Granulometric properties of particles in Upper Miocene sandstones from thin sections, Szolnok Formation, Hungary

  • Csilla Király Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
  • György Falus Mining and Geological Survey of Hungary, Budapest, Hungary ; Institute of Geography and Earth Sciences, Faculty of Science, Eötvös University, Budapest, Hungary
  • Fruzsina Gresina Institute of Geography and Earth Sciences, Faculty of Science, Eötvös University, Budapest, Hungary
  • Gergely Jakab Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary ; Institute of Geography and Earth Sciences, Faculty of Science, Eötvös University, Budapest, Hungary ; Institute of Geography and Geoinformatics, University of Miskolc, Miskolc, Hungary https://orcid.org/0000-0001-5424-1983
  • Zoltán Szalai Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary ; Institute of Geography and Earth Sciences, Faculty of Science, Eötvös University, Budapest, Hungary https://orcid.org/0000-0001-5267-411X
  • György Varga Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary https://orcid.org/0000-0003-4784-6372
Keywords: grain size, grain shape, sandstone, image analysis, pore water-rock interaction

Abstract

Particle size and shape are among the most important properties of sedimentary deposits. Objective and robust determination of granulometric features of sediments is a challenging problem, and has been standingin the focal point of sedimentary studies for many decades. In this study, we provide an overview of a new analytical approach to characterize particles from thin sections of sandstones by using 2D automated optical static image analysis. The analysed samples are originated from the turbiditic Lower Pannonian (Upper Miocene) sediments of Szolnok Formation. Sandstone samples were analysed from 1,500 to 2,250 m depth range. According to the previous studies: the detrital components are quartz, muscovite, dolomite, K-feldspar and plagioclase. Diagenetic minerals are mostly carbonates (calcite, Fe-dolomite, ankerite, siderite), clay minerals (illite, kaolinite), ankerite, siderite and kaolinite. As the discussed Szolnok Formation is considered as a potential CO2 storage system (to reduce atmospheric CO2 concentration), special attention has to be paid on grain size and shape alteration evaluation, since pore water-rock interactions affected by CO2 injection may cause changes in particle properties.
The primarily aim of the present study was to develop a method for effective characterization of the particle size and shape of sandstones from thin sections. We have applied a Malvern Morphologi G3SE-ID automated optical static image analyser device, what is completed with a Raman spectrometer. Via the combined analysis of granulometry and chemical characterization, it was obvious that there were specific relationships among various grain shape parameters (e.g., circularity values correlate to width and length ratios, as well as to convexity) and the results indicated that based simply on particle shapes, muscovites can be effectively separated from other minerals. Quartz and feldspar grains showed the highest variability in shapes as these are detrital ones, and sometimes arrived as lithic fragments from which other parts were dissolved The size and shape of carbonate minerals depends highly on the original pore size and shape because these minerals are mainly diagenetic. The shape of detrital dolomites depends on diagenetic ankerite, as it replaces the rim of dolomites.

References

Ali, S.A., Clark, W.J., Moore, W.R. and Dribus, J.R. 2010. Diagenesis and reservoir quality. Oilfield Review Summer 22. (2): 14-27.

Arts, R., Beaubien, S., Benedictus, T., Czernichowski-Lauriol, I., Fabriol, H., Gastine, M., Gundogan, O., Kirby, G., Lombardi, S., May, F., Pearce, J., Persoglia, S., Remmelts, G., Riley, N., Sohrabi, M., Stead, R., Vercelli, S. and Vizika-Kavvadias, O. 2008. What does CO2 geological storage really mean? CO2GeoNet 3-19.

Asmussen, P., Conrad, O., Günther, A., Kirsch, M. and Riller, U. 2015. Semi-automatic segmentation of petrographic thin section images using a "seeded-region growing algorithm" with an application to characterize wheathered subarkose sandstone. Computers and Geosciences 83. 89-99. https://doi.org/10.1016/j.cageo.2015.05.001

Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P. and Mathiassen, O.M. 2007. CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control 1. 430-443. https://doi.org/10.1016/S1750-5836(07)00086-2

Barrett, P.J. 1980. The shape of rock particles, a critical review. Sedimentology 27. 291-303. https://doi.org/10.1111/j.1365-3091.1980.tb01179.x

