Future changes of snow-related variables in different European regions
Abstract
Snow has an important role in the climate system and also has environmental, natural and socio-economic impacts. Temperature, precipitation, snow coverage, snow depth and snowmelt are analysed in this study for 1971–2099 based on EURO-CORDEX simulations. In order to measure uncertainty, three different scenarios (RCP2.6, RCP4.5, RCP8.5) and five different regional climate models are taken into account. The investigation focuses on eight regions, characterised by different climatic conditions (maritime, continental, boreal). Relative changes of the selected parameters are calculated for 2021–2050 and 2069–2098 compared to 1971–2000 reference period, in addition to the evaluation of the simulated reference. The relative role of the three main uncertainty factors (internal climatic variability, model selection, and used scenario) is also analysed. According to our results, model selection and internal variability possess the most important roles. Based on the multi-model mean, annual mean temperature and precipitation total will increase, the snow cover period will become shorter (the higher the radiative forcing change in the scenario, the greater the decrease), and the snowmelt process is likely to occur earlier in the northern region. Thus, the warming trend seems to have a greater effect on the snow-related variables than increasing precipitation trends. These projected changes may have a huge impact on winter tourism and sports, hence, appropriate adaptation strategies will be crucial.
References
Barnett, T.P., Adam, J.C. and Lettenmaier, D.P. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438. 303-309. https://doi.org/10.1038/nature04141
Becken, S. and Hay, J.E. 2007. Tourism and Climate Change: Risks and Opportunities. Clevedon, Channel View Publication. https://doi.org/10.21832/9781845410681
Breiling, M. and Charamza, P. 1999. The impact of global warming on winter tourism and skiing: a regionalised model for Austrian snow conditions. Regional Environmental Change 1. 4-14. https://doi.org/10.1007/s101130050003
Brown, I. 2019. Snow cover duration and extent for Great Britain in a changing climate: Altitudinal variations and synoptic-scale influences. International Journal of Climatology 39. 4611-4626. https://doi.org/10.1002/joc.6090
Coppola, E., Raffaele, F. and Giorgi, F. 2018. Impact of climate change on snow melt driven runoff timing over the Alpine region. Climate Dynamics 51. 1259-1273. https://doi.org/10.1007/s00382-016-3331-0
Damm, A., Köberl, J. and Prettenthaler, F. 2014. Does artificial snow production pay under future climate conditions? A case study for a vulnerable ski area in Austria. Tourism Management 43. 8-21. https://doi.org/10.1016/j.tourman.2014.01.009
Damm, A., Greuell, W., Landgren, O. and Prettenthaler, F. 2016. Impacts of +2 °C global warming on winter tourism demand in Europe. Climate Services 7. 31-46. https://doi.org/10.1016/j.cliser.2016.07.003
Demiroglu, O.C., Dannevig, H. and Aall, C. 2018. Climate change acknowledgement and responses of summer (glacier ) ski visitors in Norway. Scandinavian Journal of Hospitality and Tourism 18. (4): 419-438. https://doi.org/10.1080/15022250.2018.1522721
De Vries, H., Haarsma, R.J. and Hazeleger, W. 2013. On the future reduction of snowfall in western and central Europe. Climate Dynamics 41. 2319-2330. https://doi.org/10.1007/s00382-012-1583-x
De Vries, H., Lenderink, G. and van Meijgaard, E. 2014. Future snowfall in western and central Europe projected with a high-resolution regional climate model ensemble. Geophysical Research Letters 41. 4294-4299. https://doi.org/10.1002/2014GL059724
Elsasser, H. and Messerli, P. 2001. The vulnerability of the snow industry in the Swiss Alps. Mountain Research and Development 21. (4): 335-339. https://doi.org/10.1659/0276-4741(2001)021[0335:TVOTSI]2.0.CO;2
Fontrodona Bach, A., van der Schrier, G., Melsen, L.A., Klein Tank, A.M.G. and Teuling, A.J. 2018. Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophysical Research Letters 45. 12312-12319. https://doi.org/10.1029/2018GL079799
Frei, P., Kotlarski, S., Liniger, M.A. and Schar, C. 2018. Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models. The Cryosphere 12. 1-24. https://doi.org/10.5194/tc-12-1-2018
Haanpää, S., Juhola, S. and Landauer, M. 2015. Adapting to climate change: Perceptions of vulnerability of down-hill ski area operators in Southern and Middle Finland. Current Issues in Tourism 18. (10): 966-978. https://doi.org/10.1080/13683500.2014.892917
Harpold, A.A., Molotch, N.P., Musselman, K.N., Bales, R.C., Kirchner, P.B., Litvak, M. and Brooks, P.D. 2015. Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Hydrological Processes 29. 2782-2798. https://doi.org/10.1002/hyp.10400
Hawkins, E. and Sutton, R. 2009. The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society 90. (8): 1095-1108. https://doi.org/10.1175/2009BAMS2607.1
Hopkins, D. and Maclean, K. 2014. Climate change perceptions and responses in Scotland's ski industry. Tourism Geographies 16. (3): 400-414. https://doi.org/10.1080/14616688.2013.823457
IPCC 2013. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J. and Wehner, M. 2013. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Cambridge, UK and New York, USA, Cambridge University Press.
