience: Modelling the relationship between tourist satisfaction and destination loyalty. *Materials Today: Proceedings* 37. 2284–2289. <https://doi.org/10.1016/j.matpr.2020.07.723>

RAMOS, K. and CUAMEA, O. 2023. Dental tourism: Factors influencing travellers' revisit intention to the Mexican border. *International Journal of Tourism*

Cities 9. (3): 806–831. <https://doi.org/10.1108/IJTC-03-2023-0046>

RÁTZ, T., MICHALKÓ, G. and KESZEG, R. 2020. Educational tourism and nation building: Cross-border school trips in the Carpathian Basin. *Hungarian Geographical Bulletin* 69. (1): 57–71. <https://doi.org/10.15201/hungeobull.69.1.5>

ROGERSON, C.M. and ROGERSON, J.M. 2019. Tourism in South Africa's borderland regions: A spatial view. *GeoJournal of Tourism and Geosites* 24. (1): 175–188. <https://doi.org/10.30892/gtg.24114-351>

SCARPI, D., MASON, M. and RAGGIOTTO, F. 2019. To Rome with love: A moderated mediation model in Roman heritage consumption. *Tourism Management* 71. 389–401. <https://doi.org/10.1016/j.tourman.2018.10.030>

SEO, S., KIM, O.Y., OH, S. and YUN, N. 2013. Influence of informational and experiential familiarity on image of local foods. *International Journal of Hospitality Management* 34. 295–308. <https://doi.org/10.1016/j.ijhm.2013.04.008>

SEYFI, S., HALL, C.M. and SHABANI, B. 2023. COVID-19 and international travel restrictions: The geopolitics of health and tourism. *Tourism Geographies* 25. (1): 357–373. <https://doi.org/10.1080/14616688.2020.1833972>

SHI, H., LIU, Y., KUMAIL, T. and PAN, L. 2022. Tourism destination brand equity, brand authenticity and revisit intention: The mediating role of tourist satisfaction and the moderating role of destination familiarity. *Tourism Review* 77. (3): 751–779. <https://doi.org/10.1108/TR-08-2021-0371>

SILVA, C., ABRANTES, J.L., REIS, M. and SEABRA, C. 2023. Exploring memorable sacred tourism experiences and place attachment. *International Journal of Religious Tourism and Pilgrimage* 11. (5): 9. <https://doi.org/10.21427/38P9-MC74>

SMITH, M.K. and DIERMANN, A. 2017. Tourism and wellbeing. *Annals of Tourism Research* 66. 1–13. <https://doi.org/10.1016/j.annals.2017.05.006>

SOLIMAN, M. 2021. Extending the theory of planned behaviour to predict tourism destination revisit intention. *International Journal of Hospitality & Tourism Administration* 22. (5): 524–549. <https://doi.org/10.1080/15256480.2019.1692755>

STOFFELEN, A. and TIMOTHY, D.J. 2023. Bordering, ordering and othering through tourism: The tourism geographies of borders. *Tourism Geographies* 25. (8): 1974–1992. <https://doi.org/10.1080/14616688.2023.2291818>

STYLDIS, D., WOOSNAM, K.M., IVKOV, M. and KIM, S.S. 2020. Destination loyalty explained through place attachment, destination familiarity and destination image. *International Journal of Tourism Research* 22. (5): 604–616. <https://doi.org/10.1002/jtr.2359>

TAN, W.K. and CHANG, Y.G. 2016. Place familiarity and attachment: Moderators of the relationship between readers' credibility assessment of a travel blog and review acceptance. *Journal of Travel & Tourism Marketing* 33. (4): 453–470. <https://doi.org/10.1080/10548408.2015.1064059>

TEH, P.Y. and GOH, H.C. 2016. Does Korean drama have a real influence? An analysis of Malaysia outbound tourists to South Korea. *Tourism Culture & Communication* 16. (3): 147–160. <https://doi.org/10.3727/109830416X14750895902882>

TESSER, L.M. 2003. The geopolitics of tolerance: Minority rights under EU expansion in East-Central Europe. *East European Politics and Societies* 17. (3): 483–532. <https://doi.org/10.1177/0888325403255310>

THYNE, M., WOOSNAM, K.M., WATKINS, L. and RIBEIRO, M.A. 2022. Social distance between residents and tourists explained by residents' attitudes concerning tourism. *Journal of Travel Research* 61. (1): 150–169. <https://doi.org/10.1177/0047287520971052>

TIMOTHY, D.J. 1995. Political boundaries and tourism: Borders as tourist attractions. *Tourism Management* 16. (7): 525–532. [https://doi.org/10.1016/0261-5177\(95\)00070-5](https://doi.org/10.1016/0261-5177(95)00070-5)

TIMOTHY, D.J. 1999. Cross-border shopping: Tourism in the Canada–United States borderlands. *Visions in Leisure and Business* 17. (4): 2.