Bilandžija, D., Zgorelec, Ž. and Kisić, I. 2017. Influence of tillage systems on short-term soil CO2 emissions. Hungarian Geographical Bulletin 66. (1): 29-35. https://doi.org/10.15201/hungeobull.66.1.3

Burger, H. and Skala, W. 1976. Comparison of sieve and thin-section technique by a Monte-Carlo model. Computers and Geosciences 2. 123-139. https://doi.org/10.1016/0098-3004(76)90103-5

Cox, M.R. and Budhu, M. 2008. A practical approach to grain shape quantification. Engineering Geology 96. 1-16. https://doi.org/10.1016/j.enggeo.2007.05.005

Folk, L.R. 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. The Journal of Geology 62. 344-359. https://doi.org/10.1086/626171

Horváth, F. and Royden, L. 1981. Mechanism for formation of the intra-Carpathian basins: a review. Earth Evolution Sciences 1. 307-316.

Jiang, F., Gu, Q., Hao, H., Li, N., Wang, B. and Hu, X. 2018. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone. Computers and Geosciences 115. 143-153. https://doi.org/10.1016/j.cageo.2018.03.010

Juhász, A., M. Tóth, T., Ramseyer, K. and Matter, A. 2002. Connected fluid evolution in fractured crystalline basement and overlying sediments, Pannonian Basin, SE Hungary. Chemical Geology 182. 91-120. https://doi.org/10.1016/S0009-2541(01)00269-8

Juhász, Gy. 1992. A pannóniai (s.l.) formációk térképezése az Alföldön: elterjedés, fácies és üledékes környezet (Pannonian [s.l.] lithostratigraphic units in the Great Hungarian Plain: distribution, fades and sedimentary environment). Földtani Közlöny 122. 133-165.

Juhász, Gy. and Thamó-Bozsó, E. 2006. Az alföldi pannóniai s.1. képződmények ásványi összetétele II. - A pannóniai s.1. homokok és homokkövek ásványi összetétel változásának tendenciái és földtani jelentőségük (The mineral composition of the Pannonian s.l. Formations in the Great Hungarian Plain II. - Tendencies of the changes of the mineral composition of the Pannonian s.l. sands and sandstones and their geological significance). Földtani Közlöny 136. (2): 431-450.

Kellerhals, R., Shaw, J. and Arora, V.K. 1975. On grain size from thin sections. The Journal of Geology 83. 79-96. https://doi.org/10.1086/628046

Kim, Y., Suh, H.S. and Yun, T.S. 2019. Reliability and applicability of the Krumbein-Sloss chart for estimating geomechanical properties in sands. Engineering Geology 248. 117-123. https://doi.org/10.1016/j.enggeo.2018.11.001

Király, Cs., Sendula, E., Szamosfalvi, Á., Káldos, R., Kónya, P., Kovács, I.J., Füri, J., Bendő, Zs. and Falus, Gy. 2016. The relevance of dawsonite precipitation in CO2 sequestration in the Mihályi-Répcelak area, NW Hungary. In Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction. Eds.: Armitage, P.J., Butcher, A.R., Churchill, J.M., Csoma, A.E., Hollis, C., Lander, R.H., Omma, J. and Worden, R.H., Special Publications. London, Geological Society. https://doi.org/10.1144/SP435.15

Krumbein, W.C. 1941. Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Petrology 11. 64-72. https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D

Krumbein, W.C. and Sloss, L.L. 1951. Stratigraphy and Sedimentation. San Francisco, W.H. Freeman and Company. https://doi.org/10.1097/00010694-195105000-00019

Larsen, G. and Chilingar, G.V. 1979. Diagenesis in Sediments and Sedimentary Rocks. New York, Elsevier.

Magyar, I., Radivojevic, D., Sztanó, O., Synak, R., Ujszászi, K. and Pócsik, M. 2013. Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change 103. 168-173. https://doi.org/10.1016/j.gloplacha.2012.06.007

Malvern Instruments Ltd. 2015. Morphologi G3 User Manual. Malvern, United Kingdom.

