The role of temperature and the NAO index in the changing snow-related variables in European regions in the period 1900‒2010

Keywords: snowfall ratio, ERA-20C, winter climate, decadal change, regional warming, North Atlantic Oscillation

Abstract

Snow-related variables are analysed in the present paper in the period 1901‒2010 on the basis of the ERA-20C dataset. Relationships between different snow characteristics, temperature and the NAO index are investigated on monthly, yearly and decadal scales for eight regions within Europe representing different climatic types (i.e. oceanic, continental, polar) to analyse the differences and similarities between them depending on the climatic conditions. According to our results, the ratio of snow (i.e. snowfall compared to total precipitation) can reach 1 in winter in the colder, northern regions, whereas it is about 0.6 in the continental areas of Central Europe, even in the coldest months. During a strong positive phase of NAO more snow falls in the northern regions of Europe due to the large-scale circulation characteristics. When a negative NAO phase occurs, the temperature and snowfall anomalies are the opposite in northern Europe. The highest temperature values generally occurred after 2000, and the snowfall amount was smaller in the first decades of the 21st century compared to the previous decades. The relationship between temperature and snowfall is the strongest in autumn in the colder regions; in spring in the continental areas and in winter in the oceanic climate.

References

Bednorz, E. 2004. Snow cover in Eastern Europe in relation to temperature, precipitation and circulation. International Journal of Climatology 24. 591-601. https://doi.org/10.1002/joc.1014

Birsan, M-V. and Dumitrescu, A. 2014. Snow variability in Romania in connection to large-scale atmospheric circulation. International Journal of Climatology 34. 134-144. https://doi.org/10.1002/joc.3671

Blahusiaková, A., Matousková, M., Jenicek, M., Ledvinka, O., Kliment, Z., Podolinská, J. and Snopková, Z. 2020. Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe. Hydrological Sciences Journal 65. (12): 2083-2096. https://doi.org/10.1080/02626667.2020.1784900

Bojariu, R. and Paliu, D. 2001. North Atlantic Oscillation projection on Romanian climate fluctuations in the cold season. In Detecting and Modelling Regional Climate Change and Associated Impacts. Eds.: Brunet, M. and Lopez, D., Berlin-Heidelberg, Springer-Verlag, 345-356. https://doi.org/10.1007/978-3-662-04313-4_29

Brown, I. 2019. Snow cover duration and extent for Great Britain in a changing climate: Altitudinal variations and synoptic-scale influences. International Journal of Climatology 39. 4611-4626. https://doi.org/10.1002/joc.6090

Brown, R.D. and Mote, P.W. 2009. The response of Northern Hemisphere snow cover to a changing Climate. Journal of Climate 22. (8): 2124-2145. https://doi.org/10.1175/2008JCLI2665.1

Cohen, J. and Rind, D. 1991. The effect of snow cover on the climate. Journal of Climate 4. 689-706. https://doi.org/10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2

ECMWF 2013. IFS documentation cy38r1. Available at https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation

Ellis, A.W. and Leathers, D.J. 1998. The effects of a discontinuous snow cover on lower atmospheric temperature and energy flux patterns. Geophysical Research Letters 25. (12): 2161-2164. https://doi.org/10.1029/98GL01582

Falarz, M. 2004. Variability and trends in the duration and depth of snow cover in Poland in the 20th century. International Journal of Climatology 24. 1713-1727. https://doi.org/10.1002/joc.1093

Fontrodona Bach, A., van der Schrier, G., Melsen, L.A., Klein Tank, A.M.G. and Teuling, A.J. 2018. Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophysical Research Letters 45. (12): 312-12,319. https://doi.org/10.1029/2018GL079799

Henderson, G.R. and Leathers, D.J. 2010. European snow cover extent variability and associations with atmospheric forcings. International Journal of Climatology 30. 1440-1451. https://doi.org/10.1002/joc.1990

Hernández-Henríquez, M.A., Déry, S.J. and Derksen, C. 2015. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014. Environmental Research Letters 10. (4): 044010. https://doi.org/10.1088/1748-9326/10/4/044010

Herschbach, H., Poli, P. and Dee, D. 2015. The observation feedback archive for the ICOADS and ISPD data sets. ECMWF ERA Rep. 18, 29.

IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Cambridge UK - New York USA, Cambridge University Press,

IPCC 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Eds.: Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B. and Weyer, N.M. IPCC, In press. Available at https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf

Kim, Y., Kim, K-Y. and Kim, B-M. 2013. Physical mechanisms of European winter snow cover variability and its relationship to the NAO. Climate Dynamics 40. 1657-1669. https://doi.org/10.1007/s00382-012-1365-5

Klein, G., Vitasse, Y., Rixen, C., Marty, C. and Rebetez, M. 2016. Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Climatic Change 139. 637-649. https://doi.org/10.1007/s10584-016-1806-y

Kundewicz, Z.W., Kanae, S., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L.M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G.R., Kron, W., Benito, G., Honda, Y., Takahashi, K. and Sherstyukov, B. 2014. Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal 59. (1): 1-28. https://doi.org/10.1080/02626667.2013.857411

Kunkel, K.E., Robinson, D.A., Champion, S., Yin, X., Estilow, T. and Frankson, R.M. 2016. Trends and extremes in Northern Hemisphere snow characteristics. Current Climate Change Reports 2. 65-73. https://doi.org/10.1007/s40641-016-0036-8

