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Introduction

Lithological mapping is the process of identi-
fying different lithological units (rocks) within 

a given area and represents a fundamental 
step in most geological investigations, includ-
ing mineral exploration, groundwater assess-
ment, petroleum studies, natural resource 
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Abstract

Reference data are the most crucial points in model building. In geoscience, a scarcity of sufficient reference data 
is common. Pseudo-labelling (PL), i.e. incorporating high-probability data in the model-building process, offers a 
potential solution. We aimed to reveal the efficiency of PL in lithological mapping in a vegetation-free arid region 
of Sudan. Multiple Adaptive Regression Splines (MARS) and Random Forest (RF) were used to classify a Landsat 9 
image. Reference data were collected during fieldwork and through visual interpretation. Image processing yielded 
classified maps with associated probability layers, from which 1000 additional traditional samples (PL data) were 
extracted at a 95 percent probability. A detailed accuracy assessment was conducted, and accuracy measures were 
evaluated using statistical analysis and visual inspection. MARS was found to be an ambiguous classifier because 
the probability was too optimistic related to the overall accuracy (OA) (81% of samples had above 99% probabil-
ity, OA = 98.2%) compared to RF (21% above 99%, OA = 98.1%); that is, despite the high probability, the accuracy 
improvement was only 0.1 percent. At the class level, the correlation between probability and the F1-score was 
low (0.21%). The original and PL-based models resulted in different maps with improved accuracy, although the 
new model version showed lower probability values for both the classifiers. Visual inspection proved essential for 
better insights into the spatial patterns: expert knowledge is crucial for controlling the occurrence of rock types 
and identifying false classifications. The main finding is that probability should be handled carefully, as it does 
not guarantee high model performance in classification, although the PL approach can lead to more reliable maps.
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evaluation, and environmental management 
(Amusuk, D.J. et al. 2016; Abrams, M. and 
Yamaguchi, Y. 2019). Consequently, obtain-
ing an accurate lithological map is crucial for 
mineral exploration. Traditionally, lithologi-
cal mapping is executed mainly through inter-
pretation of aerial photographs, followed by 
extensive field-based investigations in which 
geologists collect samples, register observa-
tions, measure geological structures (such as 
dip and strike), identify mineral composition 
and textures, or interpret field relationships 
(Szaniawska, L. 2018). However, this tradi-
tional mapping approach can be challenging 
because it requires skilled field geologists, 
is time-consuming, and requires a suitable 
budget to cover costs, especially in harsh en-
vironments and inaccessible or isolated plac-
es. These difficulties have recently decreased 
through the integration of cutting-edge tech-
nologies, such as remote sensing and machine 
learning, in the lithological mapping process 
(Bachri, I. et al. 2019; Abdelkareem, M. et al. 
2021; Shirmard, H. et al. 2022).

Geological features can be identified using 
extensive datasets of remote sensing technol-
ogy (El-Omairi, M.A. and Garouani, A.E. 
2023). Valuable insights can be drawn from the 
geographic data obtained by sensors, based 
on the distinctive properties of the local area 
(Nair, P. et al. 2023). Machine learning offers 
an efficient way of processing remote sensing 
data. After the training phase, algorithms can 
identify rock types, faults, or mineral deposits 
if the spectral resolution of the images makes 
it possible. These algorithms can handle large 
datasets, allowing the discovery of plausible 
patterns in complex geological datasets (Han, 
W. et al. 2023). However, machine learning 
requires high-quality training data to build 
a reliable model. Additionally, independent 
testing data (known as reference data) are es-
sential for validating a model’s performance 
(James, G. et al. 2013). 

Reference data is the most crucial constitu-
ent of all models. Training subsets are used 
for model building, while testing subsets are 
used to assess accuracy. In remote sensing, we 
may have millions of pixels (i.e. data points), 

which may give the impression that the de-
lineation of reference data is easy, however, 
this is not true for all tasks. For example, in 
land cover mapping, the traditional approach 
is to classify surface objects into simple classes 
such as forests, grasslands, and water bod-
ies. These classes can include thousands of 
pixels as reference data because simple visual 
interpretations of the images can provide suf-
ficient information. However, when the aim is 
a more specific problem, such as identifying 
plant or tree species, detecting plant diseases, 
or classifying roof types, reference data collec-
tion requires field observations and/or ground 
measurements, which makes this step labour-
intensive and time-consuming. Lithological 
mapping faces the same problem: Field ob-
servations are essential for a reliable reference 
dataset. If the number of labelled instances is 
insufficient, the model cannot be adequately 
trained because of the insufficient size of the 
reference dataset. 

