Application of a topographic pedosequence in the Villány Hills for terroir characterization

  • Szabolcs Czigány Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Tibor József Novák Department of Landscape Protection and Environmental Geography, University of Debrecen, Debrecen, Hungary
  • Ervin Pirkhoffer Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Gábor Nagy Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Dénes Lóczy Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • József Dezső Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Szabolcs Ákos Fábián Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Marcin Świtoniak Nicolaus Copernicus University in Toruń, Toruń, Poland
  • Przemyslaw Charzyński Nicolaus Copernicus University in Toruń, Toruń, Poland
Keywords: pedosequence, GIS, terroir, soils, grape juice properties, Huglin Index


Terroir refers to the geographical origin of wines. The landscape factors (topography, parent rock, soil, microbial life, climate, natural vegetation) are coupled with cultural factors (cultivation history and technology, cultivars and rootstock) and all together define a terroir. The physical factors can be well visualized by a slope profile developed into a pedosequence showing the regular configuration of the relevant physical factors for a wine district. In the present study the generalized topographic pedosequence (or catena) and GIS spatial model of the Villány Hills, a historical wine producing region, serves for the spatial representation and characterization of terroir types. A survey of properties of Cabernet Franc grape juice allowed the comparison of 10 vineyards in the Villány Wine District, Southwest Hungary. Five grape juice properties (FAN, NH3, YAN, density and glucose + fructose content) have been found to have a moderate linear relationship (0.5 < r2 < 0.7) with the Huglin Index (HI) and aspect. Aspect, when determined on the basis of angular distance from South (180°), showed a strong correlation (r2 > 0.7) with FAN, NH3, YAN, sugar and density and moderate correlation with primary amino nitrogen (PAN). HI showed a correlation with three nitrogen related parameters FAN, NH3, YAN, density and glucose + fructose content. Elevation and slope, however, did not correlate with any of the chemical properties.


Balla, D.Z., Kozics, A., Mester, T., Mikita, T., Incze, J., Novák, T. and Zichar, M. 2019. A GIS tool to express soil naturalness grades and geovisualization of results on Tokaj Nagy-Hill. Acta Polytechnica Hungarica 16. (6): 191-205.

Barata, A., Malfeito-Ferreira, M. and Loureiro, V. 2012. The microbial ecology of wine grape berries. International Journal of Food Microbiology 153. (3): 243-259.

Baskan, O., Dengiz, O. and Gunturk, A. 2016. Effects of toposequence and land use-land cover on the spatial distribution of soil properties. Environmental Earth Sciences 75. 448-458.

Biancotti, A. 2003. Physical geography's contribution to studying terroir. In Spaces, Environments and Landscapes of Terroirs. Eds.: Biancotti, A., Pambianchini, G. and Pioletti, A.M., Milano, BEM, Stefano Bianchi, 11-16.

Borden, R.W., Baillie, I.C. and Hallett, S.H. 2020. The East African contribution to the formalisation of the soil catena concept. Catena 185. Article 104264.

Borhidi, A. and Dénes, A. 1997. The rock sward communities of the Mecsek and Villány Mts. Studia Phytologica Jubilaria, Pécs, University of Pécs, 45-66.

Bötkös, T. 2006. Precipitation trends in Pécs. In Pollution and Water Resources. Ed.: Halasy-Kun, G., New York, Columbia University Seminars XXXVI. 171-178.

Bramley, R. and Hamilton, R. 2007. Terroir and precision viticulture: are they compatible? OENO One 41. (1): 1-8.

Busacca, A. and Meinert, L. 2003. Wine and geology - The terroir of Washington State. In GSA Field Guide 4: Western Cordillera and Adjacent Areas, Ed.: Swanson, T.W., Boulder, CO, USA, Geological Society of America, 69-85.

Cheng, G., He, Y.N., Yue, T.X., Wang, J. and Zhang, Zh.W. 2014. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules 19. (9): 13683-13703.