TIMOTHY, D.J. 2020. Domestic tourism: Challenging the notion through a geopolitical lens. *Tourism Review International* 24. (1): 67–73. <https://doi.org/10.3727/154427220X15845838896251>

TIMOTHY, D.J. and SAARINEN, J. 2013. Cross-border co-operation and tourism in Europe. In *Trends in European Tourism Planning and Organisation*. Eds.: COSTA, C., PANYIK, E. and BUHALIS, D., Bristol, Channel View Publications, 64–75. <https://doi.org/10.21832/9781845414122-009>

TSAI, M.C. 2021. Kin, friend and community social capital: Effects on well-being and prospective life conditions in Japan, South Korea and Taiwan. *Social Indicators Research* 154. (2): 489–510. <https://doi.org/10.1007/s11205-020-02570-x>

TUCLEA, C.E., VRÂNCEANU, D.M., TIGU, G., DIACONESCU, M. and CURTEANU, O.D. 2024. The Influence of mass media on tourist behaviour of people living in a country bordering war. *Amfiteatrul Economic* 26. (18): 1193–1207. <https://doi.org/10.24818/EA/2022/59/46>

VERMA, T., REBELO, L. and ARAÚJO, N.A. 2019. Impact of perceived distances on international tourism. *PLOS One* 14. (12): e0225315. <https://doi.org/10.1371/journal.pone.0225315>

WANG, X., LAI, I.K.W. and WANG, X. 2022. Investigating how girlfriend getaway travel experiences influence female travellers to come back. *Asia Pacific Journal of Tourism Research* 27. (11): 1179–1192. <https://doi.org/10.1080/10941665.2023.2166422>

WEI, W., QI, R. and ZHANG, L. 2019. Effects of virtual reality on theme park visitors' experience and behaviours: A presence perspective. *Tourism Management* 71. 282–293. <https://doi.org/10.1016/j.tourman.2018.10.024>

WEN, J. and HUANG, S. 2019. The effects of push and pull travel motivations, personal values, and destination familiarity on tourist loyalty: A study of Chinese cigar tourists to Cuba. *Asia Pacific Journal of Tourism Research* 24. (8): 805–821. <https://doi.org/10.1080/10941665.2019.1635504>

WIĘCKOWSKI, M. and TIMOTHY, D.J. 2021. Tourism and an evolving international boundary: Bordering, de-bordering and re-bordering on Usedom Island, Poland-Germany. *Journal of Destination Marketing & Management* 22. 100647. <https://doi.org/10.1016/j.jdmm.2021.100647>

WILDISH, B., KEARNS, R. and COLLINS, D. 2016. At home away from home: Visitor accommodation and place attachment. *Annals of Leisure Research* 19. (1): 117–133. <https://doi.org/10.1080/11745398.2015.1037324>

XU, F., WU, W., LIU, A., ZHAN, C. and SU, W. 2024. Tourists' on-site immersive experience for shortening psychological distance in the context of homologous and non-homologous cultures. *Journal of Hospitality and Tourism Management* 58. 467–475. <https://doi.org/10.1016/j.jhtm.2024.03.003>

XU, Y., LI, X. and WEAVER, P.A. 2010. Examining the dimensions of travel behaviour: A case of Chinese tourists visiting the United States. *Tourism Analysis* 15. (3): 367–379. <https://doi.org/10.3727/108354210X12801550666268>

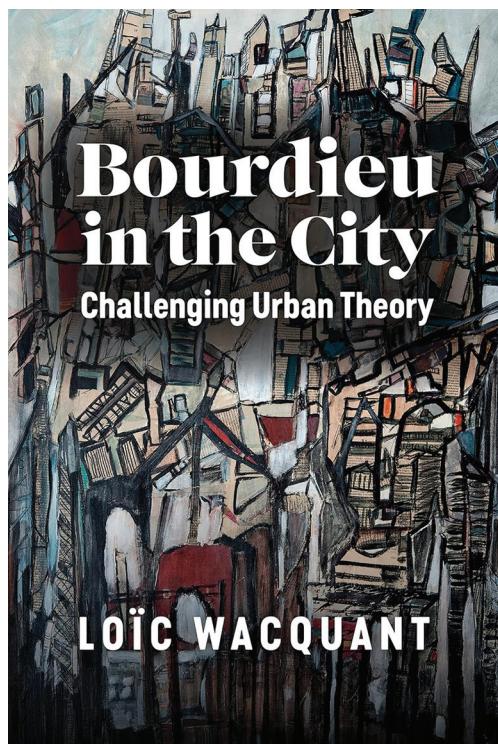
YANG, Y., LIU, H. and LI, X. 2019. The world is flatter? Examining the relationship between cultural distance and international tourist flows. *Journal of Travel Research* 58. (2): 224–240. <https://doi.org/10.1177/0047287517748780>

YUAN, X., YANG, R., ZHU, C. and XUE, K. 2024. Tourists' narrative engagement and the multidimensional construction of historic urban landscapes: Exploring the role of narration in place attachment. *Landscape Research* 49. (1): 1–14. <https://doi.org/10.1080/01426397.2024.2349543>

ZHANG, X., CHEN, Z. and JIN, H. 2021. The effect of tourists' autobiographical memory on revisit intention: Does nostalgia promote revisiting? *Asia Pacific Journal of Tourism Research* 26. (2): 147–166. <https://doi.org/10.1080/10941665.2020.1718171>

ZULFIQAR, U., ABBAS, A.F., AMAN-ULLAH, A. and MEHMOOD, W. 2024. A bibliometric and visual analysis of revisit intention research in hospitality and tourism. *Journal of Tourism Futures*, June, E-publication. <https://doi.org/10.1108/JTF-01-2024-0013>

BOOK REVIEW SECTION


Wacquant, L.: **Bourdieu in the City: Challenging Urban Theory**. Cambridge, Polity Press, 2023. 230 p.

This review pursues a dual purpose. On the one hand, in a rather conventional manner, it introduces the structure and central arguments of Loïc WACQUANT's book, as well as its strengths and shortcomings. On the other hand, however, it also ventures somewhat beyond the usual remit of book reviews by illustrating the conceptual apparatus of the volume with examples drawn from a specific urban realm: the world of *urban subcultures*. These examples are intended to assist the reader in grasping WACQUANT's concepts and arguments – and, more broadly, the contours of his entire neo-Bourdiesian programme.