The question of how much reference data 
is needed depends on the algorithms and is 
widely discussed in the literature. While there 
are basic rules, generally, the more the refer-
ence data, the better. Studies have shown that 
accurate, balanced, and large training datasets 
are often more important than the choice of 
algorithms in terms of the output (Li, C. et al. 
2014; Maxwell, A.E. et al. 2018; Collins, L. 
et al. 2020). There is no universally accepted 
minimum number of training data points. 
However, Foody, G.M. (2009) defined a method 
for calculating the minimum amount of testing 
data based on the desired overall accuracy, ac-
ceptable standard error, and classification er-
ror. For example, for four categories with an 85 
percent target accuracy and a standard error of 
0.02 (2%), at least 1275 testing data samples are 
required, which is approximately 320 per class. 
Class imbalance also can be a crucial point 
when the target class or some classes are un-
derrepresented causing false accuracy metrics 
(Luque, A. et al. 2019), which is common when 
the target features are limited owing to unique 
characteristics (e.g. rare species, specific roof-
ing types, or uncommon rock types or plant 
species), collecting a sufficient number of data 
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points may be infeasible, while easy to collect 
non-target classes. Even with fewer reference 
data than the optimal, accurate outcomes are 
still possible depending on the data distribu-
tion and representativeness of the data which 
introduces a higher risk of uncertain results. 

An alternative method, known as self-train-
ing or pseudo-labelling (PL), involves selecting 
high-probability data from the predictions of 
an initial model conducted with fewer data 
points, and the model training is repeated with 
data from a classified map with the highest 
probability. The effectiveness of this method 
has been proven to improve the classification 
results, including soil class mapping (Zhang, 
L. et al. 2021), detection of geochemical anoma-
lies (Chen, Y. et al. 2023), prediction of inva-
sive species distribution (Cruz, C. et al. 2023; 
Kim, E. et al. 2024), and identification of spo-
radically distributed species (Likó, Sz.B. et al. 
2024). However, PL does not always improve 
classification accuracy or even result in worse 
predictions. Although PL appears to be a good 
solution for overcoming the issue of limited 
reference data, users cannot assume that the 
outcome will be better than that of the model 

output based on the original data. Geological 
mapping presents a unique challenge, as both 
natural and anthropogenic processes (e.g. 
physical and chemical weathering and min-
ing) can alter rock characteristics. However, 
the spatial pattern can easily be validated by 
visual interpretation (e.g. the given rock type 
can occur at a given location). 

We aimed to determine the effectiveness of 
PL in geological mapping. The selected study 
site was in an arid environment, where the lack 
of vegetation made it possible to observe rock 
types in satellite imagery. We had the follow-
ing questions related to the probabilities and 
PL: (i) what was the probability of the related 
rock type and how did it change with the in-
creased training data; (ii) what was the stand-
ard deviation (SD) of classes in the changed 
areas, and how large areas were influenced; 
and (iii) what was the direction of the changes 
in terms of probability? Accordingly, we for-
mulated the following hypotheses: (i) high 
probability values ensure high model perfor-
mance and (ii) pseudo-labelling improves map 
quality by providing additional training data 
for the modelling process. 

Fig. 1. Location of the study area: Sudan and study area location (a), and Landsat 8 colour composite of the 
study area in 7, 5, and 2 bands (b). Source: Authors’ own elaboration.
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Data and methodology

Study area

The study area was located in the Red Sea 
State, northeast Sudan, 90 km from Port Su-
dan (Figure 1). Geologically, the area is part of 
the Red Sea Hills (RSHs), the Sudanese sec-
tion of the Arabian Nubian Shield, which is 
a juvenile continental crust formed between 
900 Ma and 550 Ma (Abdelsalam, M.G. et al. 
2000; Hamimi, Z. et al. 2021; Abdelrahman, 
S. et al. 2024). These rocks are highly sheared 
and deformed, and their geology is complex 
(Abdelsalam, M.G. and Stern, R.J. 1993). The 
study area is part of the Gebeit terrane, and 
the major lithological units include highly 
sheared low-grade meta-volcanics (meta-ba-
saltic andesite, meta-andesitic basalt, and me-
ta-dacite), meta-sediments (marble), sheared 
granitoids, and superficial deposits. Accord-
ingly, we identified and mapped the follow-
ing six rock types: artisanal (art), granite (gra), 
marble (marb), meta-volcanic rocks (mtvo), 
ophiolite (ophi), and wadi deposits (WDi).

