Crop growth, carbon sequestration and soil erosion in an organic vineyard of the Villány Wine District, Southwest Hungary

  • József Dezső Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Dénes Lóczy Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Marietta Rezsek Doctoral School of Earth Sciences, University of Pécs, Pécs, Hungary https://orcid.org/0000-0003-4303-3323
  • Roman Hüppi Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, Swiss Institute of Technology (ETH Zürich), Zürich, Switzerland https://orcid.org/0000-0001-8815-7835
  • János Werner Gere Attila Winery, Villány, Hungary
  • László Horváth Greengrass Atmospheric Environment Expert Ltd, Érd, Hungary https://orcid.org/0000-0001-5977-288X
Keywords: crop diversification, organic vineyard, phenometry, Leaf Area Index, C/N ratio, carbon sequestration, biomass, image analysis, soil erosion

Abstract

A more resilient adaptation to changing climate calls for crop diversification in vineyards, too. As a contribution to the H2020 collaborative project of the European Union, called Diverfarming, and part of the agroecological experiments during 2018 and 2019, grapevine biomass growth was monitored in connection with carbon storage types in soil and in the deposits removed by soil erosion. Phenometry was carried out interpreting segmented images to follow changes in biomass. It was found that crop growth could be best described by the Richards growth function. The distinction between grapevine and intercrop growth, however, requires further refinement in image analysis. In the laboratory TOC and Ntotal were measured for both the soil and the plant organs as well as for the eroded sediments. Greenhouse gas emissions and photosynthesis were monitored. Looking at the change of Leaf Area Index (LAI) over the growing period, image analysis pointed out the role of cut shoots from pruning in the C and N cycles. Maximum leaf area (at ripening) for guyot cultivation technique was extimated at 7,840 m2 ha-1. Soil loss by erosion was established by sediment traps at the end of vinestock rows. The grain size distribution analysis led to the remarkable result that as erosion proceeded, the ratio of the sand fraction increased but remained within the range for the textural class of loam. Organic matter contents grew to 38 g kg-1. The rate of soil erosion is higher in ploughed than in grassed interrows by orders of magnitude.

References

Agüera Buendía, E. and de la Haba Hermida, P. 2019. Carbon and nitrogen in leaves. In Handbook of Plant and Soil Analysis for Agricultural Systems. Eds.: Álvaro-Fuentes, J., Thiele-Bruhn, S., Lóczy, D. and Zornoza, R., Cartagena, RAI Universidad Politécnica de Cartagena (UPTC), 41-42.

Al-Saddik, H., Simon, J.C. and Cointault, F. 2019. Assessment of the optimal spectral bands for designing a sensor for vineyard disease detection: the case of 'Flavescence dorée'. Precision Agriculture 20. 398-422. https://doi.org/10.1007/s11119-018-9594-1

Arnó, J., Del Moral, I., Escolà, A., Vallès, J.M., Calveras, J.L., Company, J., Masip, J., Sanz, R., Palacín, J. and Rosell-Polo, J.R. 2012. Mapping the Leaf Area Index in vineyard using a ground-based LiDAR scanner. Precision Agriculture 14. (3): 290-306. https://doi.org/10.1007/s11119-012-9295-0

Badr, G., Hoogenboom, G., Davenport, J. and Smithyman, J. 2015. Estimating growing season length using vegetation indices based on remote sensing: A case study for vineyards in Washington State. Transactions of the ASABE 58. (3): 551-564. https://doi.org/10.13031/trans.58.10845

Baumgartner, K., Steenwerth, K. and Veilleux, L. 2009. Effects of organic and conventional practices on weed control in a perennial cropping system. Weed Science 55: 352-358. https://doi.org/10.1614/WS-06-171

Bekkers, T. 2011. Weed control options for commercial organic vineyards. Wine and Viticulture Journal 26. (4): 62-64.

