Seasonal trends in the Early Twentieth Century Warming (ETCW) in a centennial instrumental temperature record from Central Europe

  • Tímea Kocsis Department of Methodology for Business Analysis, Faculty of Commerce, Hospitality and Tourism, Budapest Business University, Budapest, Hungary https://orcid.org/0000-0003-3430-5569
  • Rita Pongrácz Department of Meteorology, Faculty of Science, ELTE Eötvös Loránd University, Budapest, Hungary https://orcid.org/0000-0001-7591-7989
  • István Gábor Hatvani Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budapest, Hungary https://orcid.org/0000-0002-9262-7315
  • Norbert Magyar Department of Methodology for Business Analysis, Faculty of Commerce, Hospitality and Tourism, Budapest Business University, Budapest, Hungary
  • Angéla Anda Department of Meteorology and Water Management, Georgikon Campus, Hungarian University of Agronomy and Life Sciences, Keszthely, Hungary https://orcid.org/0000-0002-9750-1674
  • Ilona Kovács-Székely Department of Methodology for Business Analysis, Faculty of Commerce, Hospitality and Tourism, Budapest Business University, Budapest, Hungary https://orcid.org/0009-0000-0025-9125
Keywords: change-point detection, Early Twentieth Century Warming (ETCW), temperature records, time series analysis

Abstract

The goal of the present paper is to investigate whether any objectively defined and statistically significant changes can be discovered in one of the longest homogenized instrumental temperature records in East-Central Europe. Thus, it is hoped that the present analysis will add to earlier attempts and elucidate the persistence of the warming period observed in the early 20th century. Similar to the global tendency, the Early Twentieth Century Warming (hereinafter, ETCW) period can be identified between 1931 and 1951 in the annual mean temperature time series of Keszthely, a small town in Hungary. The Mann-Kendall trend test was used to determine whether a monotonic trend was present, as it is not possible to regard the residuals of the linear trend as normally distributed. A significant rising trend can be observed in the warming period in spring of the years between 1925 and 1951. In case of summer and autumn, this period cannot be characterized as having any significant identifiable trend. A rise in the mean can, however, be recognized. Overall, the specific regional manifestation of the global ETCW may clearly be illustrated in this study via detailed statistical analysis of the temperature records for Keszthely, a location with one of the longest temperature records in Hungary. However, other regions surrounding Hungary show similar climatic trends, emphasizing the fact that the behaviour presented here is not unique to Central and Eastern Europe.

References

ALEXANDROV, V., SCHNEIDER, M., KOLEVA, E. and MOISSELIN, J.-M. 2004. Climate variability and change in Bulgaria during the 20th century. Theoretical and Applied Climatology 79. (3): 133–149. https://doi.org/10.1007/s00704-004-0073-4

ALLAN, R., BROHAN, P., COMPO, G.P., STONE, R., LUTERBACHER, J. and BRÖNNIMANN, S. 2011. The international Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative. Bulletin of the American Meteorological Society 92. (11): 1421–1425. https://doi.org/10.1175/2011BAMS3218.1

ANDA, A., SIMON, SZ. and SIMON-GÁSPÁR, B. 2023. Impacts of wintertime meteorological variables on decomposition of Phragmites australis and Solidago canadensis in the Balaton System. Theoretical and Applied Climatology 151. 1963–1979. https://doi.org/10.1007/s00704-023-04370-y

BÉLL, B. and TAKÁCS, B. (eds.) 1974. A Balaton éghajlata (Climate of the Lake Balaton). Budapest, OMSZ. (in Hungarian)

BOKUCHAVA, D.D. and SEMENOV, V.A. 2021. Mechanisms of the early 20th century warming in the Arctic. Earth-Science Reviews 222. 103820. https://doi.org/10.1016/j.earscirev.2021.103820

BÖHM, R., AUER, I., BRUNETTI, M., MAUGERI, M., NANNI, T. and SCHÖNER, W. 2001. Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. International Journal of Climatology 21. (14): 1779–1801. https://doi.org/10.1002/joc.689

BRÁZDIL, R., ZAHRADNÍČEK, P., PIŠOFT, P., ŠTĚPÁNEK, P., BĚLÍNOVÁ, M. and DOBROVOLNÝ, P. 2012. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theoretical and Applied Climatology 110. (1): 17–34. https://doi.org/10.1007/s00704-012-0604-3

