Analysing the sensitivity of Hungarian landscapes based on climate change induced shallow groundwater fluctuation

  • Zoltán Zsolt Fehér Department of Physical Geography and Geoinformatics, University of Szeged, Szeged, Hungary
  • János Rakonczai Department of Physical Geography and Geoinformatics, University of Szeged, Szeged, Hungary
Keywords: climate change, shallow groundwater, spatiotemporal sequential Gaussian cosimulation, Markov 2-type coregionalization

Abstract

One of the undoubtedly recognizable consequences of the ongoing climate change in Hungary is the permanent change of groundwater depth, and consequently the sustainably reachable local water resources. These processes trigger remarkable changes in soil and vegetation. Thus, in research of sensitivity of any specific landscape to the varying climatic factors, monitoring and continuous evaluation of the water resources is inevitable. The presented spatiotemporal geostatistical cosimulation framework is capable to identify rearrangements of the subsurface water resources through water resource observations. Application of the Markov 2-type coregionalization model is based on the assumption, that presumably only slight changes have to be handled between two consecutive time instants, hence current parameter set can be estimated based on the spatial structures of prior and current dataset and previously identified parameters. Moreover, the algorithm is capable to take into consideration the significance of the geomorphologic settings on the subsurface water flow. Trends in water resource changes are appropriate indicators of certain areas climate sensitivity. The method is also suitable in determination of the main cause of the extraordinary groundwater discharges, like the one, observed from the beginning of the 1980’s in the Danube–Tisza Interfluve in Hungary.

References

Alkhaier, F., Flerchinger, G.N. and Su, Z. 2012. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modelling and description. Hydrology and Earth System Sciences 16. 1817-1831. https://doi.org/10.5194/hess-16-1817-2012

De Almeida, A. and Journel, A.G. 1994. Joint simulation of multiple variables with a Markov-type coregionalization model. Mathematical Geology 26. (5): 565-588. https://doi.org/10.1007/BF02089242

Deutsch, C.V. and Journel, A.G. 1998. GSLIB: Geostatistical software library and user's guide. 2nd edition, New York, Oxford University Press.

Dillon, P. and Simmers, I. (eds.) 1998. Shallow Groundwater Systems. IAH - International Contributions to Hydrogeology Series 18. London, CRC Press.

EEA 2017. Climate change, impacts and vulnerability in Europe 2016. - An indicator-based report. Reports of the European Environmental Agency 1/2017, Luxembourg, European Environmental Agency. https://www.eea.europa.eu/publications/climatechange-impacts-and-vulnerability-2016#tab-datavisualisations

Erdélyi, M. 1978. Hydrodynamics of the Hungarian Basin. In Hydrogeology of Great Sedimentary Basins. Conference of Budapest, May-June 1976. Budapest, Műszaki Könyvkiadó, 146-162.

Faragó, T., Láng, I. and Csete, L. 2010. Climate change and Hungary: mitigating the hazard and preparing for the impacts. The VAHAVA report. Budapest, Ministry for the Environment and Water Management - Hungarian Academy of Sciences. https://www.preventionweb.net/files/18582_thevahavareport08dec2010.pdf

Farkas, J.Zs., Hoyk, E. and Rakonczai, J. 2017. Geographical analysis of climate vulnerability at a regional scale: The case of the Southern Great Plain in Hungary. Hungarian Geographical Bulletin 66. (2): 129-144. https://doi.org/10.15201/hungeobull.66.2.3

Fehér, Z. 2007. Analysis on fluctuation of ground water level in the case of Danube-Tisza Interfluve. Paper for the 14th Hungarian Geomathematical Congress, Mórahalom, Hungary.

Fehér, Z. 2008. Spatial uncertainty of groundwater-level estimations on the Danube-Tisza Interfluve. Paper for the 1st Croatian-Hungarian and 15th Hungarian Geomathematical Congress, Mórahalom, Hungary.

Fehér, Z. 2011. A bizonytalanság szerepe a Duna-Tisza közi talajvíz változásának modellezésében (The role of the estimation uncertainty in the modelling of groundwater changes on the Danube-Tisza Interfluve). Doctoral thesis. Szeged, University of Szeged.

Fehér, Z. 2015a. Talajvízkészletek változásának geostatisztikai alapú elemzése - a rendelkezésre álló információk természete és feldolgozása (Geostatistical analysis of Groundwater resources - the nature and processing of available informations). Hungarian Journal of Hydrology 85. (2): 15-31.