To begin with, "*Bourdieu in the City: Challenging Urban Theory*" offers nothing less than a Bourdieu-inspired refoundation of the whole field of urban theory. To that end, the author presents a compelling reinterpretation of Pierre BOURDIEU's sociological

concepts, positioning them as vital tools for understanding the complexities of urban life. It is argued that although Bourdieu did not *explicitly* focus on urban studies, his theories still offer profound insights into the dynamics of contemporary cities. WACQUANT undertakes the ambitious task of pivoting urban theory away from siloed approaches, for instance from "urban science"/big-data universalism or various "culture-only" or "economics-only" lenses. Instead of these, as the core analytic compass for studying cities, he proposes a *trialectic of spaces*. In order to show how cities are made and remade through struggles over classification, capital, and territory, he aims to braid together (1) *symbolic space* (classifications and categories), (2) *social space* (distribution of various capitals), and (3) *physical space* (the built environment). If the reviewer may be permitted a truly personal remark at this point, he is himself an avowed admirer of Henri LEFEBVRE and Edward SOJA – and, thus, found it an intellectually particularly challenging task to come to terms with the fact that the trialectic discussed in this volume is *not the same* as the well-known trialectic elaborated by LEFEBVRE (and subsequently by Soja). That said, it proved highly valuable for the reviewer to set aside, at least temporarily, *one kind* of trialectical thinking in which he has long found himself almost ensnared (having employed in a number of earlier works [BERKI, M. 2012, 2015, 2017]), and – through deliberate intellectual effort – to inhabit *another kind* of trialectical reasoning. It is always stimulating to approach the same problems and research questions from different vantage points and within alternative conceptual frames – as the reviewer sought to do while engaging with WACQUANT's book.

Regarding the structure of the volume, the *Prologue* maps the previously mentioned "siloed" (fragmented) state of current urban studies, and argues that Bourdieu's relational, multi-scalar sociology can coherently link macro-structures (state, markets), meso-level institutions (policy, academia, journalism, etc.), and micro-level interactions, practices in the city (embodied dispositions/habitus). Chapter 1 reconstructs "*Bourdieu in the city*", i.e. his engagement with urban questions, showing how his early work (e.g. in Algeria) and later concepts (field, habitus, capital, symbolic power) yield a city-sensitive sociology that treats urban space as a generative arena where power is produced, con-

tested, and reproduced. Here, cities are understood as sites where varied capitals accumulate and collide, and where symbolic power (naming, ranking, stigmatising, etc.) reorganises social and physical space. Chapter 2 then synthesises WACQUANT's longstanding programme on territorial stigmatisation, showing how stigma is fabricated, disseminated, and enacted across symbolic, social, and physical space (as illustrated through cases like the reinforcing cycles of poverty in Paris's Red Belt). This chapter also presents a topology of "territorial taint" – demonstrating how the marking of places as "tainted" travels through media, policy, policing, and everyday categorisation to produce material consequences across the city, not just within the targeted neighbourhoods. Following that, Chapter 3 braids class, ethnicity, and penalty into a single analytic triad, arguing that the late-20th–early-21st century metropolis must be read through their intricate interlinkages (e.g. the ghetto/banlieue and the carceral state *together*). Here, WACQUANT recasts his own prior work, showing how marginality and neoliberal governance (including the "penal state") crystallise in urban space. Finally, the Epilogue pushes a redefinition of "the urban" itself – according to the author, all urban boundaries are porous and historically contingent, and the city is a strategic stake and a site of struggle where habitus and capital are continuously composed, contested, and converted. Across the entire book, WACQUANT advances a methodological ethos, too (often tagged to his "carnal sociology"): a reflexive, comparative, and multi-temporal practice that is able to range along levels of abstraction without losing empirical grip. Ultimately, his programmatic vision is a Bourdieusian, relational topology that is not just an addition to the existing urban canon but a real challenge to it, intended to reorient how we build and test urban theory.

Given the ambition of Loïc WACQUANT's book (and his programme in general), it is hardly surprising that several scholars have already recognised "*Bourdieu in the City* (...)" as a significant contribution to urban theory (see d'ASSENZA-DAVID, H. 2023; IVANOVA, A. 2024; KIRMIZI, M. 2024; RICHARDSON, A. 2024; WRIGHT, J.T. 2024). While it is mostly praised for its innovative application of Bourdieu's theories to urban contexts and for providing a comprehensive framework that bridges macro-level structures with micro-level interactions, certain reviews also draw attention to some of its shortcomings. The perceived weaknesses are centred around four major nodes: (1) a selective engagement with urban theory, (2) a high barrier to entry for non-Bourdieu specialists, (3) a rather limited empirical case material, and (4) potential redundancy with WACQUANT's earlier works. These criticisms may be summarised as follows. (1) While the author makes a compelling case for the urban pertinence of Bourdieu's sociology, he tends to

selectively engage with the broader canon of urban theory. The book positions Bourdieu's framework *in opposition* to paradigms like assemblage theory, planetary urbanism, or actor-network theory, and often critiques these in a somewhat strawman fashion, without always giving them their due complexity or acknowledging areas of complementarity. For some readers, this may slightly weaken the book's claim to being a "challenge to the canon" rather than a valuable *addition to it*. (2) Furthermore, the book assumes substantial familiarity with Bourdieu's prior work, potentially posing challenges for newcomers to his theories. Even key Bourdieusian concepts (such as habitus, field, symbolic power, capital forms) are not always explained accessibly for readers completely new to these ideas. According to the reviewer, this makes it less pedagogically effective for a general urban studies audience or especially graduate students approaching Bourdieu for the very first time. (3) Additionally, although WACQUANT discusses a range of urban milieux (e.g. the American ghetto, French banlieues, or Latin American urban margins), "*Bourdieu in the City*" remains overwhelmingly a theoretical and epistemological treatise. Some readers might expect richer, more varied empirical vignettes to demonstrate how the trialectic operates in diverse urban settings, which limits the book's immediate applicability for empirical urban researchers looking for methodological guidance. (4) Finally, as another observation, much of the theoretical groundwork and key concepts (territorial stigmatisation, advanced marginality, carceral urbanism, etc.) were already developed in WACQUANT's earlier works (including "*Urban Outcasts*", "*Punishing the Poor*", and "*Deadly Symbiosis*"). As such, parts of this volume risk retreading ground already familiar to WACQUANT readers.