IPCC 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Eds.: Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama B. and Weyer, N.M., Cambridge, UK and New York, USA, Cambridge University Press.
IPCC 2021. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3−32.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O.B., Bouwer, L.M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B. and Yiou, P. 2014. EUROCORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change 14. 563-578. https://doi.org/10.1007/s10113-013-0499-2
Jeong, D.I. and Sushama, L. 2018. Projected changes to extreme wind and snow environmental loads for buildings and infrastructure across Canada. Sustain Cities and Society 36. 225-236. https://doi.org/10.1016/j.scs.2017.10.004
Joksimovic, M., Sabic, D., Vujdinovic, S., Golic, R. and Gajic, M. 2018. Duration of the snow cover and the need for artificial snow - A challenge for management in ski-centres of Serbia. In Climate Change Adaptation in Eastern Europe. Eds.: Filho, W.L., Trbic, G. and Filipovic, D., Cham, Springer. https://doi.org/10.1007/978-3-030-03383-5_10
Kis, A. and Pongrácz, R. 2021. The role of temperature and the NAO index in the changing snow-related variables in European regions in the period 1900-2010. Hungarian Geographical Bulletin 70. (4): 325-337. https://doi.org/10.15201/hungeobull.70.4.3
Kitzberger, T., Falk, D.A., Westerling, A. and Swetnam, T.W. 2017. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS One 12. (12): e0188486. https://doi.org/10.1371/journal.pone.0188486
Klein, G., Vitasse, Y., Rixen, C., Marty, C. and Rebetez, M. 2016. Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Climatic Change 139. 637-649. https://doi.org/10.1007/s10584-016-1806-y
Krasting, J.P., Broccoli, A.J., Dixon, K.W. and Lanzante, J.R. 2013. Future changes in Northern Hemisphere snowfall. Journal of Climate 26. 7813-7828. https://doi.org/10.1175/JCLI-D-12-00832.1
Li, Y., Tao, H., Su, B., Kundewicz, Z.W. and Jiang, T. 2019. Impacts of 1.5 °C and 2 °C global warming on winter snow depth in Central Asia. Science of the Total Environment 651. 2866-2873. https://doi.org/10.1016/j.scitotenv.2018.10.126
Marke, T., Hanzer, F., Olefs, M. and Strasser, U. 2018. Simulation of past changes in the Austrian snow cover 1948-2009. Journal of Hydrometeorology 19. 1529-1545. https://doi.org/10.1175/JHM-D-17-0245.1
Matiu, M., Petitta, M., Notarnicola, C. and Zebisch, M. 2020. Evaluating snow in EURO-CORDEX regional climate models with observations for the European Alps: Biases and their relationship to orography, temperature, and precipitation mismatches. Atmosphere 11. 46. https://doi.org/10.3390/atmos11010046
McCrary, R.R., Mearns, L.O., Hughes, M., Biner, S. and Bukovsky, M.S. 2022. Projections of North American snow from NA‑CORDEX and their uncertainties, with a focus on model resolution. Climatic Change 170. 20. https://doi.org/10.1007/s10584-021-03294-8
Moreno-Gené, J., Sánchez-Pulido, L., Cristobal-Fransi, E. and Daries, N. 2018. The economic sustainability of snow tourism: The case of ski resorts in Austria, France, and Italy. Sustainability 10. (9): 3012. https://doi.org/10.3390/su10093012
Morin, S., Smscoits, R., Francois, H., Carmagnola, C.M., Abegg, B., Demiroglu, O.C., Pons, M., Soubeyroux, J-M., Lafayesse, M., Franklin, S., Griffiths, G., Kite, D., Hoppler, A.A., George, E., Buontempo, C., Almond, S., Dubois, G. and Cauchy, A. 2021. Pan-European meteorological and snow indicators of climate change impact on ski tourism. Climatic Services 22. 100215. https://doi.org/10.1016/j.cliser.2021.100215
Mudryk, L., Santolaria-Otín, M., Krinner, G., Ménégoz, M., Derksen, C., Brutel-Vuilmet, C., Brady, M. and Essery, R. 2020. Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. The Cryosphere 14. 2495-2514. https://doi.org/10.5194/tc-14-2495-2020
Neto, A.A.M., Niu, G-Y., Roy, T., Tyler, S. and Troch, P.A. 2020. Interactions between snow cover and evaporation lead to higher sensitivity of streamflow to temperature. Communications Earth and Environment 1. 56. https://doi.org/10.1038/s43247-020-00056-9
Notarnicola, C. 2020. Hotspots of snow cover changes in global mountain regions over 2000-2018. Remote Sensing of Environment 243. 111781. https://doi.org/10.1016/j.rse.2020.111781