Applied data

A Landsat 9 image (LC09_L2SP_172046_202
31014_20231015_02_T1, US Geological Sur-
vey) was used in the analysis on a cloud-free 
date. Through a thorough review of current 
geological maps, close visual inspection, and 
analysis of processed Landsat data, as well as 
high spatial resolution imagery from Google 
Earth, we carefully produced reference data. 
In addition, extensive fieldwork was con-
ducted along regularly planned traverses. 

Image processing

Machine learning

Multivariate Adaptive Regression Spline 
(MARS) and Random Forest (RF) and algo-
rithms were tested in this study because both 
provide a probability layer that indicates the 

reliability of the classification pixel-by-pixel 
regarding the classes. 

MARS is a nonparametric, robust algorithm 
that efficiently manages a large amount of in-
put data and nonlinear relationships between 
the target and explanatory variables with no 
assumptions (Friedman, J.H. 1991). The fea-
ture space is split into regions based on knots, 
which define the boundaries of the piecewise 
linear basis functions that contribute to the 
overall prediction. Each basis function votes 
on a class for the data instances, and finally, 
the function with the majority votes is select-
ed as the prediction. Probability calculation 
for classification tasks are similar to the pro-
cedure of logistic regression (logistic transfor-
mation to convert the continuous values to 0 
and 1 probabilities), but the main difference is 
that the MARS, instead of using linear terms, 
calculates the weighted sum of the basic func-
tions (Friedman, J.H. 1991; Boehmke, B. and 
Greenwell, B.M. 2019, 2020). In the R imple-
mentation, the earth package (Milborrow, S. 
et al. 2024), the ‘degree’ should be specified, 
which is the degree of interaction among the 
input variables, ‘nprune’ refers to the number 
of basic functions. The performance of MARS 
models is high; however, a grid search of hy-
per-parameters is important.

RF is a widely used and robust algorithm 
(Breiman, L. 2001), and its efficiency has been 
proven in several fields such as land cover 
mapping, soil science, and geology (Belgiu, 
M. and Drăguţ, L. 2016; Shahare, Y.R. et al. 
2024; Simarmata, N. et al. 2025). RF does not 
assume normal distribution, homoscedastic-
ity, or multi-collinearity due to its calculation 
method, and classification is based on hun-
dreds of decision trees (DTs) using randomly 
chosen data (36.8% subset of the training 
dataset) and variables. The number of trees 
(ntree) parameter is usually set between 100 
and 500, and we used the default setting of 
the ‘caret’ package (Kuhn, M. 2022), which is 
500. The number of variables (mtry) is chosen 
at each split of a single DT, the default is the 
square root of the number of all variables, 
and hyper-parameter tuning testing can be 
tested between 1:20.
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Models were developed and conducted in 
R 4.4.2 (R Core Team, 2024) with the ‘caret’ 
package (Kuhn, M. 2022). Both models re-
sulted in two outputs: prediction of the 
classes (classified map) and calculation of 
the related probabilities (probability map). 
Probabilities were calculated by classes, but 
in the analysis, we used only the maximum 
values, i.e. instead of having six values (for 
the six classes) with the related probabilities 
in six raster layers, only the highest values 
were extracted to a single raster layer. It was 
important, because the maximums deter-
mined the resulting classified output, and 
we were able to pair and evaluate the classes 
with the probabilities by pixels: for six class-
es 16.67 percent (100/6 = 16.66) of maximum 
probability was enough to classify a pixel, 
whereas the maximum was 100 percent.

Accuracy assessment

Model testing is a crucial step in all predic-
tions (Bui, D.H. and Mucsi, L. 2022). We 
used our previously developed module, 
programmed for an automated accuracy as-
sessment, the Classification Assessment Tool 
(Szabó, Sz. et al. 2024), which calculates ac-
curacies using advanced solutions by taking 
random subsamples from the entire testing 
dataset based on a predefined ratio obtained 
from the testing data (0–1) and the number of 
repetitions of random sampling. We applied 
0.6 for the fraction (60% of data were used 
at a time with stratified random sampling), 
and for repetitions, we applied 10. Boxplot 
diagrams were used to visualise the differ-
ences among the classes. The following class-
level metrics were calculated: Precision (or 
User’s Accuracy, UA), Sensitivity (Producer’s  
Accuracy, PA) (Congalton, R.G. 1991; Bar-
si, Á. et al. 2018), Specificity (True Negative 
Rate), F1-scores (or Dice Similarity Coeffi-
cient), Jaccard Index (or Intersection over Un-
ion, IOU) (Willem, 2017; Grandini, M. et al. 
2020), and Matthews correlation coefficient 
(MCC) (Cao, C. et al. 2020; Chicco, D. and 
Jurman, G. 2020).