Marke, T., Hanzer, F., Olefs, M. and Strasser, U. 2018. Simulation of past changes in the Austrian snow cover 1948-2009. Journal of Hydrometeorology 19. 1529-1545. https://doi.org/10.1175/JHM-D-17-0245.1

Martin, E. and Etchevers, P. 2005. Impact of climatic changes on snow cover and snow hydrology in the French Alps. In Global Change and Mountain Regions. Advances in Global Change Research Vol 23. Eds.: Huber, U.M., Bugmann, H.K.M. and Reasoner, M.A., Dordrecht, Springer, 235-242. https://doi.org/10.1007/1-4020-3508-X_24

Menne, M.J., Durre, I., Vose, R.S., Gleason, B.E. and Houston, T.G. 2012. An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology 29.897-910. https://doi.org/10.1175/JTECH-D-11-00103.1

Milly, P.C.D. and Dunne, K.A. 2020. Colorado river flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367. (6483): 1252-1255. https://doi.org/10.1126/science.aay9187

Moreno-Gené, J., Sánchez-Pulido, L., Cristobal-Fransi, E. and Daries, N. 2018. The economic sustainability of snow tourism: The case of ski resorts in Austria, France, and Italy. Sustainability 10. (9): 3012. https://doi.org/10.3390/su10093012

Mudryk, L., Snatolaria-Otín, M., Krinner, G., Ménégoz, M., Derksen, C., Brutel-Vuilmet, C., Brady, M. and Essery, R. 2020. Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. The Cryosphere 14. 2495-2514. https://doi.org/10.5194/tc-14-2495-2020

Oke, T.R. 1987. Boundary Layer Climates. 2nd edition. London, Methuen

Petersky, R. and Harpold, A. 2018. Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA. Hydrology and Earth System Sciences22. 4891-4906. https://doi.org/10.5194/hess-22-4891-2018

Poli, P., Hersbach, H., Dee, D.P., Berrisford, P., Simmons, A.J., Vitart, F., Laloyaux, P., Tan D.G.H., Peubey, C., Thépaut, J-N., Trémolet, Y., Hólm, E.V., Bonavita, M., Isaksen, L. and Fisher, M. 2016. ERA-20C: An atmospheric reanalysis of the twentieth century. Journal of Climate 29. (11): 4083-4097. https://doi.org/10.1175/JCLI-D-15-0556.1

Potopová, V., Boroneant, C., Mozny, M. and Soukup, J. 2016. Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic. International Journal of Climatology 36. 3741-3758. https://doi.org/10.1002/joc.4588

Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J.-F. and Simmons, A. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I. Experimental results with simplified physics. Quarterly Journal of the Royal Meteorological Society 126. 1143-1170. https://doi.org/10.1002/qj.49712656415

Rottler, E., Francke, T., Bürger, G. and Bronstert, A. 2020. Long-term changes in central European river discharge for 1869-2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle. Hydrology and Earth System Sciences 24. 1721-1740. https://doi.org/10.5194/hess-24-1721-2020

Spandre, P., Francois, H., Verdaillie, D., Lafaysse, M., Déqué, M., Eckert, N., George, E. and Morin, S. 2019. Climate controls on snow reliability in French Alps ski resorts. Scientific Reports 9. 8043. https://doi.org/10.1038/s41598-019-44068-8

Trigo, R., Osborn, T. and Corte-Real, J. 2002. The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Climate Research 20. (1): 9-17. https://doi.org/10.3354/cr020009

Valt, M. and Cianfarra, P. 2010. Recent snow cover variability in the Italian Alps. Cold Regions Science and Technology 64. (2): 146-157. https://doi.org/10.1016/j.coldregions.2010.08.008

van Bebber, W.J. 1891. Die Zugstrassen der barmetrischen Minima. Meteorologische Zeitschrift 8. 361-366.

Wang, Y., Thomas, E.R., Hou, S., Huai, B., Wu, S., Sun, W., Qi, S., Ding, M. and Zhang, Y. 2017. Snow accumulation variability over the West Antarctic ice sheet since 1900: A comparison of ice core records with ERA-20C reanalysis. Geophysical ResearchLetters 44. (22): 11482-11490. https://doi.org/10.1002/2017GL075135

Wegmann, M., Orsolini, Y., Dutra, E., Bulygina, O., Sterin, A. and Brönnimann, S. 2017. Eurasian snow depth in long-term climate reanalyses. The Cryosphere 11. 923-935. https://doi.org/10.5194/tc-11-923-2017

WMO 2021. State of the Global Climate 2020. WMO No. 1264. Geneva CH, WMO. Available at https://library.wmo.int/doc_num.php?explnum_id=10618

Zhang, J. 2005. Warming of the arctic ice-ocean system is faster than the global average since the 1960s. Geophysical Research Letters 32. L19602. https://doi.org/10.1029/2005GL024216

Published
2021-12-13
How to Cite
KisA., & PongráczR. (2021). The role of temperature and the NAO index in the changing snow-related variables in European regions in the period 1900‒2010. Hungarian Geographical Bulletin, 70(4), 325-337. https://doi.org/10.15201/hungeobull.70.4.3
Section
Articles