Parameterizing the modified water cloud model to improve soil moisture data retrieval using vegetation models

Keywords: NDVI, EVI, SAR, Sentinel, WCM

Abstract

The objective was to parameterize a modified water cloud model using crop coefficients (A and B). These crop coefficients were derived from Landsat-8 and Sentinel-2 data. Whereas the coefficients C and D are of soil parameters. The water cloud model was modified using crop coefficients by minimizing the RMSE between observed VVσ0 and Sentinel-1 based simulated VVσ0. The comparison with observed and simulated VV polarized σ0 showed low RMSE (0.81 dB) and strong R2 of 0.98 for NDVI-EVI combination. However, based on other  possible combinations of vegetation indices VVσ0 and simulated VVσ0 do not show a good statistical agreement. It was observed that the errors in crop coefficients (A and B) are sensitive to errors in initial vegetation/canopy descriptor parameters.

References

Attema, E. and Ulaby, F.T. 1978. Vegetation modelled as a water cloud. Radio Science 13. (1): 357-364. https://doi.org/10.1029/RS013i002p00357

Bala, A., Pawar, S.P., Misra, A.K. and Rawat, K.S. 2015. Estimation and validation of actual evapotranspiration for wheat crop using SEBAL model over Hisar District (Haryana), India. Current Science 113. (1): 134-141. https://doi.org/10.18520/cs/v113/i01/134-141

Beck, H.E., Jeu, R.A.M., Schellekens, J., Dijk, A.I.J.M. and Bruijnzeel, L.A. 2009. Improving curve number based storm runoff estimates using soil moisture proxies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2. (4): 250-259. https://doi.org/10.1109/JSTARS.2009.2031227

Berthet, L., Andréassian, V., Perrin, C. and Javelle, P. 2009. How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments. Hydrology Earth System Science 13. (6): 819-831. https://doi.org/10.5194/hess-13-819-2009

Bindlish, R., Jackson, J.T., Gasiewski, A.J., Klein, M. and Njoku, E.G. 2006. Soil moisture mapping and AMSR-E validation using the PSR in SMEX02. Remote Sensing of Environment 103. (2): 127-139. https://doi.org/10.1016/j.rse.2005.02.003

CGWB 2017. Ground Water Information Bathinda District, Punjab. Chandigarh, North Western Region. Central Ground Water Board, Ministry of Water Resources Government of India. Available at http://cgwb.gov.in/District_Profile/Punjab/Bathinda.pdf

Dezső, J., Czigány, S., Nagy, G., Pirkhoffer, E., Słowik, M. and Lóczy, D. 2019. Monitoring soil moisture dynamics in multilayered Fluvisols. Bulletin of Geography. Physical Geography Series 16. (1): 131-146. https://doi.org/10.2478/bgeo-2019-0009

Frison, P., Mougin, E. and Hiernaux, P. 1998. Observations and interpretation of seasonal ERS-1 wind scatterometer data over northern Sahel (Mali). Remote Sensing of Environment 63. 233-242. https://doi.org/10.1016/S0034-4257(97)00137-5

Garroutte, E., Hansen, A. and Lawrence, R. 2016. Using NDVI and EVI to map spatiotemporal variation in the biomass and quality of forage for migratory elk in the Greater Yellowstone Ecosystem. Remote Sensing 8(5):404. https://doi.org/10.3390/rs8050404

Hegedűs, P., Czigány, S., Balatonyi, L. and Pirkhoffer, E. 2013. Analysis of soil boundary conditions of flash floods in a small basin in SW Hungary. Open Geosciences 5. (1): 97-111. https://doi.org/10.2478/s13533-012-0119-6

Hegedűs, P., Czigány, S., Pirkhoffer, E., Balatonyi, L. and Hickey, R. 2015. Analysis of spatial variability of near-surface soil moisture to increase rainfall-runoff modelling accuracy in SW Hungary. Open Geosciences 7. (1): 126-139. https://doi.org/10.1515/geo-2015-0017

Hornberger, G.M. 1998. Elements of Physical Hydrology. Baltimore, MD, USA, Johns Hopkins University Press.

