Soil moisture retention on slopes under different agricultural land uses in hilly regions of Southern Transdanubia

  • Gábor Nagy Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Dénes Lóczy Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Szabolcs Czigány Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Ervin Pirkhoffer Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Szabolcs Ákos Fábián Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Rok Ciglič Research Centre of the Slovenian Academy of Sciences and Arts, Anton Melik Geographical Institute, Ljubljana, Slovenia
  • Mateja Ferk Research Centre of the Slovenian Academy of Sciences and Arts, Anton Melik Geographical Institute, Ljubljana, Slovenia
Keywords: water retention, water stress, soil moisture dynamics, ecosystem services, land use, landscape micro-features, Pannonian Basin


Increasingly severe weather extremes are predicted as one of the consequences of climate change. According to climatic models, weather extremities induce higher risks for both flood and drought in the Carpathian Basin. Throughout the 19th and 20th centuries, flood control relied on cost-intensive engineering structures, but recently ecological solutions have come to the fore. Flood hazard on major rivers could be mitigated if multiple and cumulative water retention opportunities are exploited on the upper sections of tributary catchments. Appropriate land use and landscape pattern changes can shift the infiltration to run-off ratio to the benefit of the former. In the Transdanubian Hills of Southwest Hungary three study areas with different agricultural land use types had been selected and investigated for the impact of landscape micro-features on soil moisture retention capacity with the purpose of conserving water from wet periods for the times of drought. Marked differences in moisture dynamics have been detected between arable land, grasslands and orchards. This fact underlines the need for integrated soil and water conservation. Drought risk was found to be the highest on ploughland. Favourable soil water budgets have been observed in the fields as a function of land use: less intensive types, like grazing land and orchards (particularly tree rows), were identified as places of high water retention capacity. Although serious water stress conditions were also reached in the orchard, it markedly mitigated drought conditions compared to the ploughland.


Ali, G., Birkel, C., Tetzlaff, D., Soulsby, C., McDonnell, J.J. and Tarolli, P. 2013. A comparison of wetness indices for the prediction of observed connected saturated areas under contrasting conditions. Earth Surface Processes and Landforms 39. (3): 399-413.

Bakacsi, Zs., Tóth, T., Makó, A., Barna, G., Laborczi, A., Szabó, J., Szatmári, G. and Pásztor, L. 2019. National level assessment of soil salinization and structural degradation risks under irrigation. Hungarian Geographical Bulletin 68. (2): 141-156.

Baudry, J., Bunce, R.G.H. and Burel, F. 2000. Hedgerows: An international perspective on their origin, function and management. Journal of Environmental Management 60. 7-22.

Berry, P., Yassin, F., Belcher, K. and Lindenschmidt, K.E. 2017. An economic assessment of local farm multi-purpose surface water retention systems under future climate uncertainty. Sustainability 9. 456-478.

Beven, K.J. and Kirkby, M.J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Science Bulletin 24. (1): 43-69.

Beven, K. and Wood, E.F. 1983. Catchment geomorphology and the dynamics of run-off contributing areas. Journal of Hydrology 65. 139-158.

Beven, K.J. 1986. Run-off production and flood frequency in catchments of order n: an alternative approach. In Scale Problems in Hydrology. Eds.: Gupta, V.K., Rodriguez-Iturbe, I. and Wood, E., Dordrecht, Reidel, 107-131.

Castellini, M. and Iovino, M. 2019. Pedotransfer functions for estimating soil water retention curve of Sicilian soils. Archives of Agronomy and Soil Science 65. (10): 1401-1416.

Chen, L., Sela, S., Svoray, T. and Assouline, S. 2013. The role of soil‐surface sealing, microtopography, and vegetation patches in rainfall‐run-off processes in semiarid areas. Water Resources Research 49. (9): 5585-5599.

Centeri, Cs., Szalai, Z., Jakab, G., Barta, K., Farsang, A., Szabó, Sz. and Bíró, Z. 2015. Soil erodibility calculations based on different particle size distribution measurements. Hungarian Geographical Bulletin 64. (1): 17-23.