Nonetheless, if the book is read more like a *synthesis* (rather than as an original advance), then its genuinely synthetic power (i.e. its conceptual clarity, integrative approach, and multi-scalar sensibility) must certainly be acknowledged. The trialectic of symbolic–social–physical space gives researchers a portable but rigorous way to connect multi-scalar processes (from state and markets to everyday practices) without lapsing into either abstract systemism or micro-only accounts. Furthermore, by situating his earlier studies within a single "analytic cartography", WACQUANT models the reflexive research posture he advocates and offers readers an actionable research agenda rather than a purely exegetical tour of Bourdieu. Additionally, his reconceptualising of "the urban", i.e. the reframing of the city as a fluid, contested site and stake – rather than a fixed container – has strong heuristic value for empirical projects that must cross administrative or morphological boundaries. Finally, the author's programmatic ambition is coupled with methodological guidance as well: he does not only "add Bourdieu to the canon" but also shows how to use Bourdieu for ur-

ban research (fields, capital, habitus, symbolic power) and why a topological, relational lens matters for case comparison and theory cumulation. Given all these merits, *"Bourdieu in the City: Challenging Urban Theory"* is strongly recommended to scholars across all disciplines engaged in the study of cities – including, of course, geographers. Additionally, although the book does not engage with Central and Eastern Europe (or other post-socialist contexts) at all, it nonetheless carries particular relevance for scholars working in/on CEE settings too, including Hungary. In the wake of the post-1989 politico-economic transformations, cities of this region have experienced intensifying uneven development, often accompanied by marginalisation and territorial stigmatisation, making them apt testing grounds for the Bourdieusian trialectic that WACQUANT advances. Hence, the volume is highly recommended for Central and Eastern European urban scholars as well.

As it was indicated at the outset, in the second part of this review the book's main arguments are considered through the lens of *urban subcultures*, with its key concepts illustrated by examples drawn from these realms – so that a more nuanced understanding of the work of WACQUANT (and, more broadly, of Bourdieu) may hopefully be facilitated.

Although these topics are not discussed in the book, *"Bourdieu in the City (...)"* offers an excellent conceptual apparatus for theorising urban subcultures. To start with, WACQUANT's *trialectic of spaces* provides a promising framework for analysing how subcultural appropriations of space both reflect and contest broader urban power relations and symbolic hierarchies. (1) Speaking of *symbolic space*, urban subcultures construct alternative cognitive and aesthetic categories (of what is cool, valuable, sacred, or deviant, criminal, etc.) that challenge mainstream symbolic structures. (2) Regarding *social space*, subcultures represent distinctive positions within the broader social space of the city, often emerging from marginalised or intermediary positions in terms of economic, cultural, and social capital. (3) At the same time, in *physical space*, subcultures also appropriate, mark, and contest actual urban loci (such as squats, skate parks, underpasses, clubs, record shops, graffiti walls, or underground venues), often transforming the meaning of marginal or disused spaces. As examples, graffiti crews, hardcore/punk scenes, or underground techno acts not only use space but also re-symbolise it – as a result of which, an abandoned warehouse becomes a venue, a bare wall a canvas, and a street corner a meeting point of cultural capital. An actual location, e.g. a hardcore/punk squat is therefore at once a physical site (a space reclaimed), a social space (organised through networks of trust, DIY capital, and activist links), and a symbolic space (often stigmatised by authorities as deviant, while celebrated by scenesters as authentic).

In addition to the trialectic of spaces, the *question of capitals* is also highly relevant for the study of urban subcultures – let it be the accumulation/contest of different kinds of capitals; the conversion of capitals within subcultures; or the identification of a specifically subcultural capital (THORNTON, S. 1995). Building on Bourdieu's concepts, WACQUANT repositions the city as a site for the accumulation, diversification, and contestation of capitals. In a subcultural sense, knowing riffs, graffiti styles or the local slang can be understood as *cultural capital*; networks of promoters, zinesters or bandmates as *social capital*; whereas credibility or authenticity as *symbolic capital*. These can also convert into each other, e.g. when symbolic "cred" helps an underground band get shows, resulting in limited economic capital as well, which is in turn invested into social activism by the band members. Furthermore, urban subcultures also constitute prime examples of groups contesting the legitimacy of dominant capitals (economic capital, conventional [institutional] cultural capital), and instead of those, valorising alternative forms (such as street cred, reputation, authenticity – i.e. subcultural capital). In Sarah THORNTON's classic *"Club Cultures"* (1995), subcultural capital determines *status* within rave scenes – a form of capital that is unrecognised in mainstream fields but pivotal within subcultural fields. The same can be observed across virtually all urban subcultures, whether it is the knowledge of rare records in hip-hop DJ culture or the pursuit of authenticity in punk.