Cambardella, C.A. and Elliot, E.T. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56. 777- 783. https://doi.org/10.2136/sssaj1992.03615995005600030017x

Castellarin, S.D, Matthews, M., Gaspero, G. and Gambetta, G. 2007. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227. 101-112. https://doi.org/10.1007/s00425-007-0598-8

Celette, F., Gaudin, R. and Gary, C. 2008. Spatial and temporal changes to the water regime of Mediterranean vineyard due to the adoption of cover cropping. European Journal of Agronomy 29. 153-162. https://doi.org/10.1016/j.eja.2008.04.007

Coll, P., Le Cadre, E., Blanchart, E., Hinsinger, P. and Villenave, C. 2011. Organic viticulture and soil quality: A long-term study in Southern France. Applied Soil Ecology 50. 37-44. https://doi.org/10.1016/j.apsoil.2011.07.013

Comba, L., Biglia, A., Ricauda Aimonino, D., Tortia, C., Mania, E., Guidoni, S. and Gay, P. 2019. Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery. Precision Agriculture 21. 1-16. https://doi.org/10.1007/s11119-019-09699-x

Creation Wines 2014. The art of winemaking: The vineyards. Hermanus, South Africa, CREATION. Available at https://www.creationwines.com/2014/art-winemaking-vineyards/

Delpuech, X. and Metay, A. 2018. Adapting cover crop soil coverage to soil depth to limit competition for water in a Mediterranean vineyard. European Journal of Agronomy 97. 60-69. https://doi.org/10.1016/j.eja.2018.04.013

Delrot, S., Medrano, H., Bavaresco, L., Or, E. and Grando, S. (eds.) 2010. Methodologies and Results in Grapevine Research. Dordrecht, The Netherlands, Springer Science and Business Media. https://doi.org/10.1007/978-90-481-9283-0

Döring, J., Frisch, M., Tittmann, S., Stoll, M. and Kauer, R. 2015. Growth, yield and fruit quality of grapevines under organic and biodynamic management. PloS ONE 10. (10): e0138445. https://doi.org/10.1371/journal.pone.0138445

EIP-AGRI 2020. Crop diversification and low-input farming across Europe: from practitioners' engagement and ecosystems services to increased revenues and value chain organisation. European Innovation Partnership for Agricultural productivity and Sustainability. Brussels, European Commission Publication. Available at https://ec.europa.eu/eip/agriculture/en/find-connect/projects/diverfarming-crop-diversification-and-low-input

Fuentes, S., Poblete‐Echeverría, C., Ortega‐Farias, S., Tyerman, S. and de Bei, R. 2014. Automated estimation of leaf area index from grapevine canopies using cover photography, video and computational analysis methods. Australian Journal of Grape and Wine Research 20. (3): 465-473. https://doi.org/10.1111/ajgw.12098

Gerlach, T. 1967. Hillslope troughs for measuring sediment movement. Révue Géomorphologie Dynamique 4. 1-173.

Greer, D.H. and Weston, C. 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Functional Plant Biology 37. (3): 206-214. https://doi.org/10.1071/FP09209

IUSS Working Group WRB 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome, FAO.

Jackson, D.I. and Lombard, P.B. 1993. Environmental and management practices affecting grape composition and wine quality: A Review. American Journal of Enology and Viticulture 44. (4): 409-429.

Jakab, G., Csikászné, A.K., Hartman, B., Werner, J. and Kozma, P. 2013. Vineyards adaptation and varieties: The effect of varieties, clones and rootstocks on must sugar content. Alcohol level reduction in wine. Oenoviti International Network. Bordeaux, Institut des Sciences de la Vigne et du Vin. 9-13.

Jankauskas, B., Jankauskiene, G., Slepetiene, A., Fullen, M.A. and Booth, C.A. 2006. International comparison of analytical methods of determining the soil organic matter content of Lithuanian Eutric Albeluvisols. Communications in Soil Science and Plant Analysis 37. 707-720. https://doi.org/10.1080/00103620600563499

Kádár, I. 1997. A növénytáplálás alapelve és módszerei (Principles and methods of plant nutrition). Budapest, Research Institute of Soil Science and Agrochemistry, Hungarian Academy of Sciences. (in Hungarian)