Cooper, C.M., Moore, M.T., Bennett, E.R., Smith, S. Jr., Farris, J.L., Milam, C.D. and Shields, F.D. Jr. 2004. Innovative uses of vegetated drainage ditches for reducing agricultural run-off. Water Science Technology 49. (3): 117-123.

Cser, V. 2019. 45 éve kezdték építeni a Deseda-tározót (The Deseda Reservoir began to be built 45 years ago). Pécs, DDVIZIG, A Drávától a Balatonig 3. 34-35. (in Hungarian)

Czigány, Sz., Pirkhoffer, E., Balassa, B., Bugya, T., Bötkös, T., Gyenizse, P., Nagyváradi, L., Lóczy, D. and Geresdi, I. 2010. Villámárvíz mint természeti veszélyforrás a Dél-Dunántúlon (Flash floods as a natural hazard in Southern Transdanubia). Földrajzi Közlemények 134. (3): 281-298.

Davis, A.P., Hunt, W.F., Traver, R.G. and Clar, M. 2009. Bioretention technology: overview of current practice and future needs. Journal of Environmental Engineering ASCE 135. 109-117.

Declerck, S., de Bie, T., Ercken, D., Hampel, H., Schrijvers, S., van Wichelen, J., Gillard, V., Mandiki, R., Losson, B., Bauwens, D., Keijers, S., Vyverman, W., Goddeeris, B., de Meester, L., Brendonck, L. and Martens, K. 2006. Ecological characteristics of small farmland ponds: Associations with land use practices at multiple spatial scales. Biological Conservation 131. 523-532.

DERM 2010. Run-off control measures for erosion control in cropping land. Brisbane, AUS, Department of Environmental and Resource Management, Government of Queensland. Available at

Dezső, J., Lóczy, D., Salem, A.M. and Nagy, G. 2019. Floodplain connectivity. In The Drava River: Environmental Problems and Solutions. Ed.: Lóczy, D., Cham, Switzerland, Springer International Publishing, 215-230.

Didovets, I., Krysanova, V., Bürger, G., Snizhko, S., Balabukh, V. and Bronstert, A. 2019. Climate change impact on regional floods in the Carpathian region. Journal of Hydrology: Regional Studies 22. 100590.

Drover, D.R., Jackson, C.R., Bitew, M. and Du, E. 2015. Effects of DEM scale on the spatial distribution of the TOPMODEL topographic wetness index and its correlations to watershed characteristics. Hydrology and Earth System Science Discussions 2015. 11817-11846.

Emerson, C.H., Welty, C. and Traver, R.G. 2005. Watershed-scale evaluation of a system of storm water detention basins. Journal of Hydrological Engineering 10. 237-242.

European Commission 2000. Directive 2000/60/EEC. Establishing a framework for community action in the field of water policy. Luxembourg, Official Journal of the European Communities, L327. 1-71.

European Commission 2006. Ecoflood guidelines: How to use floodplains for flood risk reduction. Report EUR 22001. Luxembourg, Office for Official Publications of the European Communities.

European Commission 2007. Directive 2007/60/EC of the European Parliament and of the Council on the assessment and management of flood risks. Official Journal of the European Union L 288. 27-34.

European Commission 2014. A guide to support the selection, design and implementation of Natural Water Retention Measures in Europe: Capturing the multiple benefits of nature-based solutions. Brussels, European Commission. Available at

European Union 2014. EU policy document on Natural Water Retention Measures. Technical report 2014-082.

Fábián, Sz.Á., Kovács, J., Lóczy, D., Schweitzer, F., Varga, G., Babák, K., Lampért, K. and Nagy, A. 2006. Geomorphologic hazards in the Carpathian Foreland, Tolna County (Hungary). Studia Geomorphologica Carpatho-Balcanica 11. 107-118.

Ferk, M., Ciglič, R., Komac, B. and Lóczy, D. 2020. Management of small retention ponds and their impact on flood hazard prevention in the Slovenske Gorice Hills. Acta geographica Slovenica 60. 107-125.

