Vertical differentiation of pedogenic iron forms – a key of hydromorphic soil profile development

  • Marianna Ringer Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary https://orcid.org/0000-0003-0420-2630
  • Gergely Jakab Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary ; ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Environmental and Landscape Geography, Budapest, Hungary https://orcid.org/0000-0001-5424-1983
  • Péter Sipos Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
  • Máté Szabó Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
  • Kata Horváth-Szabó Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary https://orcid.org/0000-0002-4418-0635
  • Katalin Perényi ELTE Eötvös Loránd University, Department of Analytical Chemistry, Budapest, Hungary https://orcid.org/0000-0002-8084-9236
  • Zoltán Szalai Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary ; ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Environmental and Landscape Geography, Budapest, Hungary
Keywords: pedogenic iron forms, redoximorphic pedofeatures, hydric soil formation, gleysation, soil colour

Abstract

This paper focuses on the vertical distribution and characterisation of pedogenic iron forms in a Gleysol- Histosol transect developed in a marshy area in the Danube-Tisza Interfluve, Hungary. Four soil profiles were investigated along a series of increasing waterlogging and spatial and temporal patterns of hydromorphic pedofeatures (characteristics of pedogenic iron forms) were recorded. Frequent and wide-range redox potential (Eh) changes caused the emergence of many types of redoximorphic iron features, including mottles, plaques and nodules. The forms of these features depended on the micro-environments determined by the vertical position in the soil profile and the presence of plant roots. The greatest iron enrichment occurred in the zone of most intensive and widest-range redox fluctuations. Increasing water saturation resulted the extension of gleyic pattern due to the existence of permanent reduction. Most of the features also showed annual variations during the varying periods of water saturation and aeration.

References

Amon, J.P., Thompson, C.A., Carpenter, Q.J. and Miner, J. 2002. Temperate zone fens of the glaciated Midwestern USA. Wetlands 22. (2): 301-317. https://doi.org/10.1672/0277-5212(2002)022[0301:TZFOTG]2.0.CO;2

Amon, J.P., Jacobson, C.S. and Shelley, M.L. 2005. Construction of fens with and without hydric soils. Ecological Engineering 24. (4): 341-357. https://doi.org/10.1016/j.ecoleng.2004.11.011

Baranyai, Zs., Schrett, A., Vidra, T., Vincze, T., Kun, A. and Szalkay, J. 2014. A HUDI20021 Gerje mente kiemelt jelentőségű természetmegőrzési terület fenntartási terve (Management plan for the HUDI20021 Gerje mente special area of conservation). Natura 2000. Budapest, Duna-Ipoly Nemzeti Park.

Bi, Y., Kuzyakov, Y., Cai, S. and Zhao, X. 2021. Accumulation of organic compounds in paddy soils after biochar application is controlled by iron hydroxides. Science of the Total Environment 764. 144300. https://doi.org/10.1016/j.scitotenv.2020.144300

Bourrié, G., Troland, F., Génin, J.-M.R., Jaffrezic, A., Maítre, V. and Abdelmoula, M. 1999. Iron control by equilibria between hydroxy-Green Rusts and solutions in hydromorphic soils. Geochimica et Cosmochimica Acta 63. 3417-3427. https://doi.org/10.1016/S0016-7037(99)00262-8

Chadwick, O.A. and Chorover, J. 2001. The chemistry of pedogenic thresholds. Geoderma 100. (3-4): 321-353. https://doi.org/10.1016/S0016-7061(01)00027-1

Childs, C.W. 1981. Field tests for ferrous iron and ferric-organic complexes (on exchange sites or in water-soluble forms) in soils. Soil Research 19. (2): 175-180. https://doi.org/10.1071/SR9810175

Cornell, R.M. and Schwertmann, U. 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2nd edition. Weinheim, Wiley-VHC. https://doi.org/10.1002/3527602097

Cornu, S., Cattle, J.A., Samouëlian, A., Laveuf, C., Guilherme, L.R.G. and Alberic, P. 2009. Impact of redox cycles on manganese, iron, cobalt, and lead in nodules. Soil Science Society of America Journal 73. (4): 1231-1241. https://doi.org/10.2136/sssaj2008.0024

Cuadros, J., Sánchez-Marañón, M., Mavris, C., Fiore, S., Bishop, J.L. and Melgosa, M. 2020. Colour analysis and detection of Fe minerals in multi-mineral mixtures from acid-alteration environments. Applied Clay Science 193. 105677. https://doi.org/10.1016/j.clay.2020.105677

Dövényi, Z. (ed.) 2010. Magyarország Kistájainak Katasztere (Inventory of microregions in Hungary). Budapest, MTA Földrajztudományi Kutatóintézet.

Driessen, P., Deckers, J. and Spaargaren, O. (eds.) 2001. Lecture Notes on the Major Soils of the World. Rome, FAO.