Pseudo-labelling and statistical 
evaluation

For pseudo-labelling, users must choose a prob-
ability map based on an accuracy assessment 
(e.g. the highest accuracy). A threshold value 
should be set to define pixels with a minimum 
probability to delineate the area where the new-
ly labelled classes will be collected. Although 
the threshold can be between 1 and 100 percent, 
only higher values (e.g. 0.9 [> 90%]) are useful; 
accordingly, we chose 95 percent. This step as-
signed the relating area to the probability maps. 
We selected 1000 spatially random data points 
from the assigned area as PL-data (abbreviated 
as PL1000), involved in the new training phase, 
merged with the original training data; possi-
ble duplicates were removed. Next, the clas-
sification step was repeated with an accuracy 
assessment.

Furthermore, we compared the class-level 
accuracy metrics (independent variables: 
Precision, Sensitivity, Specificity, MCC, F1, 
IOU) of the original maps with the map 
where the model was trained with the larg-
est number (1000) of pseudo-labelled, resa-
mpled data (PL1000) (i.e. input datasets as 
dependent variables). A multivariate method, 
Hotelling’s T-squared test, was used to test H0 
(group means for all independent variables 
were equal). The analysis was conducted with 
R 4.4.2 with the Hotelling package (Curran, 
J. and Hersh, T. 2012). Besides the p-values, 
effect sizes of partial ɳ2 and Mahalanobis 
Distance Squared (D2) were also determined 
to express the magnitude of the differences 
between the two values of the dependent var-
iable. For partial ɳ2, 0.01–0.06 is considered 
as small, 0.06–0.14 as medium, > 0.14 as large 
effect; for D2, 0.25–0.50 is considered as small, 
0.50–1.00 as medium, and > 1.00 as large ef-
fect (Cohen, J. 2013; Matcharashvili, T. et al. 
2019; Shaker, A. 2023).

Maps produced with the original training 
and PL1000 data were compared using cross-
tabulation and quantified by cross-entropy 
and visual analysis. Cross-entropy is a ro-
bust index for identifying hotspot areas of 
change (the higher the value, the larger the 
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change) (Shim, J.W. 2024). Values below the 
upper quartile were blanked to enhance the 
relevant differences between the two maps, 
and the differences were quantified in com-
parison (agreement) tables. The two maps 
were also compared using the Interspersion 
and Juxtaposition Index (IJI), which showed 
the isolation of the intermixing of patches 
(i.e. rock types) (Mead, R.A. et al. 1981). 
Cross-entropy was determined using the 
‘spatialEco’ package (Evans, J.S. et al. 2023), 
and IJI with the ‘landscapemetrics’ package 
(Hesselbarth, M.H.K. et al. 2025).

We also performed a difference analysis 
between the original and PL1000 maps, fo-
cusing directly on changes and probabilities. 
We determined the probabilities of the classi-
fications and the relationship between the ac-
curacy metrics and probabilities at the class 
level by rock type. We focused on the areas 
where the classification was different in the 
two approaches, and investigated the prob-
ability of the pairs (e.g. in the original ap-
proach, a pixel was “art”, and in the PL1000 
it was “WDi”). Finally, we compared the  
F1-scores and mean probabilities by rock 
type using Spearman correlation.

Results

Geological maps with original training data

The MARS and RF algorithms provided seem-
ingly similar maps of rock types, but there 
were also significant differences. The main 

difference was in the case of WDi: MARS 
considerably overestimated WDi and under-
estimated all the other types (Table 1). Consid-
ering the possible occurrence of WDi, the RF 
model was more reliable, as MARS indicated 
the deposits at irrelevant locations as well 
(NW and NE corners of the area, Figure 2). 

However, the class-level accuracy metrics 
showed different results: WDi had the best 
performance with MARS (Figure 3). In the 
case of other rock types, the accuracies were 
similar (or at least slightly, 2–3%, better with 
the RF), and the RF had a narrower range 
based on the repetitions of the testing proce-
dure, that is, it acted more reliably with the 
existing testing data. 