Choné, X., van Leeuwen, C., Chéry, P. and Ribéreau- Gayon, P. 2001. Terroir influence on water status and nitrogen status of non irrigated Cabernet- Sauvignon (Vitis vinifera): vegetative development, must and wine composition. South African Journal of Enology and Viticulture 22. (1): 8-15.

Coller, E., Cestaro, A., Zanzotti, R., Bertoldi, D., Pindo, M., Larger, S., Albanese, D., Mescalchin, E. and Donati, C. 2019. Microbiome of vineyard soils is shaped by geography and management. Microbiome 7. 140-155.

Czigány, Sz. 1997. Analysis of the loess profile in Beremend, SW Hungary. Földrajzi Értesítő / Hungarian Geographical Bulletin 46. (1-2): 97-103. (in Hungarian with English abstract)

Czigány, Sz. 1998. Contribution to the denudation processes of the southern slopes of Villány Hills during Late Pleistocene and Holocene. Földrajzi Értesítő / Hungarian Geographical Bulletin 47. (2): 123-129. (in Hungarian with English abstract)

Czigány, Sz. and Nagyváradi, L. 2000. A természeti és társadalmi tényezők kölcsönhatása a Villányi borvidéken löszkémiai vizsgálatok alapján (Interactions between the physical and social factors in the Villány wine region based on chemical analyses of loess). In Területfejlesztés - regionális kutatások. Eds.: Lovász, Gy. and Szabó, G., Pécs, PTE TTK Földrajzi Intézet, 63-72. (in Hungarian)

Czigány, Sz., Fábián, Sz.Á., Nagy, G. and Novák, T.J. 2018. Soils of the southern slopes of the Villány Hills, SW Hungary. In Soil Sequences Atlas II. Eds.: Świtoniak, M. and Charzyński, P., Toruń, Poland, Machina Druku, 187-200.

Dezső, J., Sebe, K. and Horváth, G. 2004. Villányihegység útikalauz (A guide to the Villány Hills). Pécs, JPTE Barlangkutató. (in Hungarian with English summaries)

Deloire, A., Vaudour, E., Carey, V.A., Bonnardot, V. and van Leeuwen, C. 2005. Grapevine responses to terroir: A global approach. Journal International des Sciences de la Vigne et du Vin 39. (4): 149-162.

Falcetti, M. 1994. Le terroir. Qu'est-ce qu'un terroir? Pourquoi l'étudier? Pourquoi l'enseigner? Bulletin O.I.V. 67. 246-275.

Ferretti, C.G. 2019. Relationship between the geology, soil assessment, and terroir of Gewürtztraminer vineyards: A case study in the Dolomites of northern Italy. Catena 179. 74-84.

Fraga, H., Malheiro, A.C., Moutinho-Pereira, J. and Santos, J.A. 2013. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. International Journal of Biometeorology 57. 909-925.

Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Cardoso, R.M., Soares, P.M., Cancela, J.J., Pinto, J.G. and Santos, J.A. 2014. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions. PLoS One 9. (9): e108078.

Fraga, H., Costa, R. and Santos, J. 2018. Modelling the Terroir of the Douro Demarcated Region, Portugal. E3S Web of Conferences 50: 02009. XII Congreso Internacional Terroir.

Gabel, B. 2019. New concept of vine grape protection - knowledge-based approach & high tech. 42nd World Congress of Vine and Wine, 15-19 July 2019 Geneva, Switzerland. BIO Web Conferences 15: 01020.

Gilbert, J.A., van der Lelie, D. and Zarraonaindia, I. 2014. Microbial terroir for wine grapes. Proceedings of the National Academy of Sciences 111. 5-6.

Gladstones, J. 2011. Wine, Terroir and Climate Change. Mile End (South Australia), Wakefield Press. Guidelines for soil description 2006. Rome, FAO.

