New opportunities for experiments in fluvial geomorphology: the flume PTETHYS

  • Ervin Pirkhoffer Institute of Geography, University of Pécs, Hungary
  • Ákos Halmai Institute of Geography, University of Pécs, Hungary
  • Szabolcs Czigány Institute of Geography, University of Pécs, Hungary
  • Titusz Bugya Institute of Geography, University of Pécs, Hungary
  • Andor Rábay Institute of Geography, University of Pécs, Hungary
  • Tamás Bötkös Institute of Geography, University of Pécs, Hungary
  • Gábor Nagy Institute of Geography, University of Pécs, Hungary
  • Bettina Balassa Institute of Geography, University of Pécs, Hungary
  • Ildikó Jancskárné Anweiler Pollack Mihály Faculty of Engeneering and Information Technology, University of Pécs, Hungary
  • Dénes Lóczy Institute of Geography, University of Pécs, Hungary

Abstract

In recent decades both physical modelling and computer simulation of fluvial processes has undergone rapid progress. The paper summarizes the achievements of both international and Hungarian laboratory experiments in fluvial geomorphology. Then the new automatically governed flume facility, called PTETHYS (Project for Tectonical and Hydrological Simulations) recently set up at the Faculty of Natural Sciences, University of Pécs, is presented and some of the new opportunities it offers for research in fluvial geomorphology are briefly demonstrated: the identification of geomorphological thresholds; modelling the generation of (flash) floods and its application for the reconstruction of the architectural elements and geomorphic evolution of floodplains. Some important channel parameters can be quantitatively investigated: channel cross-section change, amount of bedload influencing braiding, current velocity distribution etc. The novelty of the facility is the easy adjustment of channel slope and continuous experimenting (no need for interruption as in the case of laserscanned experiments). The scaling necessary for quantitative analyses is also tackled.

References

Ashworth, P.J., Best, J.L. and Jones, M. 2004. Relationship between sediment supplym and avulsion frequency in braided rivers. Geology 32. 21-24. https://doi.org/10.1130/G19919.1

Ashworth, P.J., Best, J.L., Leddy, J.O. and& Geehan, G.W. 1994. The physical modelling of braided rivers and deposition of fine-grained sediment. In: Kirkby, M.J. (ed.), Process Models and Theoretical Geomorphology. Ed. Kirkby, M.J., Chichester, Wiley, Chichester. 115-139.

Bathurst, J.C., Benson I.A., Valentine, E.M. and Nalluri, C. 2002. Overbank sediment deposition patterns for straight and meandering flume channels. Earth Surface Processes and Landforms 27. 659-665. https://doi.org/10.1002/esp.346

Bertoldi, W., Tubino, M. and Zolezzi, G. 2001. Laboratory measurements on channel bifurcations. Trento, University of Trento, Trento. 10 p.

Brotherton, D.I. 1979. On the origin and characteristics of river channel patterns. Journal of Hydrology 44. 211-230. https://doi.org/10.1016/0022-1694(79)90132-X

Czigány, Sz., Pirkhoffer, E., Nagyváradi, L., Hegedűs, P. and Geresdi, I. 2011. Rapid screening of flash-flood-affected watersheds in Hungary. Zeitschrift für Geomorphologie 55. Supplementary Issue 1. 1-13. https://doi.org/10.1127/0372-8854/2011/0055S1-0033

Fejér, L. 2001. Vizeink krónikája (Chronicle of our waters). Budapest, Vízügyi Múzeum, Levéltára, Budapest. 307 p. (in Hungarian)

Ferguson, R.I. 1987. Hydraulic and sedimentary controls of channel pattern. In: River channels: environment and process. Ed. Richards, K.S. (ed.),: River channels: environment and process. Oxford, Blackwell, Oxford. 125-158.

Forster, J.E. 1971. History and description of the Mississippi Basin Model. MRM Report 1-6. 115-126.

Fraselle, Q., Bousmar, D. and Zech, Y. 2010. Experimental investigation of sediment deposition on floodplains. In: River Flow 2010. Eds. Dittrich, A., Koll, Ka., Aberle, J. and Geisenhainer, P., (eds): River Flow 2010. 8-10 September 2010, Braunschweig, Germany. Bundesanstalt für Wasserbau, Karlsruhe,. 823-830.

Friedkin, J.F. 1945. A laboratory study of meandering of alluvial streams. Vicksburg, MS., US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS. 40 p.

Kádár, L. 1954. Az eróziós folyamatok dialektikája (Dialectics of erosion processes). Közlemények a Debreceni Kossuth Lajos Tudományegyetem Földrajzi Intézetéből (Papers of the Institute of Geography, Kossuth Lajos University of Debrecen) 18. 1-20. (in Hungarian)

Kádár, L. 1955. Das Problems des Flussmäander. Közlemények a Debreceni Kossuth Lajos Tudományegyetem Földrajzi Intézetéből (Papers of the Institute of Geography, Kossuth Lajos University of Debrecen) 21. 1-24.

Kádár, L. 1969. Specific types of fluvial landforms related to the different manners of load-transport. Acta Geographica Debrecina 8-9. 115-178.

