Identification of Saharan dust particles in Pleistocene dune sand- paleosol sequences of Fuerteventura (Canary Islands)
Abstract
Automated static image analysis and newly introduced evaluation techniques were applied in this paper to identify Saharan dust material in the unique sand-paleosol sequence of Fuerteventura (Canary Islands). Measurements of ~50,000 individual mineral particles per samples provided huge amount of granulometric data on the investigated sedimentary units. In contrast to simple grain size and shape parameters of bulk samples, (1) parametric curve-fitting allowed the separation of different sedimentary populations suggesting the presence of more than one key depositional mechanisms. Additional (2) Raman-spectroscopy of manually targeted individual particles revealed a general relationship among grain size, grayscale intensity and mineralogy. This observation was used to introduce the (3) intensity based assessment technique for identification of large number of quartz particles. The (4) cluster and (5) network analyses showed that only joint analysis of size, shape and grayscale intensity properties provided suitable results, there is no specific granulometric parameter to distinguish Saharan dust due to their irregular shape characteristics. The presented methods allowed the separation of Saharan dust-related quartz grains from local sedimentary deposits, but due to the lack of robust granulometric characterization of coarsest fractions and due to the diverse geochemical properties of North African sources, exact volumetric amount of deposited dust material and sedimentation rates could not be determined from these data.
References
Barkan, J., Alpert, P., Kutiel, H. and Kishcha, P. 2005. Synoptics of dust transportation days from Africa toward Italy and Central Europe. Journal of Geophysical Research. Atmospheres 110. D07208. https://doi.org/10.1029/2004JD005222
Bridges, E.M. 1990. World Geomorphology. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9781139170154
Centeri, Cs., Szalai, Z., Jakab, G., Barta, K., Farsang, A., Szabó, Sz. and Bíró, Zs. 2015. Soil erodibility calculations based on different particle size distribution measurements. Hungarian Geographical Bulletin 64. (1): 17–23. https://doi.org/10.15201/hungeobull.64.1.2
Coude-Gaussen, G., Rognon, P., Bergametti, G., Gomes, L., Strauss, B., Gros, J.M. and Le Coustumer, M.N. 1987. Saharan dust on Fuerteventura Island (Canaries): Chemical and mineralogical characteristics, air mass trajectories, and probable sources. Journal of Geophysical Research 92. D8. https://doi.org/10.1029/JD092iD08p09753
Criado, C. and Dorta, P. 2003. An unusual, 'blood rain' over the Canary Islands (Spain). The storm of January 1999. Journal of Arid Environments 55. 765–783. https://doi.org/10.1016/S0140-1963(02)00320-8
Criado, C., Torres, J.M., Hansen, A., Lillo, P. and Naranjo, A. 2012. Intercalaciones de polvo sahariano en paleodunas bioclásticas de Fuerteventura (Islas Canarias). Cuaternario y Geomorfología 26. (1–2): 73–88.
Engelstaedter, S., Tegen, I. and Washington, R. 2006. North African dust emissions and transport. Earth-Science Reviews 79. (1–2): 73–100. https://doi.org/10.1016/j.earscirev.2006.06.004
Faust, D., Yurena, Y., Willkommen, T., Roettig, C., Richter, Dan., Richter, Dav., von Suchodoletz, H. and Zöller, L. 2015. A contribution to the understanding of late Pleistocene dune sand-paleosol-sequences in Fuerteventura (Canary Islands). Geomorphology 246. 290–304. https://doi.org/10.1016/j.geomorph.2015.06.023
Ginoux, P.M., Chin, I., Tegen, I., Prospero, J., Holben, M., Dubovik, O. and Lin, S.J. 2001. Global simulation of dust in the troposhere: model description and assessment. Journal of Geophysical Research 106. 20255–20273. https://doi.org/10.1029/2000JD000053
Glaccum, R.A. and Prospero, J.M. 1980. Saharan aerosols over the tropical North Atlantic: mineralogy. Marine Geology 37. 295–321. https://doi.org/10.1016/0025-3227(80)90107-3
Goudie, A.S. and Middleton, N.J. 2006. Desert Dust in the Global System. Springer.
Harrison, S.P., Kohfeld, K.E., Roelandt, C. and Claquin, T. 2001. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews 54. 43–80. https://doi.org/10.1016/S0012-8252(01)00041-1
Israelevich, P.L., Levin, Z., Jospeh, J.H. and Ganor, E. 2002. Desert aerosol transport in the Mediterranean region inferred from the TOMS aerosol index. Journal of Geophysical Research. Atmospheres 107: D21. https://doi.org/10.1029/2001JD002011
Jackson, M.L., Levelt, T.W.M., Syers, J. K., Rex, R.W., Clayton, R.N., Sherman, G.D. and Uehara, G. 1971. Geomorphological relationships of tropospherically-derived quartz in the soils of the Hawaiian Islands. Soil Science Society of America, Proceedings 35. 515–525.