BRÖNNIMANN, S. 2009. Early twentieth-century warming. Nature Geoscience 2. (11): 735–736. https://doi.org/10.1038/ngeo670

BRUNETTI, M., MAUGERI, M. and NANNI, T. 2000. Variations of temperature and precipitation in Italy from 1866 to 1995. Theoretical and Applied Climatology 65. (3): 165–174. https://doi.org/10.1007/s007040070041

CAMUFFO, D. and JONES, P.D. 2002. Improved understanding of past climatic variability from early daily European instrumental sources. In Improved Understanding of Past Climatic Variability from Early Daily European Instrumental Sources. Eds.: CAMUFFO, D. and JONES, P., Dordrecht, Springer Netherlands, 1–4. https://doi.org/10.1007/978-94-010-0371-1_1

CAMUFFO, D. 2018. Evidence from the archives of societies: Early instrumental observations. In The Palgrave Handbook of Climate History. Eds.: WHITE, S., PFISTER, C. and MAUEL-SHAGEN, F., London UK, Palgrave Macmillan, 83–92. https://doi.org/10.1057/978-1-137-43020-5_7

DANG, A.T.N., KUMAR, L., REID, M. and ANH, L.N.T. 2021. Modelling the susceptibility of wetland plant species under climate change in the Mekong Delta, Vietnam. Ecological Informatics 64. 1–15. https://doi.org/10.1016/j.ecoinf.2021.101358

DA SILVA, R.M., SANTOS, C.A.G., MOREIRA, M., CORTE-REAL, J., SILVA, V.C. and MEDEIROS, I.C. 2015. Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards 77. 1205–1221. https://doi.org/10.1007/s11069-015-1644-7

DEE, D., THORNE, P., NOONE, S., BADDOUR, O. and TASSONE, C. 2021. The critical role of observations in informing climate science, assessment and policy. Boletín-Organización Me-teorológica Mundial 70. (2): 27–33.

DELWORTH, T.L. and KNUTSON, T.R. 2000. Simulation of early 20th century global warming. Science 287. (5461): 2246–2250. https://doi.org/10.1126/science.287.5461.2246

DUCRÉ-ROBITAILLE, J.-F., VINCENT, L.A. and BOULET, G. 2003. Comparison of techniques for detection of discontinuities in temperature series. International Journal of Climatology 23. (9): 1087–1101. https://doi.org/10.1002/joc.924

GILBERT, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. London, John Wiley & Sons.

HAMED, K.H. and RAO, A.R. 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204. 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X

HATVANI, I.G., DE BARROS, V.D., TANOS, P., KOVÁCS, J., KOVÁCS, I.S. and CLEMENT, A. 2020. Spatiotemporal changes and drivers of trophic status over three decades in the largest shallow lake in Central Europe, Lake Balaton. Ecological Engineering 151. 105861. https://doi.org/10.1016/j.ecoleng.2020.105861

HATVANI, I.G., TOPÁL, D., RUGGIERI, E. and KERN, Z. 2022. Concurrent changepoints in Greenland ice core & delta: 180 records and the North Atlantic Oscillation over the past millennium. Atmosphere 13. (1): 93. https://doi.org/10.3390/atmos13010093

HEGERL, G.C., BRÖNNIMANN, S., SCHURER, A. and COWAN, T. 2018. The early 20th century warming: Anomalies, causes, and consequences. WIREs Climate Change 9. (4): e522. https://doi.org/10.1002/wcc.522

HERRERA-GRIMALDI, P., GARCÍA-MARÍN, A., AYUSO-MUÑOZ, J.L., FLAMINI, A., MORBIDELLI, R. and AYUSO-RUÍZ, J.L. 2018. Detection of trends and break points in temperature: The case of Umbria (Italy) and Guadalquivir Valley (Spain). Acta Geophysica 66. (3): 329–343. https://doi.org/10.1007/s11600-018-0118-1

HIPEL, K.W. and MCLEOD, A.I. 1994. Time Series Modelling of Water Resources and Environmental Systems. Amsterdam, Elsevier.