Kleinhans, M.G. 2010. Sorting out river channel patterns. Progress in Physical Geography 34. 287-326. https://doi.org/10.1177/0309133310365300

Kleinhans, M.G., Van Dijk, W.M., Van de Lageweg, W.I., Hoendervoogt, R., Markies, H. and Schuurman, F. 2010. From nature to lab: scaling self-formed meandering and braided rivers. In River Flow 2010. Eds. Dittrich, A., Koll, Ka., Aberle, J. and Geisenhainer, P., (eds): River Flow 2010. 8-10 September 2010, Braunschweig. Vol. 2. Karlsruhe, Bundesanstalt für Wasserbau, Karlsruhe. 1001-1010.

Kornis A.-né -Akantisz, Zs. 1977. Mozgó medrű folyószabályozási kisminta-kísérletek (Model experiments fro river regulation with moveable bed). Hidrológiai Közlöny 12. 546-553. (in Hungarian)

Leopold, L.B. and Wolman, M.G. 1957. River channel patterns: braided, meandering, and straight. US Geological Survey Professional Paper 282-B. Washington, D.C. https://doi.org/10.3133/pp282B

Lóczy, D., Kis, É. and Schweitzer, F. 2009. Local flood hazards assessed from channel morphometry along the Tisza River in Hungary. Geomorphology 113. 200-209. https://doi.org/10.1016/j.geomorph.2009.03.013

Miall, A.D. 1996. The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology. New York, Springer, New York . 582 p.

Miller, J.R. 1991. Development of anastomosing channels in south-central Indiana. Geomorphology 4. 221-229. https://doi.org/10.1016/0169-555X(91)90005-U

Pannonhalmi, M. 2004. A nicki kisminta kísérleti telep története, jelenlegi állapota. (History and presend-day state of the hydraulic model at Nick). Presentation at the Annual Meeting of the Hungarian Hydrological Society, Győr, 18 May 2004. (in Hungarian)

Paola, C., Straub, K. M., Mohrig, D. C. and Reinhardt, L. 2009. The "unreasonable effectiveness" of stratigraphic and geomorphic experiments. Earth-Science Reviews 97. 1-43. https://doi.org/10.1016/j.earscirev.2009.05.003

Parker, G. 1976. On the cause and characteristic scales of meandering and braiding in rivers. Journal of Fluid Mechanics 76. (3): 457-480. https://doi.org/10.1017/S0022112076000748

Pizzuto, J.E. 1987. Sediment diffusion during overbank flows. Sedimentology 34. pp 301-317. https://doi.org/10.1111/j.1365-3091.1987.tb00779.x

Püspöki, Z., Szabó, Sz., Demeter, G., Szalai, K., McIntosh, R. W., Vincze, I., Németh, G. and Kovács, I. 2005. The statistical relationship between unconfined compressive strengths and the frequency distributions of slope gradients: A case study in northern Hungary. Geomorphology 71. (3-4): 424-436. https://doi.org/10.1016/j.geomorph.2005.04.011

Schumm, S.A. 1973. Geomorphic threshold and complex response of drainage systems. In: Fluvial geomorphology. Binghampton Publications in Geomorphology 3. Ed. Morisawa, M. (ed.): Fluvial geomorphology. Binghampton Publications in Geomorphology 3. 299-310.

Schumm, S.A. and Khan, H.R. 1972. Experimental study of channel patterns. Geological Society of America Bulletin 83. 1755-1770. https://doi.org/10.1130/0016-7606(1972)83[1755:ESOCP]2.0.CO;2

Sellin, R.H.J., Bryant, T.B. and Loveless, J.H. 2003. An improved method for roughening floodplains on physical river models. Journal of Hydraulic Research 41. (1): 3-14. https://doi.org/10.1080/00221680309499924

Sipos, Gy. and Kiss, T. 2008. A medermintázatok értelmezése Kádár László kutatásainak fényében (Explanations of channel patterns in the light of László Kádár's investigations). In: Szabó, J. and Demeter, G. (eds): Geographia generalis et specialis. Eds. Szabó, J. and Demeter, G. Debrecen, Kossuth Egyetemi Kiadó, Debrecen. 49-54. (in Hungarian)

SZITE 2007. Javaslat a Szigetköz-Csallóközi hullámtéri mellékágrendszer többcélú rehabilitációjára (Proposal for the multi-purpose rehabilitation of the Szigetköz-Csallóköz by-channel system in the active floodplain). Szigetközi Természetvédelmi Egyesület (Szigetköz Association for Nature Conservation), 28 p. (in Hungarian)

van de Lageweg, W. 2013. Morphodynamics and sedimentary architecture of meandering rivers. PhD Thesis. Utrecht, Utrecht University, Faculty of Geosciences, Department of Physical Geography, Utrecht. 159 p.

van Dijk, W.M., van de Lageweg, W.I. and Kleinhans, M.G. 2012. Experimental meandering river with chute cutoffs. Journal of Geophysical Research 117. F03023 https://doi.org/10.1029/2011JF002314

van Dijk, W.M., van der Lageweg, W. and Kleinhans, M.G. 2013. Formation of a cohesive floodplain in a dynamic experimental meandering river. Earth Surface Processes and Landforms 38. (13): . 1550-1565. https://doi.org/10.1002/esp.3400

Published
2014-12-03
How to Cite
PirkhofferE., Halmai Ákos, CzigányS., BugyaT., RábayA., BötkösT., NagyG., BalassaB., Jancskárné AnweilerI., & LóczyD. (2014). New opportunities for experiments in fluvial geomorphology: the flume PTETHYS. Hungarian Geographical Bulletin, 63(4), 425-436. https://doi.org/10.15201/hungeobull.63.4.4
Section
Articles