The relationship between ignimbrite lithofacies and topography in a foothill setting formed on Miocene pyroclastics – a case study from the Bükkalja, Northern Hungary

Keywords: Bükkalja, ignimbrite, Miocene, welded ignimbrite, SRTM, swath analysis, topographic openness, digital elevation model, differential erosion


Units with extremely variable erodibility are typical in the succession of pyroclastic-dominated volcanic fields. Welded ignimbrites are usually resistant to erosion, thus, they often appear as positive landforms, i.e., mesas or tilted plateaus after millions of years of denudation. The Bükkalja Volcanic Area being part of the most extended foothill area of the North Hungarian Mountains, is composed predominantly of Miocene ignimbrites, where the frequency distributions of elevation a.s.l., slope, aspect, as well as topographic openness, were investigated using a 30 m resolution SRTM-based digital surface model at four sample areas located at different relative distances from the assumed source localities of the ignimbrites, showing both non-welded and welded facies. The degree of dissection was also examined along swath profiles. The topography of the sample area closest to the source localities is dominated by slabs of moderately dissected welded ignimbrites, gently dipping towards SE. Farther away from the source the topography is dominated by erosional valleys and ridges, resulting in a narrower typical elevation range, a higher proportion of pixels with greater than 5° slope, higher frequencies of NE and SW exposures, and more significant incision resulted in more frequent pixels with positive topographic openness less than 1.5 radians here. Higher thicknesses and emplacement temperatures of ignimbrites, often showing welded facies are more common closer to the source vent. Thus, the erosional pattern around calderas can be used to draw conclusions on the spatial extent of the most intense ignimbrite accumulation, i.e., the location of eruption centres even in highly eroded ignimbrite fields.


Adams, B.A. and Cooper, F.J. 2020. The importance of ignimbrite armour on mountain range evolution. American Geophysical Union. Fall Meeting Abstracts, EP031-0019. Available at

Biró, T., Kovács, I.J., Karátson, D., Stalder, R., Király, E., Falus, Gy., Fancsik, T. and Sándorné, J.K. 2017. Evidence for post-depositional diffusional loss of hydrogen in quartz phenocryst fragments within ignimbrites. American Mineralogist: Journal of Earth and Planetary Materials 102. (6): 1187-1201.

Biró, T., Hencz, M., Németh, K., Karátson, D., Márton, E., Szakács, A., Bradák, B., Szalai, Z., Pécskay, Z. and Kovács, I.J. 2020. A Miocene phreatoplinian eruption in the north-eastern Pannonian Basin, Hungary: the jató member. Journal of Volcanology and Geothermal Research 401.

Borsos, B. 1991. A bükkaljai kaptárkövek földtani és felszínalaktani vizsgálata (Geological and geomorphological investigation of the beehive-rocks of the Bükkalja). Földrajzi Közlemények 115. (3-4): 121-137.

Capaccioni, B., Coradossi, N., Harangi, R., Harangi, Sz., Karátson, D., Sarocchi, D. and Valentini, L. 1995. Early Miocene pyroclastic rocks of the Bükkalja Ignimbrite Field (North Hungary) - A preliminary stratigraphic report. Acta Vulcanologica 7. (2): 119-124.

Crowe, B.M., Linn, G.W., Heiken, G. and Bevier, M.L. 1978. Stratigraphy of the Bandelier Tuff in the Pajarito Plateau. Applications to waste management. Report no. LA-7225-MS. Los Alamos, New Mexico, USA. Los Alamos Scientific Laboratory.

Cseri, Z. 2017. A bükkaljai ignimbritek mágneses szuszceptibilitás anizotrópiájának jellemzői. (Features of anisotropy of magnetic susceptibility of ignimbrites at the Bükkalja). MSc Thesis, Budapest, ELTE Faculty of Science, Department of Physical Geography.

Daxter, C. 2020. Topographic Openness Maps and Red Relief Image Maps in QGIS. Innsbruck, University of Innsbruck, Institute of Geology.

Dobos, A. 2002. A Bükkalja II. felszínalaktani leírás. (The Bükkalja II. geomorphological description). In A Bükki Nemzeti Park. Ed.: Baráz, Cs., Eger, Bükki Nemzeti Park Igazgatóság, 217-228.

Dunkl, I., Árkai, P., Balogh, K., Csontos, L. and Nagy, G. 1994. A hőtörténet modellezése fission track adatok felhasználásával - a Bükk hegység kiemelkedéstörténete (Thermal modelling based on apatite fission track dating - the uplift history of the Bükk Mountains). Földtani Közlöny 124. (1): 1-24.