Fiener, P. and Auerswald, K. 2003. Effectiveness of grassed waterways in reducing run-off and sediment delivery from agricultural watersheds. Journal of Environmental Quality 32. (3): 927-936.

Fisher, B. and Turner, K. 2008. Ecosystem services: Classification for valuation. Biological Conservation 141. 1167-1169.

Fuentes, J.P. 2003. Influence of tillage on soil properties under agricultural and natural prairie systems. Doctorate dissertation. Tacoma, WA, USA, Washington State University. Available at

Gotoh, H., Maeno, Y., Takezawa, M. and Ohnishi, M. 2011. Flood control and small-scale reservoirs. In River Basin Management VI. Ed.: Brebbia, C.A., Southampton, UK, WIT Press, 51-60.

Grobicki, A., MacLeod, F. and Pischke, F. 2015. Integrated policies and practices for flood and drought risk management. Water Policy 17. (1): 180-194.

Guerrero, B., Amosson, S., Nair, S. and Marek, T. 2017. The importance of regional analysis in evaluating agricultural water conservation strategies. Journal of Regional Analysis and Policy 47. (2): 188-198.

Haber, W. 2014. Landwirtschaft und Naturschutz. Weinheim, Germany, Wiley-VCH Verlag. Haines-Young, R. and Potschin, M. 2011. Common International Classification of Ecosystem Services (CICES): 2011 Update. London, European Environment Agency. Available at

Hinman, C. 2005. Low Impact Development Technical Guidance Manual for Puget Sound. Tacoma, WA, USA, Washington State University.

Hjerdt, K.N., McDonnell, J.J., Seibert, J. and Rodhe, A. 2004. A new topographic index to quantify downslope controls on local drainage. Water Resources Research 40. W05602.

Horoszné Gulyás, M. 2012. Lefolyás-szabályozás és talajvédelem (Run-off regulation and soil conservation). Természetföldrajzi Közlemények a Pécsi Tudományegyetem Földrajzi Intézetéből 1. (2): 41-56. (in Hungarian)

Hümann, M., Müller, C., Schüler, G., Schneider, R. and Thiele-Bruhn, S. 2011. Identification of run-off generation processes - Impact of different forest types on soil-water interrelations. Geophysical Research Abstracts 13. EGU2011-8035-1 IPCC 2013. Climate Change 2013: The Physical Science Basis. Summary for Policymakers. Intergovernmental Panel of Climate Change. Cambridge, UK, Cambridge University Press, Available at

IUCN 1997. Fishing for a Living: The Ecology and Economics of Fishponds in Central Europe. Cambridge, UK, International Union for Nature Conservation Publication.

Jørgensen, D. and Jørgensen, F.A. 2018. Aesthetics of energy landscapes. Environment, Space, Place 10. (1): 1-14.

Juhos, K., Czigány, Sz., Madarász, B. and Ladányi, M. 2019. Interpretation of soil quality indicators for land suitability assessment - a multivariate approach for Central European arable soils. Ecological Indicators 99. 261-272.

Kertész, Á., Madarász, B., Csepinszky, B. and Benke S. 2010. The role of conservation agriculture in landscape protection. Hungarian Geographical Bulletin 59. (2): 167-180.

Kocsis, T. and Anda, A. 2006. Microclimate simulation of climate change impacts in a maize canopy. Időjárás 116. (2): 109-122.

Kopecký, M. and Čížková, S. 2010. Using topographic wetness index in vegetation ecology: does the algorithm matter? Applied Vegetation Science 13. 450-459.

KSH 2012. Mezőgazdaság, 2011 (Agriculture, 2011). Budapest, Central Statistical Office (KSH). Availabeat

Kundzewicz, Z.W., Hegger, D.L.T., Matczak, P. and Driessen, P.P.J. 2018. Flood-risk reduction: Structural measures and diverse strategies. PNAS 115. (49): 12321-12325.

Laterra, P., Orúe, M.E. and Booman, G.C. 2012. Spatial complexity and ecosystem services in rural landscapes. Agriculture, Ecosystems and Environment 154. 56-67.