Fehér, Z. 2015b. A spatiotemporal stochastic framework of groundwater fluctuation analysis on the south-eastern part of the Great Hungarian Plain. Journal of Environmental Geography 8. (3-4): 41-52. https://doi.org/10.1515/jengeo-2015-0011

Fehér, Z. 2019. Large Scale Geostatistical Modelling of the Shallow Groundwater Time Series on the Southern Great Hungarian Plain - Two Approaches for Spatiotemporal Stochastic Simulation of a Non-Complete Monitoring Dataset. Szeged, University of Szeged. Available at http://doktori.bibl.u-szeged.hu/10122/

Fehér, Z. and Rakonczai, J. 2012. Reliability enhancement of groundwater estimations. In Geomathematics as Geoscience. 4th Croatian-Hungarian and 15th Hungarian Geomathematical Congress, Opatija. Ed.: Malvic, T., Zagreb, Croatian Geological Society, 32-40.

Geiger, J. 2015. Some applications of Markovtype sequential Gaussian co-simulations. In The Geomathematical Models: The mirrors of geological reality or science fictions? Eds.: Horváth, J., Cvetkovic, M. and Hatvani, I.G., 7th Croatian-Hungarian and 18th Hungarian Geomathematical Congress, Mórahalom. Budapest, Hungarian Geological Society, 58-65.

Goovaerts, P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rain-fall. Journal of Hydrology 228. 113-129. https://doi.org/10.1016/S0022-1694(00)00144-X

Gowing, J., Parkin, G., Forsythe, N., Walker, D., Halle, A.T. and Alamirew, D. 2016. Shallow groundwater in sub-Saharan Africa: neglected opportunity for sustainable intensification of small-scale agriculture? Hydrology and Earth System Sciences 2016. 1-33. https://doi.org/10.5194/hess-2015-549

Gulácsi, A. and Kovács, F. 2018. Drought monitoring of forest vegetation using MODIS-based normalized difference drought index in Hungary. Hungarian Geographical Bulletin 67. (1): 29-42. https://doi.org/10.15201/hungeobull.67.1.3

IPCC 2014. Climate Change 2014: Synthesis Report. IPCC, Geneva, Switzerland: Cambridge University Press.

Kohán, B. 2014. GIS alapú vizsgálat a Duna-Tisza közi homokhátság szárazodásának témakörében (GIS-based analysis of the aridification of the Danube-Tisza Interfluve). PhD dissertation. Budapest, Eötvös Loránd University. Available at https://doktori.hu/index.php?menuid=193&lang=HU&vid=13979

Kohán, B. and Szalai, J. 2014. Spatial analysis of groundwater level monitoring network in the Danube-Tisza Interfluve using semivariograms. Hungarian Geographical Bulletin 63. (4): 379-400. https://doi.org/10.15201/hungeobull.63.4.2

Kovács, J., Kiszely-Peres, B., Szalai, J. and Kovácsné Székely, I. 2010. Periodicity in shallow groundwater level fluctuation time series in the Trans-Tisza Region, Hungary. Acta Geographica ac Geologica et Meteorologica Debrecina 2010. (4-5): 65-70.

Kuti, L., Vatai, T. and Müller, T. 1998. A talajvíz felszín alatti mélysége változásának vizsgálata a Duna-Tisza közi hátságon az 1950-1996 között készült térképek alapján (Analysis of the shallow groundwater depth below surface on the sand ridge of the Danube-Tisza Interfluve, based on maps prepared between 1950-1996). Az MHT XVI. Országos Vándorgyűlése I. 90-100.

Kyriakidis, P.C. and Journel, A.G. 1999. Geostatistical space-time models: a review. Mathematical Geology 31. (6): 651-684. https://doi.org/10.1023/A:1007528426688

Ladányi, Z., Rakonczai, J., Kovács, F., Geiger, J. and Deák, J.Á. 2009. The effect of recent climatic change on the Great Hungarian Plain. Cereal Research Communications 37. 477-480.