One of WACQUANT's strongest concepts is *territorial stigmatisation*, convincingly demonstrating how entire districts get marked as "dangerous" or even "degenerate". Over time, however, the negative symbolic capital acquired by these deprived neighbourhoods, red-light districts, industrial peripheries, etc. might generate alternative habitus as well, in order to cope with, or even invert, their stigma. And this is why many urban subcultures were born in precisely these kinds of milieux: in South Bronx, the Lower East Side, Kreuzberg, or Belleville, MI, a western suburb of Detroit – creatively reworking these territorial meanings and turning stigmatised spaces into cultural resources. Youth scenes and their places that are labelled by the authorities, the media, etc. as a "druggy punk area" or a "gangsta rap block" might be considered by the members of the respective subcultures as "underground", "real", or "resistant" hoods. According to WACQUANT, the city can be understood as a crucible of *habitus proliferation* (see also in WACQUANT, L. 2022). He argues that the metropolis is especially distinctive because it fosters both the multiplication of diverse habitus and the collision of incongruent dispositions. For subcultures, this is key: hardcore/punk, rap, graffiti, parkour, etc., can all be read as specific microcosms born from this urban "ferment", where heterogeneous social backgrounds meet and generate

new doxai (local logics, values, etc.). Subcultures truly thrive in this crucible, as they are the products of both disjunction (youth disaffection, migration, inequality, etc.) and creative responses (new practices, aesthetics, solidarities, etc.). Therefore, urban subcultures should also be studied as “distinct doxai” (i.e. pluralised truth regimes, micro-worldviews) that emerge out of urban diversity and inequality, in several instances in deeply stigmatised neighbourhoods. Here, territorial stigmatisation not only constrains possibilities (through policing or public vilification) but also fuels the symbolic capital of “authenticity”.

Stakes and struggles over *classification* is another central node of “*Bourdieu in the City* (...).” WACQUANT stresses the symbolic power to classify: in our case, who defines what counts as “music”, “visual arts”, “performative arts”, etc.? Urban subcultures are paradigmatic arenas of these classification struggles. Police officers may classify an illegal rave or an open-air rap battle as “public nuisance,” while participants frame it as cultural expression – likewise, while authorities initially considered graffiti as mere “vandalism” (and, thus, criminalised it), certain art institutions later re-classified it as “street art,” completely shifting its social and economic value. This resonates with the author’s insistence that urban research must track how categories themselves reshape the city. Additionally, just to make it even more complex, WACQUANT’s long-standing interest in classification also involves *sociological classification*. With a decent level of reflexivity and the so-called “double move”, he insists that urban sociology must both demarcate (build objective maps of positions) and repatriate (bring back the agents’ own categories and perceptions). When applying this to urban subcultures, researchers should not only map the subcultural actors’ positions in social space (e.g. marginal youth with low economic capital but high cultural capital) but also take seriously their own categories of self-description (such as DIY, underground, “real”, etc.). Keeping both in mind might bridge the gap between structural analysis and phenomenology – exactly what subcultural studies are often struggling with. And finally, the *multi-scalar perspective* propagated in the book is also more than relevant for the study of urban subcultures, since they are never purely local – on the very contrary, via international DIY circuits, record labels, streaming platforms, etc., they connect across geographical scales.

To sum up, it can be argued that WACQUANT’s neo-Bourdieuian programme can be fruitfully extended to explore the hidden realm of urban subcultures. The reviewer strongly hopes that these subcultural examples have demonstrated the portability of WACQUANT’s framework – and encourage readers to reflect on their own research topics and questions through the lens of Loïc WACQUANT’s “urbanised Bourdieusian” agenda.

Acknowledgement: This work was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

MÁRTON BERKI¹

REFERENCES

d’ASSENZA-DAVID, H. 2023. *Bourdieu in the city: Challenging urban theory*, by Loïc Wacquant. Cambridge, Polity Press, 2023. A book review. *Journal of Urban Affairs* 47. (3): 1109–1111. <https://doi.org/10.1080/07352166.2023.2285688>

BERKI, M. 2012. Post-1990 urban brownfield regeneration in Central and Eastern Europe: A theoretical concept. In *Development of the Settlement Network in the Central European Countries: Past, Present, and Future*. Eds.: CSAPÓ, T. and BALOGH, A., Berlin–Heidelberg, Springer, 137–144.

BERKI, M. 2015. A térbeliség trialektikája (The trialectics of spatiality). *Tér és Társadalom* 29. (2): 3–18. <https://doi.org/10.17649/TET.29.2.2658>

BERKI, M. 2017. Erzéktér, elgondolt tér, megélt tér: A térbeliség trialektikája egy budapesti barnamező-rehabilitációs beruházás példáján (Perceived space, conceived space, lived space: The trialectics of spatiality on the example of a brownfield regeneration investment in Budapest). *Tér és Társadalom* 31. (2): 23–43. <https://doi.org/10.17649/TET.31.2.2844>

IVANOVA, A. 2024. When Bourdieu meets the city: Approaching trialectics of (urban) space. *KULT_online* (69): 1–4. <https://doi.org/10.22029/ko.2024.1427>

KIRMIZI, M. 2024. Bourdieu in the city: Challenging urban theory by Loïc Wacquant. New York, Polity Press. 2023. A book review. *Canadian Geographies/ Géographies canadiennes* 68. (4): 67–68. <https://doi.org/10.1111/cag.12956>

RICHARDSON, A. 2024. Bourdieu in the city: Challenging urban theory. New York, Polity Press. A book review. *New Zealand Sociology* 39. (2): 22–24.

THORNTON, S. 1995. *Club Cultures: Music, Media and Subcultural Capital*. Cambridge, Polity Press.