Leitinger, G., Tasser, E., Newesely, C., Obojes, N. and Tappeineret, U. 2010. Seasonal dynamics of surface run-off in mountain grassland ecosystems differing in land use. Journal of Hydrology 385. (1-4): 95-104.

Lóczy, D. 1998. Man-made terraces in a German agricultural landscape. Supplementi di Geografia Fisica e Dinamica Quaternaria 21. (1): 55-59.

Lóczy, D., Czigány, Sz. and Pirkhoffer, E. 2012. Flash flood hazards. In Studies on Water Management Issues. Ed.: Kumarasamy, M., Rijeka, InTech, 27-52.

Lóczy, D. 2013. Hydromorphological-geoecological foundations of floodplain management: Case study from Hungary. Saarbrücken, Lambert Academic Publishing.

Moore, M.T., Bennett, E.R., Farris, J.L. and Douglas Shields, F. Jr. 2004. Innovative uses of vegetated drainage ditches for reducing agricultural run-off. Water Science & Technology 49. (3): 117-123.

Murphy, P.N.C., Ogilvie, J. and Arp, P. 2009. Topographic modelling of soil moisture conditions: a comparison and verification of two models. European Journal of Soil Science 60. 94-109.

Niu, C.Y., Musa, A. and Liu, Y. 2015. Analysis of soil moisture condition in arid region of northern China. Solid Earth 6. 1157-1167. Doi: 10.5194/se-6- 1157-2015

Otto, S., Pappalardo, S.E., Cardinali, A., Masin, R., Zanin, G. and Borin, M. 2016. Vegetated ditches for the mitigation of pesticides run-off in the Po Valley. PLoS ONE 11. (4): e0153287.

Peng, S.H. and Han, K.T. 2018. Assessment of aesthetic quality on soil and water conservation engineering using the scenic beauty estimation method. Water 10. 407-422.

Pourali, S., Arrowsmith, C., Chrisman, N., Matkan, A.A. and Mitchell, D. 2016. Topography Wetness Index application in flood-risk-based land use planning. Applied Spatial Analysis 9. 39-54.

Pyke, C., Warren, M.P., Johnson, T., LaGro, J. Jr., Scharfenberg, J., Groth, P., Freed, R., Schroeer, W. and Main, E. 2011. Assessment of low impact development for managing storm water with changing precipitation due to climate change. Landscape and Urban Planning 103. 166-173.

Qiu, Z., Pennock, A., Giri, S., Trnka, C., Du, X. and Wang, H. 2017. Assessing soil moisture patterns using a soil topographic index in a humid region. Water Resources Management 31. (7): 2243-2255.

Raduła, M.W., Szymura, T.H. and Szymura, M. 2018. Topographic wetness index explains soil moisture better than bioindication with Ellenberg's indicator values. Ecological Indicators 85. 172-179.

Ribeiro, D. and Šmid Hribar, M. 2019. Assessment of land-use changes and their impacts on ecosystem services in two Slovenian rural landscapes. Acta geographica Slovenica 59. (2): 143-160.

Scholz, M. 2003. Sustainable operation of a small-scale flood-attenuation wetland and dry pond system. Water and Environment Journal 17. 171-175.

Sharma, A. 2010. Integrating terrain and vegetation indices for identifying potential soil erosion risk area. Geo-spatial Information Science 13. 201-209.

Seeger, M. and Ries, J.B. 2008. Soil degradation and soil surface process intensities on abandoned fields in Mediterranean mountain environments. Land Degradation and Development 19. (5): 488-501.

Šmid Hribar, M., Geršič, M., Pipan, P., Repolusk, P., Tiran, J., Topole, M. and Ciglič, R. 2017. Cultivated terraces in Slovenian landscapes. Acta geographica Slovenica 57. (2): 83-97.

Sørensen, R., Zinko, U. and Seibert, J. 2005. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences Discussions, European Geosciences Union 2. (4): 1807-1834.

Stolte, J. 2003. Effects of land use and infiltration behaviour on soil conservation strategies. Doctoral Thesis. Wageningen, Wageningen University. Available at

Stürck, J., Poortinga, A. and Verburg, P.H. 2014. Mapping ecosystem services: The supply and demand of flood regulation services in Europe. Ecological Indicators 38. 198-211.

