The evaluation and application of an urban land cover map with image data fusion and laboratory measurements
Abstract
High spatial and spectral resolution aerial images make it possible to develop detailed and large-scale (about 1:5,000) urban land cover maps. The main objectives of this study are (1) to evaluate the correlation between laboratory and hyperspectral image spectra to select proper bands and training samples for classification; (2) to develop a classification process to combine the spectral and spatial information of multispectral and hyperspectral images and make an urban land cover map for the study area in Szeged, Hungary; and (3) to examine the effect of different roof types on the modification of surface temperature. Reference materials were collected from the training area and their spectral characteristics were measured by a laboratory spectrometer. The hyperspectral image and laboratory spectral data between 500-800 nm showed a very strong correlation, the correlation coefficient was 0.99. The urban land cover map was produced by the combination of segmentation procedure and Spectral Angle Mapper (SAM) method using the spatial information derived from multispectral image and the spectral information of the hyperspectral image. Eight land cover classes were identified as impervious surfaces (asphalt, 4 types of tiled roof), water, and green vegetation. The overall accuracy of urban land cover map was 87.9 per cent. According to the results, an accurate large-scale urban land cover map can be generated from the fusion of multispectral and hyperspectral images. We presented that certain roof types have significant effect on surface temperature, which is strongly connected to the urban heat island phenomenon, and influences population health.
References
Al Khudairy, D.H., Caravaggi, I. and Glada, S. 2005. Structural damage assessments from Ikonos data using change detection, object-oriented segmentation, and classification techniques. Photogrammetric Engineering & Remote Sensing 71. (7): 825-837. https://doi.org/10.14358/PERS.71.7.825
Alonzo, M., Bookhagen, B. and Roberts, D. A. 2014. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environment 148. 70-83. https://doi.org/10.1016/j.rse.2014.03.018
Bassani, C., Cavalli, R.M., Cavalcante, F., Cuomo, V., Palombo, A., Pescucci, S. and Pignatti, S. 2007. Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sensing of Environment 109. (3): 361-378. https://doi.org/10.1016/j.rse.2007.01.014
Bitelli, G., Conte, P., Csoknyai, T., Franci, F., Girelli, V.A. and Mandanici, E. 2015. Aerial Thermography for Energetic Modelling of Cities. Remote Sensing 7. (2): 2152-2170. https://doi.org/10.3390/rs70202152
Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65. 2-16. https://doi.org/10.1016/j.isprsjprs.2009.06.004
Chen, C.M., Hepner, G.F. and Forster, R.R. 2003. Fusion of Hyperspectral and radar data using the HIS transformation to enhance urban surface features ISPRS Journal of Photogrammetry and Remote Sensing 58. (1-2): 19-30. https://doi.org/10.1016/S0924-2716(03)00014-5
Chen, Y., Shi, P., Fung, T., Wang, J. and Li, Y. 2007. Object-oriented classification for urban land cover mapping with ASTER imagery. International Journal of Remote Sensing 28. (20): 4645-4651. https://doi.org/10.1080/01431160500444731
Chubey, M.S., Franklin, S.E. and Wulder, M.A. 2006. Object-based analysis of IKONOS-2 imagery for extraction of forest inventory parameters. Photogrammetric Engineering & Remote Sensing 72. (4): 383-394. https://doi.org/10.14358/PERS.72.4.383
Dell'Acqua, F., Gamba, P., Ferrari, A. Palmason, J.A., Benediktsson, J.A. and Arnason, K. 2004. Exploiting spectral and spatial information in hyperspectral urban data with high resolution. IEEE Geoscience and Remote Sensing Letters 1. (4): 322-326. https://doi.org/10.1109/LGRS.2004.837009
ERDAS Field Guide 2013. ERDAS, Inc. Norcross - GA30092-2500 USA 812.