Freundt, A., Wilson, C.J.N. and Carey, S.N. 2000. Ignimbrites and block-and-ash flow deposits. In Encyclopaedia of Volcanoes. 1st edition. Ed.: Sigurdsson, H., New York, Academic Press, 581-599.

Hencz, M., Biró, T., Cseri, Z., Karátson, D., Márton, E., Németh, K., Szakács, A., Pécskay, Z. and Kovács, I.J. 2021a. A Lower Miocene pyroclastic-fall deposit from the Bükk Foreland Volcanic Area, Northern Hungary - clues for an eastward-located source. Geologica Carpathica 72. (1): 26-47.

Hencz, M., Biró, T., Cseri, Z., Németh, K., Szakács, A., Márton, E., Pécskay, Z. and Karátson, D. 2021b. Egy összetett kitörési eseménysorozat nyomai a Bükkalján (Észak-Magyarország): a Kács Egység (Signs of complex eruption events at the Bükk Foreland [Northern Hungary]: the Kács Member). In 22nd Mining, Metallurgy and Geology Conference. Abstracts. Cluj, Hungarian Technical Scientific Society of Transylvania. 71-75.

Hencz, M., Biró, T., Kovács, I.J., Stalder, R., Németh, K., Szakács, A., Pálos, Z., Pécskay, Z. and Karátson, D. 2021c. Uniform "water" content in quartz phenocrysts from silicic pyroclastic fallout deposits - implications on pre-eruptive conditions. European Joural of Mineralogy 33. (5): 571-589.

Hevesi, A. 2002. Fejlődéstörténet II. Felszínfejlődés (Surface evolution II. Surface development). In A Bükki Nemzeti Park. Ed.: Baráz, Cs., Eger, Bükki Nemzeti Park Igazgatóság, 83-108.

Karátson, D., Telbisz, T., Székely, B. and Wörner, G. 2009. Style, rate and pattern of erosion on stratovolcanoes and ignimbrite surfaces in the Central Andes. EGU General Assembly Conference. Geophysical Research Abstracts, Vol. 11. 10547-1.

Karátson, D., Biró, T., Portnyagin, M., Kiss, B., Jean-Louis, P., Cseri, Z., Hencz, M., Németh, K., Lahitte, P., Márton, E., Kordos, L., Józsa, S., Hably, L., Müller, S. and Szarvas, I. 2022. Large-magnitude (VEI ≥ 7) 'wet' explosive silicic eruption preserved a Lower Miocene habitat at the Ipolytarnóc Fossil Site, North Hungary. Scientific Reports 12. Article number 9743.

Leonard, G.S., Begg, J.G. and Wilson, C.J.N. 2010. Geology of the Rotorua Area. Institute of Geological and Nuclear Sciences 1:250 000 geological map 5. Lower Hutt, New Zealand, GNS Science.

Less, Gy., Kovács, S., Pelikán, P., Pentelényi, L. and Sásdi, L. 2005. Geology of the Bükk Mountains. Explanatory book to the geological map of the Bükk Mountains (1:50 000). Budapest, Hungarian Institute of Geology and Geophysics.

Lukács, R., Harangi, Sz., Ntaflos, T., Koller, F. and Pécskay, Z. 2007. A Bükalján megjelenő felső riolittufaszint vizsgálati eredményei: a harsányi ignimbrit egység. (The characteristics of the Upper Rhyolite Tuff Horizon in the Bükkalja volcanic field: The Harsány ignimbrite unit). Földtani Közlöny 137. (4): 487-514.

Lukács, R., Harangi, Sz., Bachmann, O., Guillong, M., Danisik, M., Buret, Y, von Quadt, A., Dunkl, I., Fodor, L., Sliwinski, J., Soós, I. and Szepesi, J. 2015. Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern-central Europe. Contributions to Mineralogy and Petrology 170. Article number 52.

Lukács, R., Harangi, Sz., Guillong, M., Bachmann, O., Fodor, L., Buret, Y., Dunkl, I., Sliwinski, J., von Quadt, A., Peytcheva, I. and Zimmerer, M. 2018. Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth Science Reviews 179. 1-19.

Lukács, R., Harangi, Sz., Gál, P., Szepesi, J., Di Capua, A. and Fodor, L. 2022. Formal definition and description of lithostratigraphic units related to the Miocene silicic pyroclastic rocks outcropping in Northern Hungary: A revision. Geologica Carpathica 73. 137-158.

NASA 2013. Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography.

Pecsmány, P. and Vágó, J. 2020. A mélyszerkezet és a domborzat közötti kapcsolat a Bükkalja területén (Relationship between geological structure elements and topography in the Bükkalja). Műszaki Földtudományi Közlemények 89. (1): 29-34.

