Green infrastructure-based hydrological modelling, a comparison between different urban districts, through the case of Szeged, Hungary
Abstract
Because of the climate uncertainties caused by climate change and the growing urban areas, today’s cities face new environmental challenges. The impervious artificial elements change the urban water cycle. Urban districts with inadequate water infrastructure and treatment can be a major source of environmental risks, like urban flash floods. Modern cities need to be prepared for the changing environment in a sustainable way, which can be realised with the help of green infrastructure. The primary role of the green infrastructure is mitigation, such as surface runoff reduction and retainment. The aim of our research is to examine urban district scale data about the role of green infrastructure in urban water management. Hydrological models can provide adequate data about the surface runoff, infiltration and the mitigating effect of vegetation (interception and evaporation). We compared two significantly different urban districts (downtown and housing estate area), based on land cover and vegetation data. The analysis of the districts of Szeged (Hungary) suggests that the vegetation can significantly contribute to the reduction of surface runoff. Differences between these urban districts can be quantified, thus, these data can serve as a basis for urban water management planning processes.
References
Balázs, B., Unger, J., Gál, T., Sümeghy, Z., Geiger, J. and Szegedi, S. 2009. Simulation of the mean urban heat island using 2D surface parameters: empirical modelling, verification and extension. Meteorological Applications 16. (3): 275-287. https://doi.org/10.1002/met.116
Bartholy, J., Pongrácz, R. and Pieczka, I. 2014. How the climate will change in this century? Hungarian Geographical Bulletin 63. (1): 55-67. https://doi.org/10.15201/hungeobull.63.1.5
Bautista, D. and Peña-Guzmán, C. 2019. Simulating the hydrological impact of green roof use and an increase in green areas in an urban catchment with i-Tree: A case study with the town of Fontibón in Bogotá, Colombia. Resources 8. (2): 68. https://doi.org/10.3390/resources8020068
Berland, A., Shiflett, S.A., Shuster, W.D., Garmestani, A.S., Goddard, H.C., Herrmann, D.L. and Hoptonc, M.E. 2017. The role of trees in urban stormwater management. Landscape and Urban Planning 162. 167-177. https://doi.org/10.1016/j.landurbplan.2017.02.017
Brears, R.C. 2018. Blue and Green Cities: The Role of Blue-green Infrastructure in Managing Urban Water Resources. London, Palgrave Macmillan. https://doi.org/10.1057/978-1-137-59258-3
Brun, S.E. and Band, L.E. 2000. Simulating runoff behaviour in an urbanising watershed. Computers, Environment and Urban Systems 24. (1): 5-22. https://doi.org/10.1016/S0198-9715(99)00040-X
Chatzimentor, A., Apostolopoulou, E. and Mazaris, A.D. 2020. A review of green infrastructure research in Europe: Challenges and opportunities. Landscape and Urban Planning 198. 103775. https://doi.org/10.1016/j.landurbplan.2020.103775
Coville, R., Endreny, T. and Nowak, D.J. 2020. Modelling the impact of urban trees on hydrology. In Forest-Water Interactions. Ecological Studies (Analysis and Synthesis). Eds.: Levia, D.F., Carlyle-Moses, D.E., Iida, S., Michalzik, B., Nanko, K. and Tischer, A., Cham, Switzerland. Springer, 459-488.
Dietz, M.E. 2007. Low impact development practices: A review of current research and recommendations for future directions. Water, Air, and Soil Pollution 186. 351-363. https://doi.org/10.1007/s11270-007-9484-z
Fejes, I. 2014. A talaj- és talajvízrendszer komplex környezeti szempontú értékelése városi területen, Szeged példáján (The complex environmental evaluation of the soil-groundwater system in urban areas: The example of Szeged). PhD thesis, Department of Physical Geography and Geoinformatics. Szeged, Hungary. University of Szeged.
FISRWG 1998. Stream Corridor Restoration: Principles, Processes, and Practices. Federal Interagency Stream Restoration Working Group (FISRWG). GPO Item No. 0120-A; SuDocs No. A 57.6/2:EN 3/PT.653. Washington D.C., USDA.