Ladányi, Z., Blanka, V., Deák, J.Á., Rakonczai, J. and Mezősi, G. 2016. Assessment of soil and vegetation changes due to hydrologically driven desalinization process in an alkaline wetland, Hungary. Ecological Complexity 25. 1-10. https://doi.org/10.1016/j.ecocom.2015.11.002

Laštůvka, Z. 2009. Climate change and its possible influence on the occurrence and importance of insect pests. Plant Protection Science 45. 53-62. https://doi.org/10.17221/2829-PPS

Liebe, P. 1994. A rétegvízkészletek és a nyomásszintek változása a Duna-Tisza közi homokhátságon és azok kihatásai a talajvízszintekre (Changes of confined water resources and their piezometric levels and their effects on the shallow groundwater on the sand ridge of the Danube-Tisza Interfluve). In A Duna-Tisza közi hátság vízgazdálkodási problémái. A Nagyalföld Alapítvány Kötetei 3. Ed.: Pálfai, I., Békéscsaba, 25-29.

Major, P. 1994. Talajvízszint-süllyedések a Duna- Tisza közén (Groundwater discharges on the Danube-Tisza Interfluve). In A Duna-Tisza közi hátság vízgazdálkodási problémái. A Nagyalföld Alapítvány Kötetei 3. Ed.: Pálfai, I., Békéscsaba, 17-24.

Margóczi, K., Szanyi, J., Aradi, E. and Busa-Fekete, B. 2007. Hydrological background of the dune slack vegetation in the Kiskunság. Annals of Warsaw University of Life Sciences - Land Reclamation 38. 105-114. https://doi.org/10.2478/v10060-008-0027-0

Marton, L. 2009. Alkalmazott hidrogeológia (Applied hydrogeology). Budapest, Eötvös Kiadó.

Mezősi, G., Meyer, B.C., Loibl, W., Aubrecht, C., Csorba, P. and Bata, T. 2013. Assessment of regional climate change impacts on Hungarian landscapes. Regional Environmental Change 13. (4): 797-811. https://doi.org/10.1007/s10113-012-0326-1

Mezősi, G., Sipos, Gy., Rakonczai, J., Fehér, Z. and Szatmári, J. 2017. Vízrajzi hálózatfejlesztés - Felszínközeli vizek monitoringjának optimalizálása (Hydrographic observation network development - Optimization of the shallow groundwater monitoring). Research report, Budapest, General Directorate of Water Management.

Mucsi, L., Geiger, J. and Malvic, T. 2013. The advantages of using sequential stochastic simulations when mapping small-scale heterogeneities of the groundwater level. Journal of Environmental Geography 6. (3-4): 39-47. https://doi.org/10.2478/jengeo-2013-0005

NORDEN 2015. Peatlands, Climate Change Mitigation and Biodiversity Conservation. Copenhagen, Nordic Council of Ministers.

Pálfai, I. 1992. A Duna-Tisza közi talajvízszint süllyedés okai (The reasons of the groundwater discharge on the Danube-Tisza Interfluve). In Az MHT X. Vándorgyűlése, IV. 133-146.

Pálfai, I. 1994. Összefoglaló tanulmány a Duna-Tisza közi talajvízszint-süllyedés okairól és a vízhiányos helyzet javításának lehetőségeiről (The background of the shallow groundwater discharge and the moderation of water scarcity - a summary). In A Duna-Tisza közi hátság vízgazdálkodási problémái. A Nagyalföld Alapítvány Kötetei 3. Ed.: Pálfai, I. Békéscsaba, 111-126.

Pannatier, Y. 1996. VARIOWIN: Software for Spatial Data Analysis in 2D. New York, Springer. https://doi.org/10.1007/978-1-4612-2392-4

Patron, C. 2018. China's Looming Water Crisis. London, Chinadialogue. https://chinadialogue-production.s3.amazonaws.com/uploads/content/file_en/10608/China_s_looming_water_crisis_v.2__1_.pdf

Pongrácz, R., Bartholy, J., Kis, A. and Szabó, J.A. 2016. Projected changes of extreme runoff characteristics under climate change conditions. Case study for a Central/Eastern European catchment. Paper for the 96th Annual Meeting of the American Meteorological Society, New Orleans.

Rakonczai, J. 2011. Effects and consequences of global climate change in the Carpathian Basin. In Climate Change - Geophysical Foundations and Ecological Effects. Eds.: Blanco, J. and Kheradmand, H., Rijeka, InTech, 297-322. https://doi.org/10.5772/24679

Rakonczai, J. 2018. Global and Geopolitical Environmental Challenges. Budapest, Corvinus University of Budapest. http://unipub.lib.uni-corvinus.hu/3980/

Rakonczai, J., Ladányi, Z., Deák, J.Á. and Fehér, Z. 2012. Indicators of the climate change in the landscape: Investigation on the soil-groundwater-vegetation connection system in the Great Hungarian Plain. In Review of Climate Change Research Program at the University of Szeged (2010-2012). Eds.: Rakonczai, J. and Ladányi, Z., Szeged, University of Szeged, 41-58.