Mátyás, J. and Matter, A. 1997. Diagenetic indicators of meteoric flow in the Pannonian Basin, Southeast Hungary. Basin-wide diagenetic patterns: Integrated petrologic, geochemical, and hydrologic considerations. SEPM Special Publication 57. 281-296. https://doi.org/10.2110/pec.97.57.0281

Mingireanov Filho, I., Vallin Spina, T., Xavier Falcão, A. and Campane Vidal, A. 2013. Segmentation of sandstone thin section images with separation of touching grains using optimum path forest operators. Computers and Geosciences 57. 146-157. https://doi.org/10.1016/j.cageo.2013.04.011

Moss, A.J. 1966. Origin, shaping and significance of quartz sand grains. Journal of the Geological Society of Australia 13. 97-136. https://doi.org/10.1080/00167616608728607

Nasdala L., Smith, D.C., Reinhard, K. and Ziemann, M.A. 2004. Raman spectroscopy: Analytical perspectives in mineralogical research. EMU Notes in Mineralogy 6. 281-343. https://doi.org/10.1180/EMU-notes.6.7

Pettijohn, F.J. 1952. Sedimentary Rocks. 2nd edition. New York, Harper.

Rogers, C.D.F. and Smalley, I.J. 1993. The shape of loess particles. Naturwissenschaften 80. 461-462. https://doi.org/10.1007/BF01136036

Schäfer, A. and Teyssen, T. 1987. Size, shape and orientation of grains in sands and sandstones-image analysis applied to rock thin-sections. Sedimentary Geology 52. 251-271. https://doi.org/10.1016/0037-0738(87)90064-9

Sendula, E. 2015. Ipari CO2 tárolásra alkalmas hazai üledékes kőzetek petrográfiai vizsgálata és a rendszerekben várható geokémiai változások modellezése (Petrographical analyses of Pannonian sedimentary rocks, which are suitable to industrial CO2 storage and geochemical modelling of the system). MSc Thesis. Budapest, ELTE Kőzettan-Geokémia Tanszék.

Sochan, A., Zieliński, P. and Bieganowski, A. 2015. Selection of shape parameters that differentiate sand grains, based on the automatic analysis of two-dimensional images. Sedimentary Geology 327. 14-20. https://doi.org/10.1016/j.sedgeo.2015.07.007

Szamosfalvi, Á., Falus, Gy. and Juhász, Gy. 2011. The potential options of storing CO2 in saline reservoirs in Hungary. Magyar Geofizika 52. (2): 95-105. (In Hungarian with English abstract.)

Varga, Gy. and Roettig, C.-B. 2018. Identification of Saharan dust particles in Pleistocene dune sandpaleosol sequences of Fuerteventura (Canary Islands). Hungarian Geographical Bulletin 67. (2): 121-141. https://doi.org/10.15201/hungeobull.67.2.2

Varga, Gy., Gresina, F., Újvári, G., Kovács, J. and Szalai, Z. 2019. On the reliability and comparability of laser diffraction grain size measurements of paleosols in loess records. Sedimentary Geology 389. 42-53. https://doi.org/10.1016/j.sedgeo.2019.05.011

Varga, Gy., Kovács, J., Szalai, Z., Cserháti, Cs. and Újvári, G. 2018. Granulometric characterization of paleosols in loess series by automated static image analysis. Sedimentary Geology 370. 1-14. https://doi.org/10.1016/j.sedgeo.2018.04.001

Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30. 377-392. https://doi.org/10.1086/622910

Xia, W. 2017. Role of particle shape in the floatability of mineral particle: An overview of recent advances. Powder Technology 317. 104-116. https://doi.org/10.1016/j.powtec.2017.04.050

Zacháry, D. 2019. Applications of stable carbon isotopes in soil science with special attention to natural 13C abundance approach. Hungarian Geographical Bulletin 68. (1): 3-20. https://doi.org/10.15201/hungeobull.68.1.1

Zacháry, D., Filep, T., Jakab, G., Varga, Gy., Ringer, M. and Szalai, Z. 2018. Kinetic parameters of soil organic matter decomposition in soils under forest in Hungary. Geoderma Regional 14. e00187. https://doi.org/10.1016/j.geodrs.2018.e00187

Published
2019-12-28
How to Cite
KirályC., FalusG., GresinaF., JakabG., SzalaiZ., & VargaG. (2019). Granulometric properties of particles in Upper Miocene sandstones from thin sections, Szolnok Formation, Hungary. Hungarian Geographical Bulletin, 68(4), 341-353. https://doi.org/10.15201/hungeobull.68.4.2
Section
Articles