Classification accuracies and probabilities

Regarding the probabilities, maps showed 
that MARS was supposed to be more accu-
rate as 371.56 km2 of the area had > 99 percent 
probability (considering the maximum prob-
abilities of all classes by pixels), whilst in the 
case of RF it was only 94.85 km2 (Figure 4). Al-
though the near-100 percent pixels dominated 
the MARS model, it did not perform better; 
only the probabilities were overoptimistic, 
and the accuracy measures were only slightly 
better than RF (Figure 5, a). The median (de-
rived from the accuracy assessment data) dif-
ferences between the two models in the case 
of the robust F1 and MCC did not demon-
strate the superiority of any of the models: 
for art, marb, and ophi, the RF performed bet-
ter than the MARS with 4.6–2.2–6.6 percent 
(MCC) and 4.0–1.8–5.9 percent (F1), whereas 
the MARS was shown to be a better model for 
gra, mtvo, and WDi with 2.9–1.4–12.2 percent 
(MCC) and 2.7–1.0–10.9 percent (F1).

Class level accuracy and the F1-score had 
no connection with the two classifiers; the 
Spearman correlation coefficient was 0.21  
(p = 0.51, i.e. not significant). In half of the rock 
types, the RF performed better, and in the oth-
er half, the MARS performed better based on 
the F1-scores (Figure 5, b). Although the val-
ues theoretically followed a linear relationship, 

Table 1. Estimated area of rock types by two classification 
models: Multiple Adaptive Regression Spline (MARS) 

and Random Forest (RF)

Rock type
Area based on

MARS 
model, km2

RF model, 
km2

art (astisanal)
gra (granit)
marb (marble)
mtvo (meta-volcanic)
ophi (ophiolite
WDi (wadi deposits)

54.09
133.08
47.56
54.93
29.60

139.59

58.98
150.57
60.64
64.81
22.88

100.96
Source. Compiled by the authors.
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Fig. 2. Geological maps of the Multiple Adaptive Regression Spline (MARS), and Random Forest (RF) models 
and their pseudo-labelled (PL) versions. Rock types: art = artisanal; gra = granite; marb = marble; mtvo = meta-
volcanic; ophi = ophiolite; WDi = wadi deposits. (PL = 1000 pseudo-label data with 95% probability; white 

rectangles and numbers: evaluated areas). Source: Authors’ own elaboration.

there were outliers in both models: in the case 
of MARSart, the mean accuracy (F1) was one of 
the lowest (0.81), while the probability was 92 
percent, and RFmarb had a large F1-score (0.98) 
with the lowest probability (58%). 

Models trained with original and pseudo-labelling

We compared the maps produced with the 
original and PL1000 (95% probability) training 
datasets and found that the original training 

set performed similarly to the case with an ad-
ditional 1000 data points, at least on the level of 
accuracy metrics. Comparison matrices showed 
smaller agreements for MARS (art, marb, and 
ophi had < 50%, WDi 58%) and slight differenc-
es for the RF (all rock types had > 80% agree-
ment, except marb, having only 65%). 

Visual analysis brought controversial ob-
servations: although both the RF and MARS 
maps differed by 25 percent from the PL 
versions regarding the hot-spot chang-
ing areas (in addition to the simple expres-
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sion of the area, the cross-entropy levels 
differed significantly), the changes caused 
by the additional data improved the maps  
(Table 2). In area 1, the PL versions outper-
formed the original classifications for both RF 

and MARS; in area 2, RF.PL outperformed all 
other versions, and MARS.PL outperformed 
the original MARS. For area 3, MARS.PL pro-
vided the best outcome, but RF.PL was also 
better than the original version. In areas 4 

Fig. 4. Probability layers of classification models of the MARS and RF models, visualising the maximum prob-
abilities Source: Authors’ own elaboration.

Fig. 5. Cumulative probabilities and accuracies of the MARS and RF models. Proportions of pixels by prob-
ability thresholds (a); Probabilities and F1-scores by rock type (b). For rock types see Fig. 2. Source: Authors’ 

own elaboration.
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and 5, the RF.PL was the most reliable solu-
tion. For area 6, MARS was the least accurate, 
and RF.PL provided the best solution for ophi, 
and MARS.PL for marb. MARS and MARS.PL 
mapped mtvo better than the other models, 
and RF.PL mapped WDi the best in the case of 
area 7. Generally, RF.PL was the best for area 
8. In case area 9, RF.PL had the best classifica-
tion for art and MARS.PL for mtvo and WDi. 
Accordingly, the PL model versions performed 

well, and based on the visual analysis, the spa-
tial patterns were determined in several cases 
as the best outcomes.