WACQUANT, L. 2022. Rethinking the city with Bourdieu’s trialectic. *City* 26. (5–6): 820–830. <https://doi.org/10.1080/13604813.2022.2125181>

WRIGHT, J.T. 2024. Bourdieu in the city: Challenging urban theory. A book review. *Contemporary Sociology* 53. (4): 378–379. <https://doi.org/10.1177/00943061241255860ii>

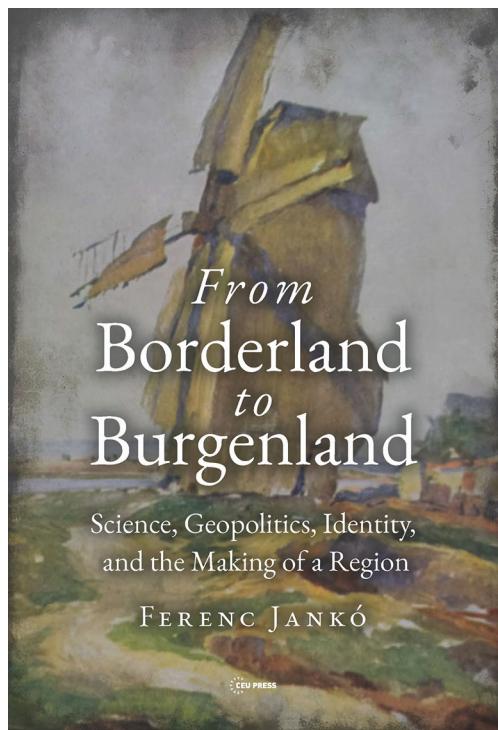
¹ ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Social and Economic Geography, Budapest, Hungary; ELTE Centre for Economic and Regional Studies, Institute for Regional Studies, Budapest, Hungary. E-mail: marton.berki@ttk.elte.hu

Jankó, F.: **From Borderland to Burgenland. Science, Geopolitics, Identity, and the Making of a Region.** Budapest, CEU Press, 2024. 381 p.

In recent years, historical research has shown a significant increase in interest in the relationship between spaces and the formation of identity (GULDIN, R. 2014; HANISCH, E. 2019; WITHERS, C. 2001; ETZEMÜLLER, T. 2022; RENES, H. 2022). At the same time, approaches and perspectives have changed and multiplied. Spaces, regions and landscapes are no longer regarded as given entities but as constructed ones—shaped through discourses, narratives, and everyday social and cultural practices (WERLEN, B. 2009; ERMANN, U. *et al* 2022). The shift allows us to trace how boundaries were drawn and specific spatial identities were defined and collectively imagined, leading to the formation of a concept of “our” territory. Linking questions of regional and national identity formation with inquiries into the production, circulation, and sharing of spatial knowledge by communities also opens up new insights into nation-building processes (MILLER, N. 2022).

In his book, Ferenc JANKÓ explores this issue through the example of the Austrian province of Burgenland. This predominantly German-speaking re-

gion belonged to the Hungarian half of the Habsburg Monarchy until the end of the First World War. Under the Treaty of Trianon (1920), Hungary was obliged to cede what was then known as *German-West Hungary* to the new Republic of Austria. In 1921, the territorial acquisition was completed, and the new province received its present name by the Federal Constitutional Law of 25 January 1921. After the Second World War, the border with Hungary became part of the Iron Curtain, bringing all contact and cooperation to a halt. Only after 1989 – and especially following the accession of Austria and Hungary to the European Union – did perceptions of Burgenland change once again.


JANKÓ’s book investigates the complex process of Burgenland’s creation after the First World War and examines the scientific, political, and social transformations that led to its incorporation into Austria. While the focus lies on the interwar period, the book also considers the era of the Habsburg Monarchy and the post-1945 period as pre- and post-histories. From the outset, the concept of the “borderland” is used as a key metaphor to describe the intricate interactions between different national and cultural identities. Building on this, the author analyses how the image of Burgenland evolved – from a peripheral and supposedly backward border region into an area that came to symbolise unity and modernisation.

The book is divided into eight chapters, each approaching the topic from a different perspective.

Initially, the *first chapter* outlines the author’s methodological and theoretical framework, presenting Burgenland as a “geographical project” shaped by experts who, through mapping, classification, and description, contributed to its identity formation. JANKÓ asks how Burgenland was “discovered” and “made” as a region through scientific and geopolitical discourses. Drawing together recent debates from the histories of geography, science, and culture, he weaves them into a coherent interpretation that situates the making of Burgenland within broader European transformations.

Subsequently, the *second chapter* examines the region’s prehistory within the Habsburg Monarchy, which had often been romanticised as a frontier between the Austrian (*Cisleithanian*) and Hungarian (*Transleithanian*) halves of the empire. Here, the author compares the narratives produced on both sides, showing how each used geographical and symbolic descriptions to claim the region within contrasting territorial imaginaries. Both sides relied on historical analogies and idealised images of belonging and national identity to underpin their competing claims.

Thereafter, the *third chapter* explores the relationship between ethnographic documentation and po-

litical-territorial claims. This multifaceted discussion analyses the active construction of the region through scientific practice and symbolic labour. A wide array of actors – geographers, historians, ethnographers, statisticians, teachers, engineers, lawyers, and artists – are drawn into view, all operating from different professional and social positions and with varying motivations. These predominantly Austrian knowledge producers are portrayed as both the “discoverers” and “inventors” of Burgenland. JANKÓ convincingly demonstrates that geographical knowledge is not a neutral description of space but a social construct – a product of specific actors, their professional roles, and the political discourses of their time. Their research and publications contributed to the perception of Burgenland as a “natural” border region. Special attention is given to the work of geographers and their mapping projects, which spanned from the annexation by Austria to the reconfiguration of the area as a *Greater German* borderland under Nazi rule.