HORVÁTH, SZ., MAKRA, L. and MIKA, J. 2005. 20th century variations of the soil moisture in East Hungary. Acta Climatologica et Chorologica, Universitatis Szegediensis Tom. 38–39. 85–95.

Hungarian Meteorological Service – on its homepage www.met.hu: [https://www.met.hu/eghajlat/eghajlatvaltozas...] and [https://www.met.hu/eghajlat/eghajlatvaltozas...] (in Hungarian)

IPCC 2021. Summary for policymakers. In Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: MASSON-DELMOTTE, V. et al., New York–Cambridge UK, Cambridge University Press, 3−32. https://doi.org/10.1017/9781009157896.001

IZSÁK, B. and SZENTIMREY, T. 2020. To what extent does the detection of climate change in Hungary depend on the choice of statistical methods? GEM – International Journal on Geomathematics 11. (1): 17. https://doi.org/10.1007/s13137-020-00154-y

JONES, P.D. 2001. Early European instrumental records. In History and Climate. Eds.: JONES, P.D., OGILVIE, A.E.J., DAVIES, T.D. and BRIFFA, K.R., New York, Springer Science, 55–77. https://doi.org/10.1007/978-1-4757-3365-5_4

KENDALL, M. 1975. Rank Correlation Methods. London, Charles Griffin.

KOCSIS, T. and ANDA, A. 2006. A keszthelyi meteorológiai megfigyelések története (The history of the meteorological meas-urements at Keszthely). Keszthely, Hungary, PE-GMK Nyomda. (in Hungarian)

KOCSIS, T., KOVÁCS-SZÉKELY, I. and ANDA, A. 2020. Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, Western Hungary. Theoretical and Applied Climatology 139. (3): 849–859. https://doi.org/10.1007/s00704-019-03014-4

MAKRA, L., MIKA, J. and HORVÁTH, SZ. 2005. 20th century variations of the soil moisture content in East Hungary in connection with global warming. Physics and Chemistry of the Earth 30. 181–186. https://doi.org/10.1016/j.pce.2004.08.035

MANN, H.B. 1945. Nonparametric tests against trend. Econometrica 13. (3): 245–259. https://doi.org/10.2307/1907187

MEYERS, S.R. 2014. Astrochron: An R package for astrochronology. Available at https://cran.r-project.org/package=astrochron

MITSCH, W.J., BERNAL, B., NAHLIK, A.M., MANDER, Ü., ZHANG, L., ANDERSON, C.J., JØRGENSEN, J.E. and BRIX, H. 2013. Wetlands, carbon, and climate change. Landscape Ecology 28. 583–597. https://doi.org/10.1007/s10980-012-9758-8

MOBERG, A., JONES, P.D., BARRIENDOS, M., BERGSTRÖM, H., CAMUFFO, D., COCHEO, C., DAVIES, T.D., DEMARÉE, G., MARTIN-VIDE, J., MAUGERI, M., RODRIGUEZ, R. and VERHOEVE, T. 2000. Day-to-day temperature variability trends in 160- to 275-year-long European instrumental records. Journal of Geophysical Research: Atmospheres 105. (D18): 22849–22868. https://doi.org/10.1029/2000JD900300

POPOVA, V., MATVEEVA, T. and BOKUCHAVA, D. 2022. The early 20th century warming in the East European plain climate: Extreme drought in 1920–1940, atmospheric circulation anomalies and links with the sea ice variability. Environmental Sciences Proceedings 19. (1): 57. https://doi.org/10.3390/ecas2022-12864

PRZYBYLAK, R. 2010. Instrumental observations. In The Polish Climate in the European Context: An Historical Overview. Ed.: PRZYBYLAK, R., Dordrecht, Springer Netherlands, 129–166. https://doi.org/10.1007/978-90-481-3167-9_5

PRZYBYLAK, R., SVYASHCHENNIKOV, P.N., USCKA-KOWALKOWSKA, J. and WYSZYŃSKI, P. 2021. Solar radiation in the Arctic during the early twentieth-century warming (1921–50): Presenting a compilation of newly available data. Journal of Climate 34. (1): 21–37. https://doi.org/10.1175/JCLI-D-20-0257.1