Kalisperakis, I., Stentoumis, Ch., Grammatikopoulos. L. and Karantzalos, K. 2015. Leaf Area Index estimation in vineyards from UAV hyperspectral data, 2D image mosaics and 3D canopy surface models. Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL-1/W4. International Conference on Unmanned Aerial Vehicles in Geomatics, 30 August - 2 September 2015, Toronto, Canada. https://doi.org/10.5194/isprsarchives-XL-1-W4-299-2015

Keeney, D.R. and Nelson, D.W. 1982. Nitrogen - Inorganic forms. In Methods of soil analysis. Part 2. 2nd edition. Agronomic Monographs 9. Eds.: Page, A.L., Miller, R.H. and Keeney, D.R., Madison, WI, ASA and SSSA, 643-698. https://doi.org/10.2134/agronmonogr9.2.2ed.c33

Kertész, Á., Tóth, A., Szalai, Z., Jakab, G., Kozma, K., Booth, C.A., Fullen, M.A. and Davies, K. 2007.Geotextile as a tool against soil erosion in vineyards and orchards. WIT Transactions on Ecology and the Environment 102. 1-9. https://doi.org/10.2495/SDP070592

Kinnell, P.I.A. 2016. A review of the design and operation of run-off and soil loss plots. CATENA 145. 257-265. https://doi.org/10.1016/j.catena.2016.06.013

Kirchhoff, M., Rodrigo-Comino, J., Seeger, M. and Ries, J.B. 2017. Soil erosion in sloping vineyards under conventional and organic land use managements (Saar-Mosel Valley, Germany). Cuadernos de Investigación Geográfica 43. (1) 119-140. https://doi.org/10.18172/cig.3161

Kostov, O., Tzvetkov, T., Petkova, G. and Lynch, J.M. 1996. Aerobic composting of plant wastes and their effect on the yield of ryegrass and tomatoes. Biology and Fertility of Soils 23. 20-25. https://doi.org/10.1007/s003740050132

Kozma, P. 2001. A szőlő és termesztése II. A szőlő szaporítása és termesztéstechnológiája (Grape cultivation II. Grape propagation and cultivation technology). 3rd edition. Budapest, Akadémiai Kiadó. (in Hungarian)

Kozma, P. 2002. A szőlő és termesztése I. A szőlőtermesztés történeti, biológiai és ökológiai alapjai (Grapes and their cultivation I. Historical, biological and ecological bases of viticulture). 3rd edition. Budapest, Akadémiai Kiadó. (in Hungarian)

Kuhn, N., Guan, L., Dai, Zh.W., Wu, B.H., Lauvergeat, V., Gomès, E., Li, S.H., Godoy, F., Arce-Johnson, P. and Delrot, S. 2014. Berry ripening: recently heard through the grapevine. Journal of Experimental Botany 65. (16): 4543-4559. https://doi.org/10.1093/jxb/ert395

Li, C.H. and Tam, P.K.S. 1998. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognition Letters 18. (8): 771-776. https://doi.org/10.1016/S0167-8655(98)00057-9

Longbottom, M.R. and Petrie, P.R. 2015. Role of vineyard practices in generating and mitigating greenhouse gas emissions. Australian Journal of Grape and Wine Research 21. (1): 522-536. https://doi.org/10.1111/ajgw.12197

Lőrincz, A., Lukácsy, Gy. and Zanathy, G. 2003. A fürtritkítás hatása a szőlő teljesítményére I. A nemzetközi szakirodalom áttekintése (Impact of cluster thinning on grape productivity I. Overview of international litarature). Borászati Füzetek 13. (1): 1-10. (in Hungarian)

Marras, S., Masia, S., Duce, P., Spano, D. and Sirca, C. 2015. Carbon footprint assessment on a mature vineyard. Agricultural and Forest Meteorology 214-215. 350-356. https://doi.org/10.1016/j.agrformet.2015.08.270

Mathews, A.J. and Jensen, J.L.R. 2013. Visualizing and quantifying vineyard canopy LAI using an Unmanned Aerial Vehicle (UAV) collected high density structure from motion point cloud. Remote Sensing 5. (5): 2164-2183. https://doi.org/10.3390/rs5052164

