Natural and anthropogenic impacts reflected by paleoclimate proxy parameters in a lake-forest system in Bukovina, Romania
Abstract
The research area is located in the Eastern Carpathians, Romania. This region is rich in various formations and indicates significant potential for paleo-environmental reconstruction. The present research was carried out on sediment cores collected at lake Bolătău-Feredeu, Feredeului Mountains (Eastern Carpathians, Romania). Preliminary examination of the sediment confirmed the possibility for data analysis with high temporal resolution. The aim of the research was to clarify and supplement the findings of previous research at this site, to explore the relationships between proxy parameters and to elucidate the cause for the changes. Core dating was carried out using 210Pb and radiocarbon isotopes and indicated that sediment cores span the past 500 years. The research uses a wide range of methodologies, including organic geochemistry with calculated n alkane indices (Phw and Pwax). Based on these proxies, the changes of woody and herbaceous coverage in the catchment can be estimated. Moreover, element concentration, weathering indices and particle size distribution assist to detect climate changes in the catchment area. The data and conclusions yielded by the analysis were compared with the regional modelled temperature profile, based on which five periods were separated. In addition to natural and anthropogenic events, the main factor among the natural processes is the change in annual temperature. Based on the obtained data, several parameters were found to be suitable for monitoring past temperature changes.
References
Barbu, I., Curca, M., Ichim, V. and Barbu, C. 2016. Causes of change in the structure of landscapes in Bukowina (1775-2010). Revista de Silvicultură și Cinegetică 21. (38): 56-65.
Bihari, Á., Karlik, M., Mîndrescu, M., Szalai, Z., Grădinaru, I. and Kern, Z. 2018. Fallout isotope chronology of the near-surface sediment record of Lake Bolătău. Journal of Environmental Radioactivity 181. 32-41. https://doi.org/10.1016/j.jenvrad.2017.10.009
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51. (1): 337-360. https://doi.org/10.1017/S0033822200033865
Büntgen, U., Kyncl, T., Ginzler, C., Jacks, D.S., Esper, J., Tegel, W., Heussner, K.-U. and Kyncl, J. 2013. Filling the Eastern European gap in millenniumlong temperature reconstructions. Proceedings of the National Academy of Sciences of United States of America 110. (5): 1773-1778. https://doi.org/10.1073/pnas.1211485110
Burt, R. (ed.) 2004. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42. Washington D.C., USDA Natural Resources Conservation Service.
Couture, R.A. and Dymek, R.F. 1996. A reexamination of absorption and enhancement effects in X-ray fluorescence trace element analysis. American Mineralogist 81. 639-650. https://doi.org/10.2138/am-1996-5-611
Das, B.K. and Haake, B.G. 2003. Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: implications for source-area weathering, provenance and tectonic setting. Geosciences Journal 7. (4): 299-312. https://doi.org/10.1007/BF02919560
Dobrovolny, P., Moberg, A., Brazdil, R., Pfister, C., Glaser, R., Wilson, R., van Engelen, A., Limanowka, V., Kiss, A., Halickova, M., Mackova, J., Riemann, D. and Luterbacher, J.R.B. 2010. Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since A.D. 1500. Climatic Change 101. 69-107. https://doi.org/10.1007/s10584-009-9724-x
Eglinton, T.I. and Eglinton, G. 2008. Molecular proxies for paleoclimatology. Earth and Planetary Science Letter 275. 1-16. https://doi.org/10.1016/j.epsl.2008.07.012
Engstrom, D.R. and Wright, H.E. Jr. 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In Lake Sediments and Environmental History. Eds.: Haworth, E.Y. and. Lund, J.W.G., Leicester, UK, Leicester University Press, 11-68.
Eshel, G., Levy, G.J., Mingelgrin, U. and Singer M.J. 2004. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Science Society of America Journal 68. 736-743. https://doi.org/10.2136/sssaj2004.7360
Fedo, C.M., Nesbitt, H.W. and Young, G.M. 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo-weathering conditions and provenance. Geology 23. 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
Florescu, G., Hutchinson, S.M., Kern, Z., Mîndrescu, M., Cristea, I.A., Mihăilă, D., Łokas, E. and Feurdean, A. 2017. Last 1000 years of environmental history in Southern Bucovina, Romania: A high resolution multi proxy lacustrine archive. Palaeogeography, Palaeoclimatology, Palaeoecology 473. 26-40. https://doi.org/10.1016/j.palaeo.2017.01.047
Gransch, J.A. and Postuma, J. 1974. On the origin of sulphur in crudes. In Advances in Organic Geochemistry 1973. Eds.: Tissot, B. and Bienner, F., Paris, Editions Technip, 727-739.