Fletcher, T.D., Andrieu, H. and Hamel P. 2013. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources 51. 261-279. Doi: 10.1016/j.advwatres.2012.09.001 https://doi.org/10.1016/j.advwatres.2012.09.001
Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.L., Mikkelsen, P.S., Rivard, G., Uhl, M., Dagenais, D. and Viklander, M. 2015. SUDS, LID, BMPs, WSUD and more - The evolution and application of terminology surrounding urban drainage. Urban Water Journal 12. (7): 525-542. https://doi.org/10.1080/1573062X.2014.916314
Frantzeskaki, N. 2019. Seven lessons for planning nature-based solutions in cities. Environmental Science and Policy 93. 101-111. https://doi.org/10.1016/j.envsci.2018.12.033
Haase, D. 2015. Reflections about blue ecosystem services in cities. Sustainability of Water Quality and Ecology 5. 77-83. https://doi.org/10.1016/j.swaqe.2015.02.003
Holder, C.D. and Gibbes, C. 2016. Influence of leaf and canopy characteristics on rainfall interception and urban hydrology. Hydrological Sciences Journal 62. (2): 182-190. https://doi.org/10.1080/02626667.2016.1217414
Huang, J.Y., Black, T.A., Jassal, R.S. and Les Lavkulich, L.M. 2017. Modelling rainfall interception by urban trees. Canadian Water Resources Journal 42. (4): 336-348. https://doi.org/10.1080/07011784.2017.1375865
Jacobson, C.R. 2011. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of Environmental Management 92. (6): 1438-1448. https://doi.org/10.1016/j.jenvman.2011.01.018
Jayasooriya, V.M. and Ng, A.W.M. 2014. Tools for modelling of stormwater management and economics of green infrastructure practices: A review. Water, Air, and Soil Pollution 225. 2055. https://doi.org/10.1007/s11270-014-2055-1
Jha, A.K., Bloch, R. and Lamond, J. 2012. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century. Washington D.C., World Bank. https://doi.org/10.1596/978-0-8213-8866-2
Kjeldsen, T.R., Miller, J.D. and Packman, J.C. 2013. Modelling design flood hydrographs in catchments with mixed urban and rural land cover. Hydrology Research 44. (6): 1040-1057. https://doi.org/10.2166/nh.2013.158
Kolcsár, R.A., Csikós, N. and Szilassi, P. 2021. Testing the limitations of buffer zones and Urban atlas population data in urban green space provision analyses through the case study of Szeged, Hungary. Urban Forestry and Urban Greening 57. 126942. https://doi.org/10.1016/j.ufug.2020.126942
KSH 2013. 2011. évi népszámlálás (Census 2011). Budapest, Központi Statisztikai Hivatal.
Kuehler, E., Hathaway, J. and Tirpak, A. 2017. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 10: e1813. https://doi.org/10.1002/eco.1813
Lechner Knowledge Center (former Institute of Geodesy, Cartography and Remote Sensing), 2015. Budapest.
Li, C., Liu, M., Hu, Y., Shi, T., Qu, X. and Walter, M.T. 2018. Effects of urbanisation on direct runoff characteristics in urban functional zones. Science of the Total Environment 643. 301-311. https://doi.org/10.1016/j.scitotenv.2018.06.211
Liu, C.M., Chen, J.W., Hsieh, Y.S., Liou, M.L. and Chen, T.H. 2015. Build sponge eco-cities to adapt hydroclimatic hazards. In Handbook of Climate Change Adaptation. Ed.: Leal Filho, W., Berlin- Heidelberg, Springer, 1997-2009. https://doi.org/10.1007/978-3-642-38670-1_69
Lu, W. and Qin, X. 2020. Integrated framework for assessing climate change impact on extreme rainfall and the urban drainage system. Hydrology Research 51. (1): 77-89. https://doi.org/10.2166/nh.2019.233
Mak, C., Scholz, M. and James, P. 2017. Sustainable drainage system site assessment method using urban ecosystem services. Urban Ecosystem 20. 293-307. https://doi.org/10.1007/s11252-016-0593-6
Mejía, A.I. and Moglen, G.E. 2010. Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanising basin. Hydrological Processes 24. 3359-3373. https://doi.org/10.1002/hyp.7755
Mezősi, G., Blanka, V., Ladányi, Zs., Bata, T., Urdea, T., Frank, A. and Meyer, B.C. 2016. Expected midand long-term changes in drought hazard for the south-eastern Carpathian Basin. Carpathian Journal of Earth and Environmental Sciences 11. (2): 355-366.
Nowak, D.J., Maco, S. and Binkley, M. 2018. i-Tree: Global tools to assess tree benefits and risks to improve forest management. Arbor Consultant 51. (4): 10-13.