Hall, A., Lamb, D.W., Holzapfel, B. and Louis, J. 2002. Optical remote sensing applications in viticulture - a review. Australian Journal of Grape and Wine Research 8. (1): 36-47.

Halliday, J. 2007. Wine Atlas of Australia. Oakland, CA, University of California Press. Haynes, S.J. 2000. A geological foundation for terroirs and potential sub-appelations of Niagara Peninsula wines, Ontario, Canada. Geology and wine series 2. Geoscience Canada 27. 67-87.

Hilbert, G., Soyer, J.-P., Molot, C., Giraudon, J., Milin, S. and Gaudillère, J.-P. 2003. Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis 42. 69-76.

Huglin, P. 1986. Biologie et écologie de la vigne. Paris, Lavoisier.

IUSS Working Group 2015. World Reference Base (WRB) for soil resources 2014. Update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report No 106. Rome, FAO.

Jackson, D. and Lombard, P. 1993. Environmental and management practices affecting grape composition and wine quality - a review. American Journal of Enology and Viticulture 44. 409-430.

Jones, G.V., Snead, N. and Nelson, P. 2004. Geology and wine 8. Modeling viticultural landscapes: A GIS analysis of the terroir potential in the Umpqua Valley of Oregon. Geoscience Canada 31. 167-178.

Jordán, Gy., van Rompaey, A., Szilassi, P., Csillag, G., Mannaerts, C. and Woldai, T. 2005. Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agriculture, Ecosystem & Environment 108. (2): 119-133.

Kenderessy, P. and Lieskoský, J. 2014. Impact of the soil erosion on soil properties along a slope catena - Case study of Horný Ohaj vineyards, Slovakia. Carpathian Journal of Earth and Environmental Sciences 9. (2): 143-152.

Kirchhoff, M., Rodrigo-Comino, J., Seeger, M. and Ries, J.B. 2017. Soil erosion in sloping vineyards under conventional and organic land use managements (Saar-Mosel Valley, Germany). Cuadernos de Investigación Geográfica 43. (1): 119-140.

Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. 2006. World map of Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15. (3): 259-263.

Lovász, Gy. 1973. Geomorphological development of the Villány Mountains. Studia Geomorphologica Carpato Balcanica 7. 1-7.

Lovász, Gy. 1977. Baranya megye természetföldrajza (Physical geography of Baranya County). Pécs, Baranya Megyei Levéltár. (in Hungarian)

Lovász, Gy. and Wein, Gy. 1974. A Dél-Dunántúl természetföldrajza (Physical geography of the Southern Transdanubia). Pécs, Baranya Megyei Levéltár. (in Hungarian)

Lóczy, D. and Nyizsalovszki, R. 2005. Borvidékek földhasználat-változásainak tájökológiai értékelése (Landscape ecological assessment of land use changes in the wine regions of Hungary). Tájökológiai Lapok 3. 243-252. (in Hungarian)

Mackenzie, D.E. and Christy, A.G. 2005. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Water Science and Technology 51. 27-37. Doi: 10.2166/wst.2005.0004

Malheiro, A.C., Santos, J.A., Fraga, H. and Pinto, J.G. 2010. Climate change scenarios applied to viticultural zoning in Europe. Climate Research 43. 163-177.

Matthews, M. and Anderson, M. 1988. Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. American Journal of Enology and Viticulture 39. 313-320.

Matthews, M. and Anderson, M. 1989. Reproductive development in grape (Vitis vinifera L.): responses to seasonal water deficit. American Journal of Enology and Viticulture 40. 52-60.

Meinert, L. and Busacca, A. 2002. Geology and wine 6. Terroir of the Red Mountain Appellation, Central Washington State, U.S.A. Geoscience Canada 29. 149-168.

Milne, G. 1935. Some suggested units of classification and mapping particularly for East African soils. Bodenkundliche Forschung, Supplement to the Proceedings of the International Union of Soil Science IV. 183-198.