Although cross-entropy showed that the 
hot-spot areas of differences were 25 percent 
for both model pairs (original vs. PL), in the 
case of RF, the values were higher, indicating 
that there was a difference in sparse pixels; 
that is, the level of mixing of standalone pix-
els had changed (Figure 6). IJI confirmed that 

Fig. 6. Differences of the pseudo-labelled model (PL1000) to the original models using the cross-entropy of 
MARS and RF (values < 2.5, i.e. upper quartile, were blanked). Source: Authors’ own elaboration.

Table 2. Summary of best models based in visual inspection of spatial patterns*

Area Characteristic rock type Rock type Best model
1
2
3
4
5
6
6
7
7
8
9
9

ophi, WDi
gra, WDi
gra, mtvo, WDi
art, ophi, WDi
ophi, marb, gra
marb, mtvo, ophi
marb, mtvo, ophi
art, marb, mtvo,  WDi
art, marb, mtvo, WDi
gra, WDi
art, marb, mtwo, WDi
art, marb, mtwo, WDi

generally
generally
generally
generally
generally
ophi
marb
mtvo
WDi
generally
art
WDi, mtvo

RF.PL and MARS.PL
RF.PL
MARS.PL and RF.PL
RF.PL
RF.PL
RF.PL
MARS.PL
MARS and MARS.PL
RF.PL
RF.PL
RF.PL
MARS.PL

*Area codes depicted in Figure 2. RF = Random Forest; MARS = Multiple 
Adaptive Regression Spline; PL = pseudo labelled; art = artisanal, gra = 
granite, marb = marble, mtvo = meta-volcanic, ophi = ophiolite, WDi = 
wadi deposits. Source. Compiled by the authors.

MARS.entropy RF.entropy

Easting

N
or

th
in

g

12.5

Value

10.0

7.5

5.0

2.5



349Szabó, Sz. et al. Hungarian Geographical Bulletin 74 (2025) (4) 339–357.

interspersion became more uneven with the 
RF.PL with 2.0 percent (77.2) related to the 
RF (79.2), while in the case of MARS it was 
86.2, and for MARS.PL it was 89.5.

The class-level evaluation of the probabil-
ity levels in the two classification approaches 
showed that the classifiers reacted differ-
ently. In the case of MARS, the probabilities 
were initially high in the changing pixels of 
the rock-type pairs, and usually, the larger 
probabilities had lower SDs. A small de-
crease in the mean probability levels caused 
an increase in SD (Figure 7, a). The relation-
ship between the mean probability and SDs 
was almost perfect (e.g. as a second-order 
polynomial), but the marb-WDi pair was 
an influential data point with a low mean 
and SD. Although the changes in probabili-
ties were not significant according to the 
Wilcoxon test, they exceeded 10 percent in 
14 of 30 cases (Figure 7, b). In 12 instances, 
the probability increased. The results were 
different for RF; typically, lower mean prob-
abilities had lower SDs and followed a linear 
relationship (Figure 8, a). The probabilities of 
the original approach were lower than those 
of MARS, and the probabilities of the PL ver-
sions were even lower, with significant dif-
ferences (Figure 8, b). The number of cases in 
which the change was > 10 percent was nine, 
and the number increased by only five. The 
magnitudes of the changes also differed; the 
maximum increase was 62 percent in the case 
of MARS, and 0.09 for RF (additionally, the 
largest change regardless of the direction of 
changes was only 0.27).

Multivariate comparison of the traditional and 
pseudo-labelling methods

Multivariate comparison of the MARS 
models

The MARS models performed better with 
PL1000 than with the original training data, 
except for three out of 36 cases (without spe-
cific rock types). The original data provided 
more accurate results, and among the three 

exceptions, the mean differences were below 
2 percent (mostly < 0.5%). The decreases in 
F1, IOU, and MCC were up to 18.8 percent, 
with a maximum increase of 1.8 percent. For 
RF models, PL1000 was not very useful; nev-
ertheless, it provided better metrics in 17 out 
of 36 cases, particularly for gra and WDi rock 
types (Figure 9). 

The difference between the models based 
on the original and PL1000 training data was 
significant according to the Hotelling test 
(T² = 447.77, F[6, 593] = 74.63, p < 0.001). η² = 
0.4302 indicated a very large effect size and 
accounted for 43.02 percent of the multivar-
iate variance by group differences in the in-
dependent variable. The large effect size was 
also justified by D² = 0.746. Both indicated 
a strong association between the grouping 
variables and the set of dependent variables. 
Effect sizes suggested that there were sub-
stantial differences in how the models per-
formed across different datasets, consider-
ing all performance metrics simultaneously. 
Accordingly, the groups were well-separated 
in the multivariate space defined by the de-
pendent variables. 