Syrbe, R.-U. and Grunewald, K. 2013. Restrukturierungsbedarf für regionaltypische Landschaftselemente und Biotopstrukturen am Beispiel Sachsens. Natur und Landschaft 88. (3): 103-111.

Tanács, E., Belényesi, M., Lehoczki, R., Pataki, R., Petrik, O., Standovár, T., Pásztor, L., Laborczi, A., Szatmári, G., Molnár, Zs., Bede-Fazekas, Á., Kisné Fodor, L., Varga, I., Zsembery, Z. and Maucha, G. 2019. Országos, nagyfelbontású ökoszisztémaalaptérkép: módszertan, validáció és felhasználási lehetőségek (National large-scale ecosystem base map: methodology, validation and utilization opportunities). Természetvédelmi Közlemények 25. 34-58.

TEEB 2010. Chapter 5. The economics of valuing ecosystem services and biodiversity. In The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations. Ed.: Kumar, P., Cambridge, Earthscan Publications, 1-133.

Thiem, K. and Bastian, O. 2014. Steckbriefe für ausgewählte landschaftsprägende historische Kulturlandschaftselementtypen im Freistaat Sachsen. Historische Kulturlandschafts-elemente Sachsens 18/2014. Dresden, Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG). Available at

Thomas I.A., Jordan P., Shine O., Fenton O., Mellander P.-E., Dunlop P. and Murphy P.N.C. 2017. Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography. International Journal of Applied Earth Observation and Geoinformation 54. 38-52.

Tölgyesi, C., Török, P., Hábenczyus, A.A., Bátori, Z., Valkó, O., Deák, B. and Kelemen, A. 2020. Underground deserts below fertility islands?

Woody species desiccate lower soil layers in sandy drylands. Ecography 43. (6): 848-859.

Vandecastaele, I., Marí i Rivero, I. Baranzelli, C., Becker, W., Dreoni, I. Lavalle, C. and Batelaan, O. 2018. The Water Retention Index: Using land use planning to manage water resources in Europe. Sustainable Development 26. 122-131.

Výleta, R., Danáčová, M., Škrinár, A. Fencík, R. and Hlavčová, K. 2017. Monitoring and assessment of water retention measures in agricultural land. Earth and Environmental Science 95. 022008.

Wang, H., Gao, J.E., Zhang, S.L., Zhang, M.J. and Li, X.H. 2013. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW. PLoS One 8. (11): e79103.

Wang, S., Fu, B., Gao, G., Liu, Y. and Zhou, J. 2013. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. CATENA 101. 122-128.

Wei, W., Chen, D., Wang, L.X., Daryanto, S., Chen, L.D., Yu, Y., Sun, G. and Feng, T.J. 2016. Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Science Reviews 159.

World Bank 2019. Assessing Drought Hazard and Risk: Principles and Implementation Guidance. Washington, D.C., World Bank. Available at

Zhou, Q.M. 2017. Digital Elevation Model and Digital Surface Model. In The International Encyclopedia of Geography. Ed.-in-Chief. Richardson, D., New York, American Association of Geographers - John Wiley and Sons.

Zorn, M. and Komac, B. 2011. The importance of measuring erosion processes on the example of Slovenia. Hrvatski Geografski Glasnik 73. (2): 19-34.

Zucco, G., Brocca, L., Moramarco, T. and Morbidelli, R. 2014. Influence of land use on soil moisture spatial-temporal variability and monitoring. Journal of Hydrology 516. 193-199.

Žvokelj, B.P., Bric, V. and Triglav Čekada, M. 2015. Lasersko skeniranje in aerofotografiranje Slovenije. Geodetski vestnik 58. (2): 349-351.

How to Cite
NagyG., LóczyD., CzigányS., PirkhofferE., FábiánS. Ákos, CigličR., & FerkM. (2020). Soil moisture retention on slopes under different agricultural land uses in hilly regions of Southern Transdanubia. Hungarian Geographical Bulletin, 69(3), 263-280.