Huete, A.R, Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS Vegetation indices. Remote Sensing of Environment 83. 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2

Huete, A.R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25. (3): 295-309. https://doi.org/10.1016/0034-4257(88)90106-X

Kumar, K., Prasad, K.S.H. and Arora, M.K. 2012. Estimation of water cloud model vegetation parameters using a genetic algorithm. Hydrological Sciences Journal 57. 776-789. https://doi.org/10.1080/02626667.2012.678583

Liu, C. and Shi, J. 2016. Estimation of vegetation parameters of Water Cloud Model for global soil moisture retrieval using Time-Series L-Band Aquarius Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9. (12): 5621-5633. https://doi.org/10.1109/JSTARS.2016.2596541

Magagi, R. and Kerr, Y. 1997. Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scatterometer over arid and semi-arid areas. Journal of Hydrology 188. 361-384. https://doi.org/10.1016/S0022-1694(96)03166-6

Mishra, A., Gairola, R.M., Varma, A.K., Sarkar, A. and Agarwal, V.K. 2009. Rainfall retrieval over Indian land and oceanic regions from SSM/I micro-wave data. Advances in Space Research 44. 815-823. https://doi.org/10.1016/j.asr.2009.05.011

Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L. and Reppucci, A. 2013. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment 134. 234-248. https://doi.org/10.1016/j.rse.2013.02.027

Pasolli, L., Notarnicola, C., Bertoldi, G., Bruzzone, L., Remelgado, R., Greifeneder, F., Niedrist, G., Chiesa, S.D., Tappeiner, U. and Zebisch, M. 2015. Estimation of soil moisture in mountain areas using SVR technique applied to multiscale active radar images at C-band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8. (1): 262-283. https://doi.org/10.1109/JSTARS.2014.2378795

Pathe, C., Wagner, W., Sabel, D., Doubkova, M. and Basara, J.B. 2009. Using ENVISAT ASAR global mode data for surface soil moisture retrieval over Oklahoma, USA. IEEE Transactions on Geoscience and Remote Sensing 47. (2): 468-480. https://doi.org/10.1109/TGRS.2008.2004711

Prevot, L., Dechambre, M., Taconet, O., Vidal-Madjar, D., Normand, M. and Gallej, S. 1993. Estimating the characteristics of vegetation canopies with airborne radar measurements. International Journal of Remote Sensing 14. 2803-2818. https://doi.org/10.1080/01431169308904310

Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H. and Sorooshian, S. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment. 48. (2): 119-126. https://doi.org/10.1016/0034-4257(94)90134-1

Rawat, K.S., Sehgal, V.K., Pradhan, S. and Ray, S.S. 2017. Retrieval and validation of soil moisture from FRS-1 data set of Radar Imaging Satellite (RISAT-1). Arabian Journal of Geosciences 10. (445): 1-10. https://doi.org/10.1007/s12517-017-3195-6

Rawat, K.S., Sehgal, V.K. and Ray, S.S. 2018. Semi-empirical model for retrieval of soil moisture using RISAT-1 C-band data over a sub-tropical semi arid area of Rewari District State of Haryana (India). Journal of Earth System Science 127(2). https://doi.org/10.1007/s12040-018-0919-2

Rawat, K.S., Singh, S.K. and Pal, R.K. 2019a. Synergetic methodology for estimation of soil moisture over agricultural area using Landsat-8 and Sentinel-1 satellite data. Remote Sensing Applications: Society and Environment 15(100250). https://doi.org/10.1016/j.rsase.2019.100250

Rawat, K.S., Singh, S.K. and Ray, R.L. 2019b. An integrated approach to estimate surface soil moisture in agricultural lands. Geocarto International 2019(11). https://doi.org/10.1080/10106049.2019.1678674

Shi, J.C., Wang, J., Hsu, A.Y., Neill, P.E.O. and Engman, E.T. 1997. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Transactions on Geoscience and Remote Sensing 35. (5): 1254-1266. https://doi.org/10.1109/36.628792

Wang, L., He, B., Bai, X. and Xing, M. 2019. Assessment of different vegetation parameters for parameterizing the coupled water cloud model and advanced integral equation model for soil moisture retrieval using time series Sentinel-1A data. Photogrammetric Engineering & Remote Sensing 85. (1): 43-54. https://doi.org/10.14358/PERS.85.1.43

Yadav, B.K., Sidhu, A.S. and Kumar, D. 2018. Distribution and indexation of plant available nutrients in Bathinda district of south-west Punjab, India. Journal of Soils and Crops 28. (1): 8-18.

Published
2020-04-02
How to Cite
RawatK. S., SinghS. K., RayR. L., SzabóS., & KumarS. (2020). Parameterizing the modified water cloud model to improve soil moisture data retrieval using vegetation models. Hungarian Geographical Bulletin, 69(1), 17-26. https://doi.org/10.15201/hungeobull.69.1.2
Section
Articles