Multivariate comparison of the RF 
models

For the RF models, the accuracy metrics 
showed varied results related to the MARS, 
and the PL1000 training dataset provided 
better accuracy measures than the original 
in 15 out of 36 cases. The increase was 5.5 
percent and the maximum decrease was 4.8 
percent (see Figure 9). The Hotelling test re-
vealed a significant difference (T² = 35.31, 
F[6, 593] = 5.89, p < 0.001), but the effect sizes 
were not as large as in the case of MARS, 
indicating less pronounced differences be-
tween the groups. η² = 0.056 was close to the 
threshold for a medium effect (0.06), suggest-
ing moderate significance of the group differ-
ence. D2 = 0.0588 indicated a relatively small 
separation between the groups; accordingly, 
the difference was statistically significant, but 
the effect was not large. 
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Discussion

Insights on classification algorithms

Studying the probability maps alone could 
lead to misjudging the real performance of 
the algorithms, as MARS provided unreliably 
high values, and one could state that RF has 
poor accuracy. Although probabilities provid-
ed new insights, MARS indicated almost per-
fect reliability (i.e. > 99%) for 81 percent of the 
study area; however, this was not validated by 
the accuracy metrics, and RF was not worse 
than MARS. The OAs only slightly differed 
between the MARS and RF models; at the class 
level, there were differences in the misclassifi-
cation. The reason for the high probabilities of 
MARS can amplify small spectral differences 
through its model calculation procedure, 
whereas RF naturally moderates its probabili-
ties through vote averaging. The key point of 
this result is that, although MARS seems to be 
a better classifier based on the probabilities, RF 

was not worse when considering the accuracy 
metrics. Even with class-level comparisons re-
garding the medians, MARS performed only 
1–2 percent better than RF in half of the cases. 
The general issue with confirming the results 
is that MARS, unlike RF, SVM, XGB, or KNN, 
is not frequently used. Quirós, E. et al. (2009) 
found that MARS was the best classifier relat-
ed to Maximum Likelihood and Parallelepiped 
methods in 13 of 17 test zones in Spain. Nag-
pal, A. and Singh, V. (2019) used MARS and 
RF and found that RF was better in six out of 
10 datasets. Based on the study by Rotigliano, 
E. et al. (2018), MARS outperformed binary lo-
gistic regression for landslide identification, 
which is consistent with our finding. Harvey, 
A.S. and Fotopoulos, G. (2016) found that RF 
was the best classifier; however, in their study, 
MARS was not applied. Thus, although direct 
comparison is not a common practice, because 
MARS is not as popular as RF, we can con-
clude that both classifiers can generally per-
form well.

Fig. 9. Difference in model accuracies (Original – PL1000 training data) by rock type and accuracy metrics MARS 
(a), and RF (b). IOU = Intersection over Union; MCC = Matthews correlation coefficient. For rock types see Fig. 2. 

Source: Authors’ own elaboration.
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Common misclassifications were caused due 
to the complexities of geological features, high 
inter-class similarity, and difficulties presented 
by remote sensing data. Misclassifications are 
frequently encountered in lithological map-
ping, especially when employing this type of 
data (El-Omairi, M.A. and Garouani, A.E. 
2023). In our study, the rock type classifica-
tion focused on marble, meta-volcanic, ophi-
olite, altered rock, and wadi deposit units. 
Discriminating these lithologies is inherently 
challenging because of their spectral similari-
ties (Othman, A.A. and Gloaguen, R. 2014). 
Misclassifications occurred primarily among 
granitoids, wadi deposits, and altered rocks 
owing to their heterogeneous nature and over-
lapping spectral characteristics. Specifically, 
wadi deposits are largely influenced by the 
weathering of granitoids, whereas altered 
rocks, often the result of traditional mining ac-
tivities, are typically associated with these de-
posits. In contrast, marble, metavolcanic, and 
ophiolite units predominantly comprise iron 
(Fe) and magnesium (Mg) minerals, which are 
less prone to weathering and, thus, less likely 
to be misclassified. These observations are con-
sistent with Liu, H. et al. (2021), who reported 
common misclassifications between similar 
lithologies such as granitoids and alluvial sedi-
ments owing to their spectral similarities.