Pecsmány, P., Hegedűs, A. and Vágó, J. 2021. DEM based morphotectonical analysis of the Kisgyőr Basin (Bükk Mountains, Hungary). Acta Montanistica Slovaca 26. (2): 364-374.

Pecsmány, P. 2021. A Bükkalja völgyhálózatának rendűség szerinti iránystatisztikai vizsgálata (Quantitative analysis of drainage network direction in the Bükkalja). Multidisciplináris Tudományok 11. (2): 9-16.

Pentelényi, L. 2005. A bükkaljai miocén piroklasztikum összlet (The Miocene pyroclastic assemblage of Bükkalja). In A Bükk hegység földtana. Magyarázó a Bükk-hegység földtani térképéhez (1:50 000). Ed.: Pelikán, P., Budapest, MÁFI, 110-125.

Petrik, A., Beke, B., Fodor, L. and Lukács, R. 2016. Cenozoic structural evolution of the southwestern Bükk Mountains and the southern part of the Darnó Deformation Belt (NE Hungary). Geologica Carpathica 67. (1): 82-104.

Petrik, A. 2017. A Bükk déli előterének kainozoós szerkezetalakulása (Cenozoic structural evolution of the Southern Bükk foreland). PhD Thesis, Budapest, ELTE Faculty of Science.

QGIS Development Team 2022. QGIS Geographic Information System. Open Source Geospatial Foundation. URL

Szakács, A., Márton, E., Póka, T., Zelenka, T., Pécskay, Z. and Seghedi, I. 1998. Miocene acidic explosive volcanism in the Bükk Foreland, Hungary: Identifying eruptive sequences and searching for source locations. Acta Geologica Hungarica 41. (4): 413-435.

Székely, B., Koma, Zs., Karátson, D., Dorninger, P., Wörner, G., Brandmeier, M. and Nothegger, C. 2014. Automated recognition of quasi-planar ignimbrite sheets as paleosurfaces via robust segmentation of digital elevation models: an example from the Central Andes. Earth Surface Processes and Landforms 39. (10): 1386-1399.

Telbisz, T., Kovács, G. and Székely, B. 2011a. Sávszelvények készítése és elemzése (Creating swath profiles and swath analysis). In Lehetőségek a Domborzatmodellezésben. A HunDEM 2011 Kerekasztal és Konferencia Közleményei. Ed.: Hegedűs, A., Miskolc, Miskolci Egyetem Földrajz Intézet, 1-8.

Telbisz, T., Mari, L. and Szabó, L, 2011b. Geomorphological characteristics of the Italian side of Canin Mountains (Julian Alps) using digital terrain analysis and field observations. Acta Carsologica 40. 255-266.

Telbisz, T., Kovács, G., Székely, B. and Szabó, J. 2013. Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool. Zeitschrift für Geomorphologie 57. (1): 485-513.

Van Wyk de Vries, B., Karátson, D., Gouard, C., Németh, K., Rapprich, V. and Aydar, E. 2022. Inverted volcanic relief: Its importance in illustrating geological change and its geoheritage potential. International Journal of Geoheritage and Parks 10. (1): 47-83.

Vágó, J. and Hegedűs, A. 2011. DEM based examination of pediment levels: a case study in Bükkalja, Hungary. Hungarian Geographical Bulletin 60. (1): 25-44.

Vágó, J. 2012. A kőzetminőség szerepe a Bükkalja völgy és vízhálózatának kialakulásában (The effects of rock quality on the valley and drainage network of Bükkalja). PhD Thesis. Miskolc, University of Miskolc.

Yokoyama, S. 1999. Rapid formation of river terraces in non-welded ignimbrite along the Hishida River, Kyushu, Japan. Geomorphology 30. (3): 291-304.

Yokoyama, R., Shirasawa, M. and Pike, R.J. 2002. Visualizing topography by openness: a new application of image processing to digital elevation models. Photogrammetric Engineering and Remote Sensing 68. (3): 257-266.

Yong Technology 2014. GeoRose. Edmonton, CAN, Yong Technology Inc. Available at

Web sources:

:100 000 Geological map of Hungary. Available at

:500 000 Bouguer anomaly map of Hungary. Available at

How to Cite
BiróT., HenczM., TelbiszT., CseriZ., & KarátsonD. (2022). The relationship between ignimbrite lithofacies and topography in a foothill setting formed on Miocene pyroclastics – a case study from the Bükkalja, Northern Hungary. Hungarian Geographical Bulletin, 71(3), 213-229.