Meanwhile, the *fourth chapter* analyses the interconnections between emerging geographical discourses and German-national geopolitical interests. Burgenland was construed as part of a broader German-speaking “borderland” strategy aligned with National Socialist conceptions of space and nation. Reading these narratives against the grain, JANKÓ reveals how geographical discourses were constructed, mediated, and disseminated through coordinated texts, images, and maps – turning them into powerful tools of political imagination with tangible effects on local life.

In the following *fifth chapter*, the author turns to tourism and *Heimatkunde* (local heritage studies) as cultural instruments of regional identity formation. In the 1920s, Burgenland was increasingly presented as an idyllic and unspoiled *Heimat* – an idealised homeland that countered the political tensions of the time and fostered a positive sense of belonging. The author shows how popular texts, images, and symbols contributed to consolidating a regional identity that depicted Burgenland as a land of fertility, peace, and harmony.

Subsequently, the *sixth chapter* examines the concept of the “borderland” and its different meanings in German-speaking and Hungarian scholarly and political contexts. JANKÓ traces how Austrian, German, and Hungarian actors used the term with distinct ideological connotations. During the interwar years and the period of Nazi expansion, Burgenland was conceptualised as a geopolitical buffer zone situated between competing national and cultural spheres. The notion of the borderland, thus, emerged as a central political and cultural construct linking various, often contradictory narratives.

Later, the *seventh chapter* shifts focus to the everyday lives of Burgenland’s inhabitants and the social transformations resulting from the region’s border status. Beyond political and scholarly discourses,

the author examines the lived experiences of rural populations in an unstable frontier environment. Migration, mobility, and infrastructural change profoundly shaped local life. Particularly illuminating is JANKÓ’s analysis of architecture, housing, and settlement patterns, which were deeply influenced by geopolitical shifts and social upheavals. Questions of migration and encounters between ethnic groups are treated as central, illustrating the practical implications of geographical and political transformations.

Ultimately, in the *final chapter*, the author summarises his findings, concluding that Burgenland was not a natural geographical entity but a historically constructed project, shaped by the interplay of science, politics, and culture. The “discovery” of the region, he argues, was not only a collective imagination but also a tangible enterprise rooted in institutional and material practices.

The book, thus, offers a profound analysis of the emergence of Burgenland and of the geographical, political, and cultural processes underlying its identity formation. It is more than a historical-geographical case study: it transcends disciplinary boundaries to provide a dynamic synthesis of discourse analysis, the history of science, and regional history. The region’s changing fortunes serve as a prism through which broader historiographical and methodological questions are refracted. JANKÓ engages directly with current historiographical debates, skilfully connecting regional historical inquiry with perspectives from discourse, science, and knowledge history. The study thereby contributes to a growing body of research on the historical production of knowledge, using Burgenland as a compelling example.

The book demonstrates not only how geographical knowledge was produced and reproduced but also how it shaped regional identity. Although the emerging identity of the region – like its physical borders – was often fluid and contested, Burgenland ultimately became a powerful collective imagination. JANKÓ convincingly shows how such projections influenced local socio-political realities, affecting everyday life, administration, infrastructure, architecture, transport, tourism, and migration. By integrating both elite and popular forms of knowledge, the study moves beyond the narrow confines of disciplinary history. The diversity of knowledge examined encompasses not only the perspectives of scientific and political centres, but also the voices within the region itself, adding depth and complexity to the analysis. A further strength of the book lies in its binational perspective: it juxtaposes the Austrian-German and Hungarian viewpoints in a productive dialogue. This comparative framework highlights the transnational lines of conflict and the divergent interpretations that shaped Burgenland’s formation.

Some questions inevitably remain open – such as the representativeness and influence of individual

experts – but this does not diminish the value of the study. On the contrary, these gaps invite further research and reflection. It would also have been insightful to shift the scale and explore the reciprocal dynamics between the formation of a regional Burgenland identity and its impact on the construction of a broader Austrian national identity. By elevating the landscapes of Burgenland to idealized places of social cohesion, they may well have become instruments of higher state policy. Thus, the Burgenland region could be understood as a projection surface for broader visions of social and political order, which anticipated and naturalized the imagined community of the new nation-state of the Republic of Austria.¹

The book *From Borderland to Burgenland* is a fascinating and meticulously researched investigation into the making of Austria's easternmost province. Combining an interdisciplinary framework with rich empirical material and a critical analysis of geographical discourse, JANKÓ's work constitutes a major contribution to historical regional studies and the comparative history of geopolitics. It not only fills significant gaps in scholarship but also opens new pathways for research into the construction of similar regions across Europe and beyond. Through his ability to weave together diverse perspectives, JANKÓ has produced an important work for anyone interested in the making of regions and national identities in the 20th century and thereafter. The book, thus, represents a valuable contribution to the history of Central Europe in the interwar period.

For students and scholars of historical and political geography, as well as for those engaged in the history of science, knowledge, and Central European regionalism, the book is highly recommended. Richly illustrated and supported by detailed source material and case studies, its open-access publication further enhances accessibility, making its coloured maps and figures available to a broader readership.

NORMAN HENNIGES²

REFERENCES

ERMANN, U. and PRIEBS, A. 2023. Die Region – ein Phantom? (The region – a phantom?). In *Die Region – Eine Begriffserkundung* (The Region – An Exploration of the Concept). Eds.: ERMANN, U., HÖFNER, M., HOSTNIKER, S., PREININGER, E.M. and SIMIC, D., Bielefeld, transcript, 11–25.