Novák, T.J., Incze, J., Spohn, M., Glina, B. and Giani, L. 2014. Soil and vegetation transformation in abandoned vineyards of the Tokaj Nagy-Hill. Catena 123. 88-98.

OIV 2008. Proposition of a definition of a vitivinicultural terroir. Paris, Organisation International de la Vigne et du Vin.

Ollier, C.D., Webster, R., Lawrance, C.J. and Beckett, P.H.T. 1969. Terrain classification and data storage. Land Systems of Uganda. MEXE Report 959. Christchurch, U.K., MEXE.

Ough, C.S. and Kriel, A. 1985. Ammonia concentrations of musts of different grape cultivars and vineyards in the Stellenbosch Area. South African Journal of Enology and Viticulture 6. (1): 7-11.

Pansu, M. and Gatheyrou, J. 2006. Handbook of Soil Analysis. Berlin-Heidelberg, Springer Verlag, 35-42.

Petrovic, G., Aleixandre-Tudo, J.-L. and Buica, A. 2019. Unravelling the complexities of wine: A big data approach to yeast assimilable nitrogen using InfraRed spectroscopy and chemometrics. OENO One 2. 107-127.

Qi, Y.B., Wang, R., Qin, Q.R. and Sun, Q. 2019. Soil affected the variations in grape and wine properties along the eastern foot of Helan Mountain, China. Acta Agriculturae Scandinavica, Section B. - Soil & Plant Science 69. (6): 494-502.

Radwanski, S.A. and Ollier, C.D. 1959. A study of an East African catena. Journal of Soil Science 10. 149-168. Available at

Repe, B. and Simončič, P. and Vrščaj, B. 2017. Factors of soil formation. In The Soils of Slovenia. Eds.: Vrščaj, B., Repe, B. and Simončič, P., Dordrecht, Springer, 19- 60.

Sebe, K. 2017. Structural evolution of the Mecsek-Villány area (SW Hungary) during post-rift phase and basin inversion. In Abstracts book. 7th International Workshop: Neogene of Central and South-Eastern Europe. Velika, Croatia, 28-31 May 2017. Eds.: Horvat, M. and Wacha, L., Zagreb, Croatian Geological Survey, 60-61.

Seguin, G. 1986. 'Terroirs' and pedology of wine growing. Experientia 42. (8): 861-873.

Šmid Hribar, M., Geršič, M., Pipan, P., Repolusk, P., Tiran, J., Topole, M. and Ciglič, R. 2017. Cultivated terraces in Slovenian landscapes. Acta geographicaSlovenica 57.(2): 83-97.

Stepišnik, U., Ilc Klun, M. and Repe, B. 2017. Assessment of educational potential of geodiversity on example of Cerknica Polje, Slovenia. Dela 47 (1): 5-39.

Świtoniak, M., Charzyński, P., Novák, T.J., Zalewska, K. and Bednarek, R. 2014. Forested hilly landscape of Bükkalja Foothill (Hungary). In Soil Sequences Atlas. Eds.: Świtoniak, M. and Charzyński, P., Toruń, Nicholaus Copernicus University Press, 169-181.

Szilassi, P., Jordán, Gy., Rompaey, A. and Csillag, G. 2006. Impacts of historical land use changes on erosion and agricultural soil properties in the Káli Basin at Lake Balaton, Hungary. Catena 68. 96-108.

Tagliavini, M. and Rombolà, A.D. 2001. Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy 15. (2): 71-92.

Tardaguila, J., Baluja, J., Arpon, L., Balda, P. and Oliveira, M. 2011. Variations of soil properties affect the vegetative growth and yield components of "Tempranillo" grapevines. Precision Agriculture 12. (5): 762-773.