Gál, T., Skarbit, N. and Unger, J. 2016. Urban heat island patterns and their dynamics based on an urban climate measurement network. Hungarian Geographical Bulletin 65. (2): 105-116. https://doi.org/10.15201/hungeobull.65.2.2
Gevaert, C.M., Tang, J., Garcia-Haro, F.J., Suomalainen, J.M. and Kooistra, L. 2014. Combining hyperspectral UAV and multispectral Formosat-2 imagery for precision agriculture applications. In Proceedings WHISPERS 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in remote sensing. Lausanne, Switzerland, 24-26. 06. 2014. https://doi.org/10.1109/WHISPERS.2014.8077607
Goetz, A.F.H. 2009. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment 113. (Supplement 1), 5-16. https://doi.org/10.1016/j.rse.2007.12.014
Greiwe, A. and Ehlers, M. 2005. Combined analysis of hyperspectral and high resolution image data in an object oriented classification approach. In Proceedings of 3rd International Symposium on RemoteSensing and Data Fusion over Urban Areas. Citeseer.
Gusella, L., Adams, B.J., Bitelli, G., Huyck, C.K., Eeri, M. and Mognol, A. 2005. Object-oriented image understanding and post-earthquake damage assessment for the 2003 Bam, Iran, Earthquake. Earthquake Spectra 21. (1): 225-238. https://doi.org/10.1193/1.2098629
Heiden, U., Segl, K., Roessner, S. and Kaufmann, H. 2007. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sensing of Environment 111. (4): 537-552. https://doi.org/10.1016/j.rse.2007.04.008
Henits, L., Mucsi, L. and Liska, C. M. 2017. Monitoring the changes in impervious surface ratio and urban heat island intensity between 1987 and 2011 in Szeged, Hungary. Environmental Monitoring and Assessment 189. (2): 1-13. https://doi.org/10.1007/s10661-017-5779-8
Herbel, I., Croitoru, A.E., Rus, I., Harpa, G.V. and Ciupertea, A.F. 2016. Detection of atmospheric urban heat island through direct measurements in Cluj-Napoca city, Romania. Hungarian Geographical Bulletin 65. (2): 117-128. https://doi.org/10.15201/hungeobull.65.2.3
Herold, M. and Roberts, D.A. 2010. The Spectral Dimension in Urban Remote Sensing. In Remote Sensing of Urban and Suburban Areas, Remote Sensing and Digital Image Processing. Eds.: Rashed, T. and Jürgens, C., Dordrecht, Springer, 47-66. https://doi.org/10.1007/978-1-4020-4385-7_4
Jay, S. and Guillaume, M. 2014. A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data. Remote Sensing of Environment 147, 121-132. https://doi.org/10.1016/j.rse.2014.01.026
Jin, H. and Mountrakis, G. 2013. Integration of urban growth modelling products with image-based urban change analysis. International Journal of Remote Sensing 34. (15): 5468-5486. https://doi.org/10.1080/01431161.2013.791760
Jung, A., Götze, C. and Glässer, C. 2012. Overview of experimental setups in spectroscopic laboratory measurements - the SpecTour Project. Photogrammetrie-Fernerkundung-Geoinformation 4. 433-442. https://doi.org/10.1127/1432-8364/2012/0129
Kolokotsa, D., Santamouris, M., Zerefos, S.C. 2013. Green and cool roofs' urban heat island mitigation potential in European climates for office buildings under free floating conditions Solar Energy 95. 118-130. https://doi.org/10.1016/j.solener.2013.06.001
Kruse, F.A. 2012. Mapping surface mineralogy using imaging spectrometry. Geomorphology 137. 41-56. https://doi.org/10.1016/j.geomorph.2010.09.032
Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J. and Goetz, A.F.H. 1993. The Spectral Image Processing System (SIPS) Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment 44. 145-163. https://doi.org/10.1016/0034-4257(93)90013-N
Lagacherie, P., Baret, F., Feret, J.B., Netto, J. M. and Robbez-Masson, J.M. 2008. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environment 112. (3): 825-835. https://doi.org/10.1016/j.rse.2007.06.014
Lechner, L. 1891. Szeged újjáépítése. (Rebuilding Szeged) Reprint edition in 2000 (in Hungarian).