Jacomy, M., Venturini, T., Heymann, S. and Bastian, M. 2014. ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 9. (6): e98679. https://doi.org/10.1371/journal.pone.0098679
Kohfeld, K.E. and Tegen, I. 2007. Record of Mineral Aerosols and Their Role in the Earth System. Treatise on Geochemistry 4. 1–26. https://doi.org/10.1016/B978-008043751-4/00236-4
Lim, J., Matsumoto, E. and Kitagawa, H. 2005. Eolian quartz flux variations in Cheju Island, Korea, during the last 6,500 yr and a possible Sun-monsoon linkage. Quaternary Research 64. 12–20. https://doi.org/10.1016/j.yqres.2005.02.012
MacLeod, D.A. 1980. The origin of the red Mediterranean soils in Epirus, Greece. Journal of Soil Science 31. 125–136. https://doi.org/10.1111/j.1365-2389.1980.tb02070.x
Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D., Hesse, P.P. and Balkanski, Y. 2010. Global connections between eolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews 99. 61–97. https://doi.org/10.1016/j.earscirev.2009.12.001
Mahowald, N.M., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S.P., Prentice, I.C., Schulz, M. and Rodhe, H. 1999. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research 104. 15895–15916. https://doi.org/10.1029/1999JD900084
Mahowald, N.M., Muhs, D.R., Levis, S., Rasch, P.J., Yoshioka, M., Zender, C.S. and Luo, C. 2006. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research 111. D10202. https://doi.org/10.1029/2005JD006653
Mee, A.C., Bestland, E.A. and Spooner, N.A. 2004. Age and origin of Terra Rossa soils in the Coonawarra area of South Australia. Geomorphology 58. 1–25. https://doi.org/10.1016/S0169-555X(03)00183-1
Menéndez, I., Díaz-Hernández, J.L., Mangas, J., Alonso, I. and Sánchez-Soto, P.J. 2007. Airborne dust accumulation and soil development in the North-East sector of Gran Canaria (Canary Islands, Spain). Journal of Arid Environments 71. 57–81. https://doi.org/10.1016/j.jaridenv.2007.03.011
Menéndez, I., Pérez-Chacón, E., Mangas, J., Tauler, E., Engelbrecht, J.P., Derbyshire, E, Cana, L. and Alonso, I. 2013. Dust deposits on La Graciosa Island (Canary Islands, Spain): Texture, mineralogy and a case study of recent dust plume transport. Catena 117. 133–144. https://doi.org/10.1016/j.catena.2013.05.007
Miller, R.L., Tegen I. and Perlwitz, J. 2004. Surface radiative forcing by soil dust aerosols and the hydrologic cycle. Journal of Geophysical Research. Atmospheres 109. D04203. https://doi.org/10.1029/2003JD004085
Muhs, D.R., Budahn, J.R., Prospero, J.M. and Carey, S.N. 2007a. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida. Journal of Geophysical Research 112. F02009. https://doi.org/10.1029/2005JF000445
Muhs, D.R., Budahn, J.R., Reheis, M., Beann, J., Skipp, G. and Fisher, E. 2007b. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island. Journal of Geophysical Research 112. D13203. https://doi.org/10.1029/2006JD007577
Pósfai, M. and Buseck, P.R. 2010. Nature and climate effects of individual tropospheric aerosol particles. Annual Review of Earth and Planetary Sciences 38. 17–43. https://doi.org/10.1146/annurev.earth.031208.100032
Prospero, J.M. 1996. Saharan dust transport over the north Atlantic Ocean and Mediterranean: An overview. In The impact of desert dust across the Mediterranean. Eds.: Guerzoni, S. and Chester, R., Environmental Science and Technology Library 11, Dordrecht and London, Kluwer, 133–152.