Feder, F., Troland, F., Klingelhöfel, G. and Bourrié, G. 2005. In situ Mössbauer spectroscopy: Evidence for green rust (fougérite) in a gleysol and its mineralogical transformations with time and depth. Geochimica et Cosmochimica Acta 69. 4463-4483. https://doi.org/10.1016/j.gca.2005.03.042

Gasparatos, D., Massas, I. and Godelitsas, A. 2019. Fe-Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics: Current knowledge and gaps. Catena 182. 104106. https://doi.org/10.1016/j.catena.2019.104106

Golden, D.C., Turner, F.T., Sittertz‐Bhatkar, H. and Dixon, J.B. 1997. Seasonally precipitated iron oxides in a vertisol of southeast Texas. Soil Science Society of America Journal 61. (3): 958-964. https://doi.org/10.2136/sssaj1997.03615995006100030035x

Hansel, C.M., Fendorf, S., Sutton, S. and Newville, M. 2001. Characterisation of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science & Technology 35. (19): 3863-3868. https://doi.org/10.1021/es0105459

Holmgren, G.G.S. 1967. A rapid citrate-dithionite extractable iron procedure. Soil Science Society of America Journal 31. 210-211. https://doi.org/10.2136/sssaj1967.03615995003100020020x

Huang, X., Tang, H., Kang, W., Yu, G., Ran, W., Hong, J. and Shen, Q. 2018. Redox interface-associated organo-mineral interactions: A mechanism for C sequestration under a rice-wheat cropping system. Soil Biology and Biochemistry 120. 12-23. https://doi.org/10.1016/j.soilbio.2018.01.031

Huang, X., Kang, W., Guo, J., Wang, L., Tang, H., Li, T., Yu, G., Ran, W., Hong, J. and Shen, Q. 2020. Highly reactive nanomineral assembly in soil colloids: Implications for paddy soil carbon storage. Science of the Total Environment 703. 134728. https://doi.org/10.1016/j.scitotenv.2019.134728

Ibáñez-Asensio, S., Marques-Mateu, A., Moreno-Ramón, H. and Balasch, S. 2013. Statistical relationships between soil colour and soil attributes in semiarid areas. Biosystems Engineering 116. (2): 120-129. https://doi.org/10.1016/j.biosystemseng.2013.07.013

Imbellone, P.A., Guichon, B.A. and Giménez, J.E. 2009. Hydromorphic soils of the Rio de la Plata coastal plain, Argentina. Latin American Journal of Sedimentology and Basin Analysis 16. (1): 3-18.

IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014. Update 2015 - international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106.

Global Soil Partnership, International Union of Soil Sciences, and Food and Agriculture Organization of the United Nations. Rome, FAO.

Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O. and Schad, P. 2006. Guidelines for Soil Description. 4th edition. Rome, FAO.

Katsikopoulos, D., Ferdández-González, Á. and Prieto, M. 2009. Precipitation and mixing properties of the "disordered" (Mn,Ca)CO3 solid solution. Geochimica et Cosmochimica Acta 73. 6147-6161. https://doi.org/10.1016/j.gca.2009.07.001

Kalmár, J., Kuti, L. and Pocsai, T. 2012. A ceglédberceli útbevágás kvarter üledékeinek ásványtani, üledékföldtani és őskörnyezeti vizsgálata (Mineralogical, sedimentological and palaeo-environmental study of Quaternary sediments from Ceglédbercel road cut, Hungary). Földtani Közlöny 142. (3): 269-286.

Kocsis, T., Kotroczó, Zs., Kardos, L. and Biró, B. 2020. Optimisation of increasing biochar doses with soil-plant-microbial functioning and nutrient uptake of maize. Environmental Technology & Innovation 20. 101191. https://doi.org/10.1016/j.eti.2020.101191

Lin, H. 2012. Addressing fundamentals and building bridges to understand complex pedologic and hydrologic interactions. In Hydropedology: Synergistic Integration of Soil Science and Hydrology. Ed.: Lin, H., Cambridge MA, Elsevier, 3-39.

Lindbo, D.L., Stolt, M.H. and Vepraskas, M.J. 2010. Redoximorphic features. In Interpretation of Micromorphological Features of Soils and Regoliths. Eds.: Soops, G., Marcelino, V. and Mees, F., Cambridge MA, Elsevier, 129-147. https://doi.org/10.1016/B978-0-444-53156-8.00008-8

Martín‐García, J.M., Sánchez‐Marañón, M., Calero, J., Aranda, V., Delgado, G. and Delgado, R. 2016. Iron oxides and rare earth elements in the clay fractions of a soil chronosequence in southern Spain. European Journal of Soil Science 67. (6): 749-762. https://doi.org/10.1111/ejss.12377

Mills, S.J., Christy, A.G., Génin, J.-M.R., Kameda, T. and Colombo, F. 2012. Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine 76. (5): 1289-1336. https://doi.org/10.1180/minmag.2012.076.5.10

Papp, O., Kocsis, T., Biró, B., Jung, T., Ganszky, D., Abod, É., Tirczka, I., Tóthné Bogdányi, F. and Drexler, D. 2021. Co-inoculation of organic potato with fungi and bacteria at high disease severity of Rhizoctonia solani and Streptomyces spp. increases beneficial effects. Microorganisms 9-10. 16. https://doi.org/10.3390/microorganisms9102028

Rowel, D.L. 1994. Soil Science: Methods and Applications. London, Prentice Hall.