Palla, A. and Gnecco, I. 2015. Hydrologic modelling of Low Impact Development systems at the urban catchment scale. Journal of Hydrology 528. 361-368. https://doi.org/10.1016/j.jhydrol.2015.06.050
Pappalardo, V., La Rosa, D., Campisano, A. and La Greca, P. 2017. The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study. Ecosystem Services 26. Part B. 345-354. https://doi.org/10.1016/j.ecoser.2017.04.015
Prudencio, L. and Null, S.E. 2018. Stormwater management and ecosystem services: a review. Environmental Research Letters 13. 033002. https://doi.org/10.1088/1748-9326/aaa81a
Rodriguez, F., Andrieu, H. and Morena, F. 2008. A distributed hydrological model for urbanised areas - Model development and application to case studies. Journal of Hydrology 351. (3-4): 268-287. https://doi.org/10.1016/j.jhydrol.2007.12.007
Romnée, A., Evrard, A. and Trachte, S. 2015. Methodology for a stormwater sensitive urban watershed design. Journal of Hydrology 530. 87-102. https://doi.org/10.1016/j.jhydrol.2015.09.054
Rötzer, T. and Chmielewski, F.M. 2001. Phenological maps of Europe. Climate Research 18. (3): 249-257. https://doi.org/10.3354/cr018249
Sábitz, J., Pongrácz, R. and Bartholy, J. 2014. Estimated changes of drought tendency in the Carpathian Basin. Hungarian Geographical Bulletin 63. (4): 365-378. https://doi.org/10.15201/hungeobull.63.4.1
Salvadore, E., Bronders, J. and Batelaan, O. 2015. Hydrological modelling of urbanised catchments: A review and future directions. Journal of Hydrology 529. Part 1. 62-81. https://doi.org/10.1016/j.jhydrol.2015.06.028
Samouei, S. and Özger, M. 2020. Evaluating the performance of low impact development practices in urban runoff mitigation through distributed and combined implementation. Journal of Hydroinformatics 22. (6): 1506-1520. https://doi.org/10.2166/hydro.2020.054
Schmitt, T.G., Thomas, M. and Ettrich, N. 2004. Analysis and modeling of flooding in urban drainage systems. Journal of Hydrology 299. (3-4): 300-311. https://doi.org/10.1016/S0022-1694(04)00374-9
Shuster, W.D., Bonta, J., Thurston, H., Warnemuende, E. and Smith, D.R. 2005. Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal 2. (4): 263-275. https://doi.org/10.1080/15730620500386529
Shuttleworth, W.J. 1992. Evaporation. In Handbook of hydrology. Ed.: Maidment, D.R., New York, NY, McGraw Hill, 4.1-4.53.
Song, P., Guo, J., Xu, E., Mayer, A.L., Liu, C., Huang, J., Tian, G. and Kim, G. 2020. Hydrological effects of urban green space on stormwater runoff reduction in Luohe, China. Sustainability 12. (16): 6599. https://doi.org/10.3390/su12166599
Thorndahl, S., Johansen, C. and Schaarup-Jensen, K. 2006. Assessment of runoff contributing catchment areas in rainfall runoff modelling. Water Science and Technology 54. (6-7): 49-56. https://doi.org/10.2166/wst.2006.621
UN 2013. World Population Prospects: The 2012 Revision, Highlights and Advance Tables, Report ESA/P/WP.228, New York, United Nations, Department of Economic and Social Affairs, Population Division.
Unger, J., Lelovics, E. and Gál, T. 2014. Local climate zone mapping using GIS methods in Szeged. Hungarian Geographical Bulletin 63. (1): 29-41. https://doi.org/10.15201/hungeobull.63.1.3
Unger, J. and Gál, T. 2017. Városklíma - Szeged városklimatológiai vonatkozásai (Urban climate - Urban climatological aspects of Szeged). Szeged, GeoLitera.
Van de Ven, F.H.M. 1990. Water balances of urban areas. Hydrological processes and water management in urban areas. International Association of Hydrological Sciences Publication 198. 21-32.
Wang, J., Endreny, T.A. and Nowak, D.J. 2008. Mechanistic simulation of tree effects in an urban water balance model. Journal of the American Water Resources Association 44. (1): 75-84. https://doi.org/10.1111/j.1752-1688.2007.00139.x
Wilby, R.L. 2019. A global hydrology research agenda fit for the 2030s. Hydrology Research 50. (6): 1464-1480. https://doi.org/10.2166/nh.2019.100
Xiao, Q. and McPherson, E.G. 2002. Rainfall interception by Santa Monica's municipal urban forest. Urban Ecosystems 6. 291-302. https://doi.org/10.1023/B:UECO.0000004828.05143.67
Zhang, N., Luo, Y.J., Chen, X.Y., Li, Q., Jing, Y.C., Wang, X. and Feng, C.H. 2018. Understanding the effects of composition and configuration of land covers on surface runoff in a highly urbanised area. Ecological Engineering 125. 11-25. https://doi.org/10.1016/j.ecoleng.2018.10.008
Other sources:
Hirabayashi, S. and Endreny, T.A. 2016. Surface and Upper Weather Pre-processor for i-Tree Eco and Hydro. Manuscript, 1-19. Available at https://www.itreetools.org/documents/52/Surface_weather[...]
i-Tree 2016. i-Tree Hydro User's Manual v5.1. Available at https://www.itreetools.org/documents/241/Hydro_Manual_v5.1.pdf
Copyright (c) 2021 Ákos Kristóf Csete, Ágnes Gulyás
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.