Prospero, J.M. and Lamb, P.J. 2003. African droughts and dust transport to the Caribbean: Climate change implications. Science 302. 1024–1027. https://doi.org/10.1126/science.1089915
Prospero, J.M., Bonatti, E., Schubert, C. and Carlson, T.B. 1970. Dust in the Caribbean atmosphere traced to an African dust storm. Earth and Planetary Science Letters 9. (3): 287–293. https://doi.org/10.1016/0012-821X(70)90039-7
Prospero, J.M., Ginoux, P.M., Torres, O., Nicholson, S.E. and Gill, T.E. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics 40. 1–31. https://doi.org/10.1029/2000RG000095
Roettig, C-B., Kolb, T., Wolf, D., Baumgart, P., Richter, C., Schleicher, A., Zöller, L. and Faust, D. 2017. Complexity of aeolian dynamics (Canary Islands). Palaeogeography, Palaeoclimatology, Palaeoecology 472. 146–162. https://doi.org/10.1016/j.palaeo.2017.01.039
Roettig, C-B., Varga, G., Sauer, D., Kolb, T., Wolf, D., Makowsky, V., Recio Espejo, J.M., Zöller, L. and Faust, D. Characteristics, nature and formation of palaeosurfaces within dunes on Fuerteventura. Quaternary Research (in press)
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. and Weinbruch, S. 2013. Bulk composition of northern African dust and its source sediments — A compilation. Earth-Science Reviews 116. 170–194. https://doi.org/10.1016/j.earscirev.2012.08.005
Shao, Y., Wyrwoll, K.H., Chappell, A., Huang, J., Lin, Z., McTainsh, G.H., Mikami, M., Tanaka, T.Y., Wangh, X. and Yoon, S. 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Research 2. 181–204. https://doi.org/10.1016/j.aeolia.2011.02.001
Stuut, J-B.W., Smalley, I. and O'Hara-Dhand, K. 2009. Aeolian dust in Europe: African sources and European deposits. Quaternary International 198. 234–245. https://doi.org/10.1016/j.quaint.2008.10.007
Sun, D., Bloemendal, J., Rea, D.K., An, Z., Vandenberghe, J., Lu, H., Su, R. and Liu, T.S. 2004. Bimodal grain-size distribution of Chinese loess, and its paleoclimatic implications. Catena 55. 325–340. https://doi.org/10.1016/S0341-8162(03)00109-7
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z. and Su, R. 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152. 263–277. https://doi.org/10.1016/S0037-0738(02)00082-9
Swap, R., Garstang, M., Greco, S., Talbot, R. and Kallberg, P. 1992. Saharan dust in the Amazon basin. Tellus B 44. (2): 133–149. https://doi.org/10.3402/tellusb.v44i2.15434
Tegen, I., Lacis, A.A. and Fung, I. 1996. The influence of mineral aerosols from disturbed soils on climate forcing. Nature 380. 419–422. https://doi.org/10.1038/380419a0
Tsoar, H. and Pye, K. 1987. Dust transport and the question of desert loess formation. Sedimentology 34. 134–153. https://doi.org/10.1111/j.1365-3091.1987.tb00566.x
Varga, Gy, Cserháti, Cs., Kovács, J. and Szalai, Z. 2016. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation. Aeolian Research 22. 1–12. https://doi.org/10.1016/j.aeolia.2016.05.004
Varga, Gy. 2012. Spatio-temporal distribution of dust storms - a global coverage using NASA Total Ozone Mapping Spectrometer aerosol measurements (1979–2011). Hungarian Geographical Bulletin 61. (4): 275–298.
Varga, Gy., Kovács, J. and Újvári, G. 2012. Late Pleistocene variations of the background aeolian dust concentration in the Carpathian Basin: an estimate using decomposition of grain-size distribution curves of loess deposits. Netherlands Journal of Geosciences – Geologie en Mijnbouw 91. (1–2): 159–171. https://doi.org/10.1017/S0016774600001566
Varga, Gy., Kovács, J., Szalai, Z., Cserháti, Cs. and Újvári, G. 2018. Granulometric characterization of paleosols in loess series by automated static image analysis. Sedimentary Geology 370. 1–14. https://doi.org/10.1016/j.sedgeo.2018.04.001
Varga, Gy., Újvári, G. and Kovács, J. Interpretation of sedimentary (sub)populations extracted from grain size distributions of Central European loess-paleosol series. Quaternary International (in press) https://doi.org/10.1016/j.quaint.2017.09.021
von Suchodoletz, H., Kühn, P., Hambach, U., Dietze, M., Zöller, L. and Faust, D. 2009. Loess-like and palaeosol sediments from Lanzarote (Canary Islands/Spain). – Indicators of palaeoenvironmental change during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 278. (1–4): 71–87. https://doi.org/10.1016/j.palaeo.2009.03.019
Washington, R., Todd, M., Middleton, N.J. and Goudie, A.S. 2003. Dust-storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Annals of the Association of American Geographers 93. (2): 297–313. https://doi.org/10.1111/1467-8306.9302003
Yaalon, D.H. 1997: Soils in the Mediterranean region: what makes them different? Catena 28. 157–169. https://doi.org/10.1016/S0341-8162(96)00035-5
Yaalon, D.H. and Ganor, E. 1973. The influence of dust on soils during the Quaternary. Soil Science 116. 146–155. https://doi.org/10.1097/00010694-197309000-00003
Copyright (c) 2018 György Varga, Cristopher-Bastian Roettig
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.