ETZEMÜLLER, T. 2022. *Landschaft und Nation. Rhein – Dalarna – England* (Landscape and nation. Rhein – Dalarna – England). Bielefeld, transcript.

GULDIN, R. 2014. *Politische Landschaften. Zum Verhältnis von Raum und nationaler Identität* (Political landscapes. On the relationship between space and national identity). Bielefeld, transcript.

HANISCH, E. 2019. *Landschaft und Identität. Versuch einer österreichischen Erfahrungsgeschichte* (Landscape and Identity. An Attempt at an Austrian History of Experience). Vienna, Böhlau.

MILLER, N. 2022. Knowledge and nationalism. Rethinking nationalism. *The American Historical Review* 127. (1): 311–371. <https://doi.org/10.1093/ahr/rhac133>

RENES, H. 2022. *Landscape, Heritage and National Identity in Modern Europe*. London, Palgrave Macmillan.

WERLEN, B. 2009. Everyday regionalizations. In *The International Encyclopaedia of Human Geography*, Volume 9. Eds.: KITCHEN, R. and THRIFT, N., Oxford, Elsevier, 286–293.

WITHERS, C. 2001. *Geography, Science and National Identity: Scotland since 1520*. Cambridge, Cambridge University Press.

¹ See the example of the Rhineland for the German nation-state (ETZEMÜLLER, T. 2022. 71–86).

² Geography Department, Humboldt University Berlin, Germany. E-mail: norman.henniges@geo.hu-berlin.de

GUIDELINES FOR AUTHORS

Hungarian Geographical Bulletin (formerly Földrajzi Értesítő) is a double-blind peer-reviewed English-language quarterly journal publishing open access **original scientific works** in the field of physical and human geography, methodology and analyses in geography, GIS, environmental assessment, regional studies, geographical research in Hungary and Central Europe. In the regular and special issues also discussion papers, chronicles and book reviews can be published.

Manuscript requirements

We accept most word processing formats, but MSWord files are preferred. Submissions should be single spaced and use 12pt font, and any track changes must be removed. The paper completed with abstract, keywords, text, figures, tables and references should not exceed **7,000 words**.

The Cover Page of the article should only include the following information: title; author names; a footnote with the affiliations, postal and e-mail addresses of the authors in the correct order; a list of 4 to 8 keywords; any acknowledgements.

An abstract of up to **300 words** must be included in the submitted manuscript. It should state briefly and clearly the purpose and setting of the research, methodological backgrounds, the principal findings and major conclusions.

Figures and tables

Submit each illustration as a separate file. Figures and tables should be referred in the text. Numbering of figures and tables should be consecutively in accordance with their appearance in the text. Lettering and sizing of original artwork should be uniform. Convert the images to TIF or JPEG with an appropriate resolution: for colour or grayscale photographs or vector drawings (min. 300 dpi); bitmapped line drawings (min. 1000 dpi); combinations bitmapped line/photographs (min. 500 dpi). Please do not supply files that are optimised for screen use (e.g., GIF, BMP, PICT, WPG). Size the illustrations close to the desired dimensions of the printed version. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.

REFERENCES

Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Titles of non-English references should be translated in English and indicated in brackets.

Reference style

Text: In the text refer to the author's name (small capitals with initials) and year of publication. References should be arranged first chronologically and then further sorted alphabetically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters 'a', 'b', placed after the year of publication.

Examples: (RIDGEWELL, A.J. 2002; MAHER, B.A. *et al.* 2010) or RIDGEWELL, A.J. (2002); MAHER, B.A. *et al.* (2010).

Journal papers:

AAGAARD, T., ORFORD, J. and MURRAY, A.S. 2007. Environmental controls on coastal dune formation; Skallingen Spit, Denmark. *Geomorphology* 83. (1): 29–47.

Books:

PYE, K. 1987. *Aeolian Dust and Dust Deposits*. London, Academic Press.

Book chapters:

KOVÁCS, J. and VARGA, Gy. 2013. Loess. In *Encyclopedia of Natural Hazards*. Ed.: BOBROWSKY, P., Frankfurt, Springer, 637–638.

Book reviews

Book reviews should be between 2,000 and 3,000 words (including references).

Submission

Submission to this journal occurs online. Please submit your article via <http://ojs3.mtak.hu/index.php/hungeobull/about/submissions>

All correspondence, including notification of the Editor's decision and requests for revision, takes place by e-mail.

Publisher:

HUN-REN Research Centre for Astronomy and Earth Sciences
1121 Budapest, Konkoly Thege Miklós út 15–17., Hungary

Editorial office:

Geographical Institute
HUN-REN Research Centre for Astronomy and Earth Sciences
1112 Budapest, Budaörsi út 45., Hungary
Phone, fax: +36 1 309 2628

E-mail: hungeobull@csfk.org, kovacs.zoltan@csfk.org

Distribution: GABRIELLA PETZ, petz.gabriella@csfk.org

Full text is available at <https://ojs3.mtak.hu/index.php/hungeobull>

Typography: ESZTER GARAI-ÉDLER

Technical staff: FANNI KOCZÓ, ANIKÓ KOVÁCS, GÁSPÁR MEZEI

Cover design: ANNA REDL

Printed by: Premier Nyomda Kft.

HU ISSN 2064–5031

Distributed by the Geographical Institute, Research Centre for Astronomy and Earth Sciences

Subscription directly at the Geographical Institute, Research Centre for Astronomy and Earth Sciences (H-1112 Budapest, Budaörsi út 45), by postal order or transfer to the account IBAN: HU24 10032000-01730841-00000000. Individual copies can be purchased in the library of the Institute at the above address.