Haliuc, A., Feurdean, A., Mîndrescu, M., Frantiuc, A. and Hutchinson, S.M. 2019. Impacts of forest loss in the eastern Carpathian Mountains: linking remote sensing and sediment changes in a midaltitude catchment (Red Lake, Romania). Regional Environmental Change 19. (2): 461-475. https://doi.org/10.1007/s10113-018-1416-5
Harnois, L. 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology 55. (3-4): 319-322. https://doi.org/10.1016/0037-0738(88)90137-6
Jin, Z., Li, F., Cao, J., Wang, S. and Yu, J. 2006. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology 80. (3-4): 147-163. https://doi.org/10.1016/j.geomorph.2006.02.006
Karlik, M., Fekete, J., Mîndrescu, M., Grădinaru, I., Bozsó, G., Bíró, L. and Kern, Z. 2018. Natural andanthropogenic changes in a lake-forest system in Bukovina (Romania) since 1340 A.D. documented by sedimentary organic geochemistry (C, N and nalkanes). Quaternary International 493. 166-175. https://doi.org/10.1016/j.quaint.2018.06.008
Karlik, M., Gyollai, I., Vancsik, A., Fintor, K., Szalai, Z., Mîndrescu, M., Grădinaru, I., Vágási, S., Bozsó, G., Polgári, M. and Pál-Molnár, E. 2021. High resolution mineralogical characterization of sediments - lake Bolatau-Feredeu (Romania). Carpathian Journal of Earth and Environmental Sciences 16. (1): 199-210. Available at https:// https://doi.org/10.26471/cjees/2021/016/167
Kim, L.H., Choi, E. and Stenstrom, M.K. 2003. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 50. (1): 53-61. https://doi.org/10.1016/S0045-6535(02)00310-7
Kłapyta, P., Zasadni, J., Pociask-Karteczka, J., Gajda, A. and Franczak, P. 2016. Late Glacial and Holocene paleoenvironmental records in the Tatra Mountains, East-Central Europe, based on lake, peat bog and colluvial sedimentary data: a summary review. Quaternary International 415. 126-144. https://doi.org/10.1016/j.quaint.2015.10.049
Konert, M. and Vandenberghe, J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44. 523-535. https://doi.org/10.1046/j.1365-3091.1997.d01-38.x
Last, W.M. and Smol, J.P. (eds.) 2001. Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Dordrecht, NL, Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47669-X
Lu, J.J., Yang, H., Gao, L. and Yu, T.Y. 2005. Spatial variation of P and N in water and sediments of Dianchi Lake, China. Pedosphere 15. (1): 78-83.
Lyell, C. 1830. Principles of Geology. Volume 1. London, J. Murray.
Magyari, E.K., Buczkó, K., Jakab, G., Braun, M., Pál, Z. and Karátson, D. 2009. Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains - a multiproxy study of Holocene hydrological changes. Hydrobiologia 631. 29-63. https://doi.org/10.1007/s10750-009-9801-1
Meyers, P.A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34. (2): 261-289. https://doi.org/10.1016/S0146-6380(02)00168-7
Mîndrescu, M., Cristea, A.I. and Florescu, G. 2010. Water quality and ecology of the Iezer and Bolătău lakes. Lakes, reservoirs and ponds 4. (2): 117-130.
Mîndrescu, M., Cristea, A.I., Hutchinson, S.M., Florescu, G. and Feurdean, A. 2013. Interdisciplinary investigations of the first reported laminated lacustrine sediments in Romania. Quaternary International 239. 219-230. https://doi.org/10.1016/j.quaint.2012.08.2105
Mîndrescu, M., Németh, A., Grădinaru, I., Bihari, Á., Németh, T., Fekete, J., Bozsó, G. and Kern, Z. 2016. Bolătău sediment record - Chronology, microsedimentology and potential for a high resolution multimillennial paleoenvironmental proxy archive. Quaternary Geochronology 32. 11-22. https://doi.org/10.1016/j.quageo.2015.10.007
Nesbitt, H.W. and Young, G.M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299. 715-717. https://doi.org/10.1038/299715a0
Raiswell, R. and Berner, R.A. 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science 285. (8): 710-724. https://doi.org/10.2475/ajs.285.8.710
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. and Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55. (4): 1869-1887. https://doi.org/10.2458/azu_js_rc.55.16947
Schramm, R. 2012. X-Ray Fluorescence Analysis: Practical and Easy. Bedburg-Hau, Germany, Fluxana GmbH.
Varga, Gy., Gresina, F., Újvári, G., Kovács, J. and Szalai, Z. 2019. On the reliability and comparability of laser diffraction grain size measurements of paleosols in loess records. Sedimentary Geology 389. 42-53. https://doi.org/10.1016/j.sedgeo.2019.05.011
Vogt, T. 1927. Sulitjelmafeltets geologi og petrografi. Norges Geologiske Undersokelse 121. 1-560.
Werne, J.P., Lyons, T.W., Hollander, D.J., Formolo, M.J. and Damsté, J.S.S. 2003. Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. Chemical Geology 195. (1-4): 159-179. https://doi.org/10.1016/S0009-2541(02)00393-5
Wildung, R.E., Schmidt, R.L. and Routson, R.C. 1977. The phosphorus status of eutrophic lake sediments as related to changes in limnological conditions - phosphorus mineral components. Journal of Environmental Quality 6. (1): 100-104. https://doi.org/10.2134/jeq1977.00472425000600010022x
Wohlfarth, B.G., Hannon, G., Feurdean, A., Ghergari, L., Onac, B.P. and Possnert, G. 2001. Reconstruction of climatic and environmental changes in NW Romania during the early part of the last deglaciation (15,000-13,600 cal years BP). Quaternary Science Reviews 20. 1897-1914. https://doi.org/10.1016/S0277-3791(01)00014-2
Zheng, Y., Zhou, W., Meyers, P.A. and Xie, S. 2007. Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in West China. Organic Geochemistry 38. (11): 1927-1940. https://doi.org/10.1016/j.orggeochem.2007.06.012
Zhu, L., Wu, Y., Wang, J., Lin, X., Ju, J., Xie, M., Li, M., Mäusbacher, R., Schwalb, A. and Daut, G. 2008. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene 18. (5): 831-839. https://doi.org/10.1177/0959683608091801
Copyright (c) 2021 Máté Karlik, Anna Vancsik, Zoltán Szalai, Marcel Mîndrescu, Ionela Grădinaru, Sándor Vágási, Gábor Bozsó, József Fekete
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.