Matthiasson, S. 2013. Yield and wine quality. Petaluma, CA, GuildSomm. Available at https://www.guildsomm.com/public_content/features/articles/b/a_year_in_the_vineyard/posts/yields

Meissner, G., Athmann, M.E., Fritz, J., Kauer, R., Stoll, M. and Schultz, H.R. 2019. Conversion to organic and biodynamic viticultural practices: impact on soil, grapevine development and grape quality. OENO One 53. (4): 639-659. https://doi.org/10.20870/oeno-one.2019.53.4.2470

Naor, A., Gal, Y. and Bravdo, B. 2002. Shoot and cluster thinning influence vegetative growth, fruit yield, and wine quality of ,Sauvignon blanc' Grapevines. Journal of the American Society for Horticultural Science 127. (4): 628-634. https://doi.org/10.21273/JASHS.127.4.628

Nendel, C. and Kersebaum, K.C. 2004. A simple model approach to simulate nitrogen dynamics in vineyard soils. Ecological Modelling 177. (1-2): 1-15. https://doi.org/10.1016/j.ecolmodel.2004.01.014

Nistor, E., Dobrei, A., Dobrei, Al., Camen, D., Sala, F. and Prundeanu, H. 2018. Nitrous oxide (N2O), CO2 production, and C sequestration in vineyards: a review. Water Air and Soil Pollution 229. (9): 1-9. https://doi.org/10.1007/s11270-018-3942-7

OIV 2009. Compendium of international methods of analysis. Quantification of total nitrogen according to the Dumas method. International Organization of Vine and Wine (OIV), Paris. 1-5. (Method OIV-MAAS323-02A) Available at http://www.oiv.int/public/medias/2578/oiv-ma-as323-02a.pdf

Ojeda, H., Deloire, A. and Carbonneau, A. 2001. Influence of water deficits on grape berry growth. Vitis 40. 141-145.

Pádua, L., Adão, T., Sousa, A., Peres, E. and Sousa, J.J. 2020. Individual grapevine analysis in a multi temporal context using UAV-based multi-sensor imagery. Remote Sensing 12. (1)139. https://doi.org/10.3390/rs12010139

Probst, B., Schüler, C. and Joergensen, R.G. 2008. Vineyard soils under organic and conventional management - microbial biomass and activity indices and their relation to soil chemical properties. Biology and Fertility of Soils 44. (3): 443-450. https://doi.org/10.1007/s00374-007-0225-7

Provost, C. and Pedneault, K. 2016. The organic vineyard as a balanced ecosystem: Improved organic grape management and impacts on wine quality. Scientia Horticulturae 208. 43-56. https://doi.org/10.1016/j.scienta.2016.04.024

Puckette, M. 2016. Illustrated Grapevine Training Methods. Wine Folly. Available at https://winefolly.com/deep-dive/grape-vine-training-methods-illustration/

Regina, K. and Hüppi, R. 2019. Soil greenhouse gas emissions. In Handbook of Plant and Soil Analysis for Agricultural Systems. Eds.: Álvaro-Fuentes, J., Thiele- Bruhn, S., Lóczy, D. and Zornoza, R., Cartagena, RAI Universidad Politécnica de Cartagena (UPCT), 149-151.

Richards, F.J. 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10. (2): 290-301. https://doi.org/10.1093/jxb/10.2.290

Riczu, P., Juhász, Cs. and Zsigrai, Gy. 2018. Spektrális távérzékelés lehetősége szőlő-ültetvények kondíciójának térképezésére (Opportunities for spectral remote sensing for mapping the condition of grape plantations). Tokaji Kutatóintézet, Szőlészeti és Borászati Kutató Nonprofit Kft. Szőlő - Levél 8. (5): 4-7.