Samus, M.G., Comerio, M., Montes, M.L., Boff, L., Löffler, J., Mercader, R.C. and Bidegain, J.C. 2021. The origin of gley colors in hydromorphic vertisols: the study case of the coastal plain of the Río de la Plata estuary. Environmental Earth Sciences 80. (3): 1-15. https://doi.org/10.1007/s12665-021-09391-2

Schoeneberger, P.J., Wysocki, D.A., Benham, E.C. and Soil Survey Staff 2012. Field Book for Describing and Sampling Soils, Version 3.0. Natural Resources Conservation Service. Lincoln NE, National Soil Survey Center.

Schwertmann, U. 1993. Relations between iron oxides, soil color, and soil formation. In Soil Color 31. 51-69. https://doi.org/10.2136/sssaspecpub31.c4

Sipos, P., Németh, T., May, Z. and Szalai, Z. 2011. Accumulation of trace elements in Fe-rich nodules in a neutral-slightly alkaline floodplain soil. Carpathian Journal of Earth and Environmental Sciences 6. (1): 13-22.

Sodano, M., Lerda, C., Nisticò, R., Martin, M., Magnacca, G., Celi, L. and Said-Pullicino, D. 2017. Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron. Geoderma 307. 19-29. https://doi.org/10.1016/j.geoderma.2017.07.022

Stoops, G., Marcelino, V. and Mees, F. 2010. Micromorphology as a tool in soil and regolith studies In Interpretation of Micromorphological Features of Soils and Regoliths. Eds.: Stoops, G., Marcelino, V. and Mees, F., Cambridge MA, Elsevier, 1-19. https://doi.org/10.1016/B978-0-444-53156-8.00001-5

Surányi, D. 1965. A Gerje nagy áradásának krónikája (Chronicle of the great flooding on the Gerje). In Turini Százas Küldöttség Múzeumbaráti Kör Évkönyve, 1988. Ed.: Kocsis, Gy., Cegléd, Kossuth Múzeum, 144-154.

Szalai, Z., Jakab, G., Németh, T., Sipos, P., Mészáros, E., Di Gléria, M., Madarász, B., Varga, I. and Horváth-Szabó, K. 2010. Dynamics of organic carbon and dissolved iron in relation to landscape diversity. Hungarian Geographical Bulletin 59. (1): 17-33.

Szalai, Z., Szabó, M., Zboray, N., Kiss, K., Horváth-Szabó, K., Jakab, G., Balázs, R., Németh, T. and Madarász, B. 2012. Relationship between ecological indicators and soil properties (in case of a wetland). Hungarian Geographical Bulletin 61. (3): 187-196.

Szalai, Z., Ringer, M., Németh, T., Sipos, P., Perényi, K., Pekker, P., Balázs, R., Vancsik, A.V., Zacháry, D., Szabó, L., Filep, T., Varga Gy. and Jakab, G. 2021. Accelerated soil development due to seasonal water-saturation under hydric conditions. Geoderma 401. 115328. https://doi.org/10.1016/j.geoderma.2021.115328

Szendrei, G., Kovács-Pálffy, P., Földvári, M. and Gál-Sólymos, G. 2012. Mineralogical study of ferruginous and manganiferrous nodules separated from characteristic profiles of hydromorphic soils in Hungary. Carpathian Journal of Earth and Environmental Sciences 2012. 1. 59-70.

Tangen, B.A. and Bansal, S. 2020. Soil organic carbon stocks and sequestration rates of inland, freshwater wetlands: Sources of variability and uncertainty. Science of the Total Environment 749. 141444. https://doi.org/10.1016/j.scitotenv.2020.141444

Thompson, C.A., Bettis III, E.A. and Baker, R.G. 1992. Geology of Iowa fens. Journal of the Iowa Academy of Science 99. (2-3): 53-59.

van Reeuwijk, L.P. 2002. Procedures for Soil Analysis. Rome, ISRIC-FAO.

Published
2021-12-13
How to Cite
RingerM., JakabG., SiposP., SzabóM., Horváth-SzabóK., PerényiK., & SzalaiZ. (2021). Vertical differentiation of pedogenic iron forms – a key of hydromorphic soil profile development. Hungarian Geographical Bulletin, 70(4), 369-380. https://doi.org/10.15201/hungeobull.70.4.6
Section
Articles