Tengler, T. 1997. A természeti környezet antropogén változásai Villány térségében (Antropogenic changes in the physical environment around the town of Villány). Publications from the Department of Physical Geography 4. Pécs, University of Pécs, 1-15. (in Hungarian)

Ubalde, J.M., Sort, X., Zayas, A. and Poch, R.M. 2010. Effects of soil and climatic conditions on grape ripening and wine quality of Cabernet Sauvignon. Journal of Wine Research 21. (1): 1-17.

Unwin, T. 2012. Terroir: At the heart of geography. In The Geography of Wine: Regions, Terroir and Techniques. Ed.: Dougherty, P.H., Dordrecht, Springer Science & Business Media, 37-48.

van Leeuwen, C. and Seguin, G. 2006. The concept of terroir in viticulture. Journal of Wine Research 17. 1-10.

van Leeuwen, C. 2010. Terroir: the effect of the physical environment on vine growth, grape ripening and wine sensory attributes. In Managing Wine Quality. Volume 1: Viticulture and Wine Quality. Ed.: Reynolds, A., Oxford, Woodhead Publishing Ltd., 273-315.

Vaudour, E. 2001. Diversité des notions de terroir. Pour un concept de terroir opérationnel. Revue des Oenologues 101. 39-41.

Vaudour, E. 2002. The quality of grapes and wine in relation to geography: Notions of terroir at various scales. Journal of Wine Research 13: 117-141.

Vaudour, E. 2003. Les terroirs viticoles. Définitions, caractérisation, protection. Paris, Dunod.

Vaudour, E., Morlat, R., van Leeuwen, C. and Doledec, A.F. 2005. Terroirs viticoles et sols. In Sols et Environnement. Eds.: Girard, M.C., Walter, C., Rémy, J.C. and Berthelin, J., Paris, Dunod, 105-126.

Vrščaj, B., Repe, B. and Simončič, P. 2017. Soil degradation. In The Soils of Slovenia. Eds.: Vrščaj, B., Repe, B. and Simončič, P., Dordrecht, Springer, 171-198.

Wang, R., Sun, Q. and Chang, Q.R. 2015. Soil types effect on grape and wine composition in Helan Mountain area of Ningxia. PlosOne 10. (2): e0116690.

Warmling, M.T., Albuquerque, J.A., Warmling, M.I., Rufato, L. and Andognini, J. 2018. Effect of soil classes and climatic conditions on the productive characteristics and composition of Cabernet Sauvignon grapes. Revista Brasileira de Fruticultura 40. (6): 1-14.

Wein, Gy. 1967. A Délkelet-Dunántúl szerkezetföldtana (Structural geology of the Southeastern Transdanubian region). Földtani Közlemények 91. 372-395. (in Hungarian)

Wilkins, D. and Busacca, A. 2017. Insights into terroir factors from a dense network of vineyard soil and weather stations, Sunnyslope District, Idaho. Conference Paper. GSA Annual Meeting, Seattle, WA, USA.

Wilson, J. 1998. Terroir, the role of geology, climate and culture in the making of French wines. San Francisco, CA, University Press of California.

Winkler, A.J., Cook, J.A., Kliewer, W.M. and Lider, L.A. 1974. General Viticulture. Second Revised Edition. Berkeley-Los Angeles, University of California Press.

Wooldridge, J. 2000. Geology: A central aspect of terroir. Wineland 12. 87-90.

Zsófi, Zs., Tóth, E., Rusjan, D. and Bálo, B. 2011. Terroir aspects of grape quality in a cool climate wine region: Relationship between water deficit, vegetative growth and berry sugar concentration. Scientia Horticulturae 127. (4): 494-499.

How to Cite
CzigányS., NovákT. J., PirkhofferE., NagyG., LóczyD., DezsőJ., FábiánS. Ákos, ŚwitoniakM., & CharzyńskiP. (2020). Application of a topographic pedosequence in the Villány Hills for terroir characterization. Hungarian Geographical Bulletin, 69(3), 245-261.