Rakonczai, J. and Fehér, Z. 2015. A klímaváltozás szerepe az Alföld talajvízkészleteinek időbeli változásaiban (The role of climate change in the temporal tendencies of the groundwater resources of the Great Hungarian Plains). Hungarian Journal of Hydrology 95. (1): 1-15.

Rétháti, L. 1977. Hiányos talajvíz-idősorok kiegészítése (Completion of non-continuous groundwater time series). Hungarian Journal of Hydrology 57. (4): 153-162.

Shmaryan, L.E. and Journel, A.G. 1999. Two Markov models and their application. Mathematical Geology 31. (8): 965-988. https://doi.org/10.1023/A:1007505130226

Stábitz, J., Pongrácz, R. and Bartholy, J. 2014. Estimated changes of drought tendency in the Carpathian Basin. Hungarian Geographical Bulletin 63. (4): 365-378. https://doi.org/10.15201/hungeobull.63.4.1

Sterl, A., Severijns, C., van Oldenborgh, G.J., Dijkstra, H., Hazeleger, W., van den Broeke, M., Burgers, G., van den Hurk, B., van Leeuwen, P.J. and van Velthoven, P. 2009. The ESSENCE project - signal to noise ratio in climate projections. Geophysical Research Letters. Available at http://knmi.nl/sterl/Essence/essence_1_v2.2.pdf

Szalai, J. 2011. Talajvízszint-változások az Alföldön (Groundwater changes on the Hungarian Great Plain). In Környezeti változások és az Alföld. A Nagyalföld Alapítvány Kötetei 7. Ed.: Rakonczai, J., Békéscsaba, 97-110.

Szatmári, G., Barta, K. and Pásztor, L. 2015. An application of a spatial simulated annealing sampling optimization algorithm to support digital soil mapping. Hungarian Geographical Bulletin 64. (1): 35-48. https://doi.org/10.15201/hungeobull.64.1.4

Szilágyi, J. and Vörösmarty, C.J. 1993. A Duna-Tisza közi talajvízszint-süllyedések okainak vizsgálata (Analysis of the reasons of the groundwater table decreases on the Danube-Tisza Interfluve). Vízügyi Közlemények 3. 280-294.

Szilágyi, J. and Vörösmarty, C.J. 1997. Water-balance modelling in a changing environment: Reductions in unconfined aquifer levels in the area between the Danube and Tisza rivers in Hungary. Journal of Hydrology and Hydromechanics 45. (5): 348-364.

Thiébaux, H.J. 1997. The power of duality in spatialtemporal estimation. Journal of Climate 10. 567-573. https://doi.org/10.1175/1520-0442(1997)010<0567:TPOTDI>2.0.CO;2

USAID 2017. US. Government Global Water Strategy. Washington D. C. https://www.usaid.gov/sites/default/files/documents/1865/Global_Water_Strategy_2017_final_508v2.pdf

Van der Linden, P. and Mitchell, J.F.B. (eds.) 2009. ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Exeter, Met Office. http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf

Völgyesi, I. 2006. A Homokhátság felszín alatti vízháztartása - vízpótlási és vízvisszatartási lehetőségek (Subsurface water balance of the Sand Ridge - possibilities for water supply and retention). In Az MHT XXIV. Országos Vándorgyűlése, II. 753-762.

Wang, X., Zhang, G., Xu, Y.J. and Shan, X. 2015. Defining an ecologically ideal shallow groundwater depth for regional sustainable management: Conceptual development and case study on the Sanjiang Plain, Northeast China. Water 2015. (7): 3997-4025. https://doi.org/10.3390/w7073997

Wilbanks, T.J. 2002. Geographic scaling issues in integrated assessments of climate change. Integrated Assessment 3. (2-3): 100-114. https://doi.org/10.1076/iaij.3.2.100.13575

Published
2019-12-28
How to Cite
FehérZ. Z., & RakonczaiJ. (2019). Analysing the sensitivity of Hungarian landscapes based on climate change induced shallow groundwater fluctuation. Hungarian Geographical Bulletin, 68(4), 355-372. https://doi.org/10.15201/hungeobull.68.4.3
Section
Articles