Mucsi, L. 1996. Urban land use investigation with GIS and RS methods. Acta Universitatis Szegediensis Acta Geographica 25. 111-119.
Mucsi, L., Tobak, Z., van Leeuwen, B., Szatmári, J. and Kovács, F. 2008. Analyses of spatial and temporal changes of the urban environment using multi- and hyperspectral data. In Remote Sensing - New Challenges of High Resolution: proceedings of the EARSeL Joint Workshop. Ed.: Jürgens, C., Bochum, Geographischen Instituts der Ruhr-Universität Bochum, 275-286.
Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C. and Trianni, G. 2009. Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment 113. 110-122. https://doi.org/10.1016/j.rse.2007.07.028
Räsänen, A., Rusanen, A., Kuitunen, M. and Lensu, A. 2013. What makes segmentation good? A case study in boreal forest habitat mapping. International Journal of Remote Sensing 34. 8603-8627. https://doi.org/10.1080/01431161.2013.845318
Roman, K.K., O'Brien, T., Alvey, J.B., Woo, O.J. 2016. Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities. Energy 96. 103-117. https://doi.org/10.1016/j.energy.2015.11.082
Segl, K., Roessner, S., Heiden, U. and Kaufmann, H. 2003. Fusion of spectral and shape features for identification of urban surface cover types using reflective and thermal hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing 58. (1-2): 99-112. https://doi.org/10.1016/S0924-2716(03)00020-0
Small, C. 2003. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sensing of Environment 88. (1-2): 170-186. https://doi.org/10.1016/j.rse.2003.04.008
Szabó, Sz., Burai, P., Kovács, Z., Szabó, Gy., Kerényi, A., Fazekas, I., Paládi, M., Buday, T. and Szabó, G. 2014. Testing of algorithms for the identification of asbestos roofing based on hyperspectral data. Environmental Engineering and Management Journal 143. (11): 2875-2880. https://doi.org/10.30638/eemj.2014.323
Takács, Á., Kovács, A., Kiss, M., Gulyás, Á., and Kántor, N. 2016. Study on the transmissivity characteristics of urban trees in Szeged, Hungary. Hungarian Geographical Bulletin 65. (2): 155-167. https://doi.org/10.15201/hungeobull.65.2.6
Unger, J., Gál, T., Rakonczai, J., Mucsi, L., Szatmári, J., Tobak, Z., van Leeuwen, B. and Fiala, K. 2010. Modeling of the urban heat island pattern based on the relationship between surface and air temperatures. Idojárás / Quarterly Journal of the Hungarian Meteorological Service 14. 287-302.
Van der Meer, F., de Jong, S.M. and Bakker, W. 2001. Imaging Spectrometry: Basic analytical techniques. In. Imaging Spectrometry: Basic Principles and Prospective Applications. Eds.: van der Meer, F., Freek, D. and Jong, S.M., Dordrecht, Kluwer Academic Publishers, 17-61. https://doi.org/10.1007/0-306-47578-2_2
Vane, G. and Goetz, A.F.H. 1988. Terrestrial imaging spectroscopy. Remote Sensing of Environment 24. 1-29. https://doi.org/10.1016/0034-4257(88)90003-X
World Urbanization Prospects. The 2014 Revision, Highlights, (ST/ESA/SER.A/352) United Nations, Department of Economic and Social Affairs, Population Division. 2014, 27.
Wu, B., Chen, C., Kechadi, T.M. and Sun, L. 2013. A comparative evaluation of filter-based feature selection methods for hyper-spectral band selection. International Journal of Remote Sensing 34. (22): 7974-7990. https://doi.org/10.1080/01431161.2013.827815
Zhou,W., Qian,Q., Li,X., Li, W. and Han, L. 2014. Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape Ecology 29. (1): 153-167. https://doi.org/10.1007/s10980-013-9950-5
Copyright (c) 2017 László Mucsi, Csilla Mariann Liska, László Henits, Zalán Tobak, Bálint Csendes, László Nagy
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.