Rodrigo-Comino, J., Keesstra, S. and Cerdà, A. 2018. Soil erosion as an environmental concern in vineyards: The case study of Celler del Roure, Eastern Spain, by means of rainfall simulation experiments. Beverages 4. 31-42. https://doi.org/10.3390/beverages4020031

Sadras, V.O., Moran, M.A. and Bonada, M. 2013. Effects of elevated temperature in grapevine. Berry sensory traits. Australian Journal of Grape and Wine Research 19. 95-106. https://doi.org/10.1111/ajgw.12007

Semmens, K.A., Anderson, M.C., Kustas, W.P., Gao, F., Alfieri, J.G., McKee, L., Prueger, J.H., Hain, C.R., Cammaleri, C., Yang, Y., Xia, T., Sanchez, L., Alisna, M.M. and Vélez, M. 2016. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 a multi-sensor data fusion approach. Remote Sensing and Environment 185. 155-170. https://doi.org/10.1016/j.rse.2015.10.025

Shrestha, A., Kurtural, S.K., Fidelibus, M.W., Dervishian, G. and Konduru, S. 2013. Efficacy and cost of cultivators, steam, or an organic herbicide for weed control in organic vineyards in the San Joaquin Valley of California. Horticultural Technology 23. 99-108. https://doi.org/10.21273/HORTTECH.23.1.99

Silvestroni, O., Lanari, V., Lattanzi, T. and Palliotti, A. 2018. Delaying winter pruning, after pre-pruning, alters budburst, leaf area, photosynthesis, yield and berry composition in Sangiovese (Vitis vinifera L.). Australian Journal of Grape and Wine Research 24. 478-486. https://doi.org/10.1111/ajgw.12361

Smart, R. and Robinson, M. 1991. Sunlight into wine: A handbook for winegrape canopy management. Adelaide, Winetitles.

Steenwerth, K.L. and Belina, K.M. 2008. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Applied Soil Ecology 40. (2): 359-369. https://doi.org/10.1016/j.apsoil.2008.06.006

Tajima, R. and Kato, Y. 2011. Comparison of threshold algorithms for automatic image processing of rice roots using freeware ImageJ. Field Crops Research 121. (3): 460-463. https://doi.org/10.1016/j.fcr.2011.01.015

Towers, P.C., Albert, S. and Poblete-Echeverría, C. 2019. Comparison of vegetation indices for Leaf Area Index estimation in vertical shoot positioned vine canopies with and without Grenbiule Hail-Protection Netting. Remote Sensing 11. (9):1073. https://doi.org/10.3390/rs11091073

Vilanova, M. and Soto, B. 2005. The impact of geographic origin on sensory properties of Vitis vinifera cv. Mencía. Journal of Sensory Studies 20. (6): 503-511. https://doi.org/10.1111/j.1745-459X.2005.00046.x

Werner, J. and Forgács, B. 2016. Ökológiai szőlőtermesztés a Villányi borvidékek, Gere Attila pincészeténél (Ecological viticulture in the Gere Attila Winery, Villány Wine District). Növényvédelem 77. (6): 332-336.

Whalley, J. and Shanmuganathan, S. 2013. Applications of image processing in viticulture: a review. Proceedings, 20th International Congress in Modelling and Simulation, Adelaide, AUS, 1-6 December 2013. Adelaide, Modelling and Simulation Society of Australia and New Zealand (MSSANZ) Inc. 531-537.

Wilson, J.W. 1963. Estimation of foliage denseness and foliage angle by inclined point quadrats. Australian Journal of Botany 11. 95-105. https://doi.org/10.1071/BT9630095

Wolff, M., del mar Alsina, M. and Smart, D.R. 2013. Conservation tillage of cover crops in vineyard soils to improve carbon sequestration and diminish greenhouse gas emissions. Wines & Vines 94. 84-92.

Zeide, B. 1993. Analysis of growth equations. Forest Science 39. (3): 594-616. https://doi.org/10.1093/forestscience/39.3.594

Published
2020-10-02
How to Cite
DezsőJ., LóczyD., RezsekM., HüppiR., WernerJ., & HorváthL. (2020). Crop growth, carbon sequestration and soil erosion in an organic vineyard of the Villány Wine District, Southwest Hungary. Hungarian Geographical Bulletin, 69(3), 281-298. https://doi.org/10.15201/hungeobull.69.3.4
Section
Articles