O'Gorman, P.A. 2014. Contrasting responses of mean and extreme snowfall to climate change. Nature 512. 416-418. https://doi.org/10.1038/nature13625
Peng, S., Piao, S., Ciais, P., Fang, J. and Wang, X. 2010. Change in winter snow depth and its impacts on vegetation in China. Global Change Biology 16. 3004-3013. https://doi.org/10.1111/j.1365-2486.2010.02210.x
Piazza, M., Boé, J., Terray, L., Pagé, C., Sanchez-Gomez, E. and Déqué, M. 2014. Projected 21st century snowfall changes over the French Alps and related uncertainties. Climatic Change 122. 583-594. https://doi.org/10.1007/s10584-013-1017-8
Poli, P., Hersbach, H., Dee, D.P., Berrisford, P., Simmons, A.J., Vitart, F., Laloyaux, P., Tan, D.G.H., Peubey, C., Thépaut, J-N., Trémolet, Y., Hólm, E.V., Bonavita, M., Isaksen, L. and Fisher, M. 2016. ERA-20C: An atmospheric reanalysis of the twentieth century. Journal of Climate 29. (11): 4083-4097. https://doi.org/10.1175/JCLI-D-15-0556.1
Raisanen, J. 2016. Twenty‑first century changes in snowfall climate in Northern Europe in ENSEMBLES regional climate models. Climate Dynamics 46. 339-353. https://doi.org/10.1007/s00382-015-2587-0
Rauscher, S.A., Pal, J.S., Diffenbaugh, N.S. and Benedetti, M.M. 2008. Future changes in snowmelt-driven runoff timing over the western US. Geophysical Research Letters 35. L16703. https://doi.org/10.1029/2008GL034424
Schmucki, E., Marty, C., Fierz, C., Weingartner, R. and Lehning, M. 2017. Impact of climate change in Switzerland on socio-economic snow indices. Theoretical and Applied Climatology 127. 875-889. https://doi.org/10.1007/s00704-015-1676-7
Siirila-Woodburn, E.R., Rhoades, A.M., Hatchett, B.J., Huning, L.S., Szinai, J., Tague, C., Nico, P.S., Feldman, D.R., Jones, A.D., Collins, W.D. and Kaatz, L. 2021. A low-to-no snow future and its impacts on water resources in the western United States. Nature Reviews Earth and Environment 2. 800-819. https://doi.org/10.1038/s43017-021-00219-y
Soncini, A. and Bocchiola, D. 2011. Assessment of future snowfall regimes within the Italian Alps using general circulation models. Cold Regions Science and Technology 68. 113-123. https://doi.org/10.1016/j.coldregions.2011.06.011
Spandre, P., Francois, H., Verdaillie, D., Lafaysse, M., Déqué, M., Eckert, N., George, E. and Morin, S. 2019. Climate controls on snow reliability in French Alps ski resorts. Scientific Reports 9. 8043. https://doi.org/10.1038/s41598-019-44068-8
Steiger, R., Scott, D., Abegg, B., Pons, M. and Aall, C. 2017. A critical review of climate change risk for ski tourism. Current Issues in Tourism 22. (11): 1343-1379. https://doi.org/10.1080/13683500.2017.1410110
Terzago, S., von Hardenberg, J., Palazzi, E. and Provenzale, A. 2017. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models. The Cryosphere 11. 1625-1645. https://doi.org/10.5194/tc-11-1625-2017
Thackeray, C.W. and Fletcher, C.G. 2016. Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography 40. (3): 392-408. https://doi.org/10.1177/0309133315620999
van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J-F., Masui, T., Meinshausen, M., Nekicenovic, N., Smith, S.J. and Rose, S.K. 2011. The representative concentration pathways: an overview. Climatic Change 109. 5-31. https://doi.org/10.1007/s10584-011-0148-z
Würzer, S., Jonas, T., Wever, N. and Lehning, M. 2016. Influence of initial snowpack properties on runoff formation during rain-on-snow events. Journal of Hydrometeorology 17. 1801-1815. https://doi.org/10.1175/JHM-D-15-0181.1
Xu, Y., Jones, A. and Rhoades, A. 2019. A quantitative method to decompose SWE differences between regional climate models and reanalysis datasets. Scientific Report 9. 16520. https://doi.org/10.1038/s41598-019-52880-5
Zhang, J. 2005. Warming of the arctic ice-ocean system is faster than the global average since the 1960s. Geophysical Research Letters 32. L19602. https://doi.org/10.1029/2005GL024216
Zhang, Y., Wang, S., Barr, A.G. and Black, T.A. 2008. Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Regions Science and Technology 52. (3): 355-370. https://doi.org/10.1016/j.coldregions.2007.07.001
Copyright (c) 2023 Anna Kis, Rita Pongrácz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.