QUIANG, R. and RUGGIERI, E. 2023. Autocorrelation and parameter estimation in a Bayesian Change Point Model. Mathematics 11. 1082. https://doi.org/10.3390/math11051082

R Core Team 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. Available at https://www.R-project.org/

REEVES, J., CHEN, J., WANG, X., LUND, R.B. and LU, Q. 2007. A review and comparison of changepoint detection techniques for climate data. Journal of Applied Meteorology and Climatology 46. 900–915. https://doi.org/10.1175/JAM2493.1

RUGGIERI, E. 2013. A Bayesian approach to detecting change points in climatic records. International Journal of Climatology 33. (2): 520–528. https://doi.org/10.1002/joc.3447

RUGGIERI, E. 2018. A pruned recursive solution to the multiple change point problem. Computational Statistics 33. (2): 1017–1045. https://doi.org/10.1007/s00180-017-0756-9

RUGGIERI, E. and ANTONELLIS, M. 2016. An exact approach to Bayesian sequential change point detection. Computational Statistics & Data Analysis 97. 71–86. https://doi.org/10.1016/j.csda.2015.11.010

SEMENOV, V.A. and LATIF, M. 2012. The early twentieth century warming and winter Arctic sea ice. The Cryosphere 6. (6): 1231–1237. https://doi.org/10.5194/tc-6-1231-2012

SEN, P.K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association 63. 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

SHAPIRO, S.S. and WILK, M.B. 1965. An analysis of variance test for normality (Complete samples). Biometrika 52. (3–4): 591–611. https://doi.org/10.2307/2333709

STOTT, P., STRANGEWAYS, I. and the Climate Science Communications Group, 2018. Measuring meteorological variables for studying the climate. Weather 73. (10): 332–332. https://doi.org/10.1002/wea.3369

SVENDSEN, L., KEENLYSIDE, N., BETHKE, I., GAO, Y. and OMRANI, N.-E. 2018. Pacific contribution to the early twentieth-century warming in the Arctic. Nature Climate Change 8. (9): 793–797. https://doi.org/10.1038/s41558-018-0247-1

SZENTIMREY, T. 1999. Multiple analysis of series for homogenization (MASH). In Proceedings of the Second Seminar for Homogenisation of Surface Climatological Data. Budapest, Hungary, WMO, 27–46.

SZENTIMREY, T. 2006. Development of MASH homogenization procedure for daily data. In Proceedings of the Fifth Seminar for Homogenization and Quality Control in Climatological Databases, Vol. 29. Budapest, Hungary, 123–130.

SZENTIMREY, T. 2008. An overview on the main methodological questions of homogenization. In Proceedings of the Fifth Seminar for Homogenization and Quality Control in Climatological Databases. Climate Data and Monitoring WCDMP. No. 71. 1–6.

SZINELL, C.S., BUSSAY, A. and SZENTIMREY, T. 1998. Drought tendencies in Hungary. International Journal of Climatology 18. 1479–1491. https://doi.org/10.1002/(SICI)1097-0088(19981115)18:13%3C1479::AID-JOC325%3E3.0.CO;2-P

TOKINAGA, H., XIE, S.-P. and MUKOUGAWA, H. 2017. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proceedings of the National Academy of Sciences 114. (24): 6227–6232. https://doi.org/10.1073/pnas.1615880114

TOPÁL, D., MATYASOVSZKYT, I., KERN, Z. and HATVANI, I.G. 2016. Detecting breakpoints in artificially modified- and real-life time series using three state-of-the-art methods. Open Geosciences 8. (1): 78–98. https://doi.org/10.1515/geo-2016-0009

YAMANOUCHI, T. 2011. Early 20th-century warming in the Arctic: A review. Polar Science 5. (1): 53–71. https://doi.org/10.1016/j.polar.2010.10.002

Published
2024-03-30
How to Cite
KocsisT., PongráczR., HatvaniI. G., MagyarN., AndaA., & Kovács-SzékelyI. (2024). Seasonal trends in the Early Twentieth Century Warming (ETCW) in a centennial instrumental temperature record from Central Europe. Hungarian Geographical Bulletin, 73(1), 3-16. https://doi.org/10.15201/hungeobull.73.1.1
Section
Articles