Evaluation of pseudo-labelling

PL is generally regarded as a promising meth-
od for model-based predictions and focuses 
on geosciences (e.g. well-log classification: 
Dunham, M.W. et al. 2020; seismic facies clas-
sification: Asghar, S. et al. 2020). In remote 
sensing, PL also ensured better models, and 
several authors have proven its relevance 
(Aydav, P.S.S. and Minz, S. 2018; Li, J. et al. 
2022). However, in our study, the outcomes 
were not always straightforward in terms of 
usefulness, as reflected by the F1 and MCC val-
ues (see Figure 9). We evaluated the results both 
quantitatively (based on accuracy metrics) and 
qualitatively (based on visual inspection), and 
the final judgement was not obvious. 

A comparison of the original and PL ap-
proaches showed that 25 percent of the study 
area was affected by the changed training 
data, and the accuracy metrics were affect-
ed by the differences between the two ap-
proaches, although the improvement was not 
consistent across all rock types. Focusing on 
the areas where rock types were classified 
differently using the two approaches, we 
found that the consequences differed for the 
MARS and RF maps. The reason is the ini-
tially high probability of the MARS model, 
which was the opposite of the results expe-
rienced in case of RF: the areas of differently 
classified pixels had high probability with 
low SD in case of MARS where a small de-
crease of probability caused the increase of 
SD; while in case of RF followed a more com-
mon trend, having a linear relation with low 
SDs for low mean probabilities, and high SDs 
for high probabilities by rock pairs. The main 
observation was that the probabilities did not 
improve in the case of MARS and had signifi-
cantly lower values with RF. Although the 
MARS was dominated by > 99 percent prob-
abilities, in the areas of change, these values 
were lower, and the PL approach ensured 
a higher probability. In the case of RF, the 
probabilities were lower and could result in 
lower values with PL, but this did not mean 
that the performance would have been lower.

Multivariate analyses showed that using 
1000 additional data with 95 percent prob-
ability changed the accuracy metrics accord-
ing to the Hotelling test. Furthermore, visual 
analysis justified these differences. However, 
PL1000 resulted in conflicting results with 
several rock types; in these circumstances, 
PL1000 was useless, and training the model 
using the original data was more adequate. A 
summary of the visual analysis results showed 
that RF.PL was more useful than MARS. The 
PL was not as successful as the metrics sug-
gested. This seems to be a contradiction, but 
the explanation can be simple: the amount of 
testing data was not sufficient to reveal the 
accuracy in detail. A geologically complex 
area, such as the study area, would require a 
higher amount of testing data, but testing only 
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validated spots is recommended to avoid false 
accuracy metrics (Meyer, H. and Pebesma, E. 
2022; Gao, M. et al. 2023). Accordingly, we did 
not use pseudo-labelled data for testing, but 
only for training; therefore, the testing points 
did not cover the entire area. Furthermore, 
spatial patterns cannot be captured using 
points, and visual inspection with specific 
geological knowledge is more important. The 
main question is, based on analogies, whether 
there are reasonable (i.e. geologically possible) 
occurrences of rock types. The artisanal small-
scale mining exploits certain rock types (meta-
volcanics), and occurrences can be excluded 
when they are identified on marble, ophiolite, 
and granite. Wadi deposits (WDi) also have 
typical areas where wadis can be found, cor-
responding to the topography.

Limitations

Training data is always the main question of 
all models, and in our case, we provided a 
possible approach by augmenting the avail-
able training data. Testing is another important 
point, and we had only a limited amount of 
data, 256 records that were collected during ex-
tensive fieldwork, and rock samples that were 
investigated and registered. This was sufficient 
to conduct an accuracy assessment; however, 
visual inspection of the spatial patterns was 
useful. Accordingly, further testing is needed 
with more testing data and other datasets 
where probabilities can be tested as well.

Conclusions

Our aim was to study the efficacy of pseu-
do-labelling in the geological mapping of an 
African area. We applied the RF and MARS 
classifiers, which provided classified maps 
and probability maps, and evaluated the 
results using an accuracy assessment and 
visual analysis. RF provided more reliable 
probability levels, whereas the MARS prob-
ability map was too optimistic; 85.7 percent 
of the classified pixels were above 90 percent 

probability and 81 percent above 99 percent 
probability, which did not correspond to the 
accuracy assessment. MARS performed only 
slightly better than RF, and as the PL data 
were obtained within the 95 percent range 
of probability, PL was useful for MARS (with 
1000 PL data of 95% probability). For RF, PL 
helped to obtain better accuracies, but its rel-
evance was smaller owing to its robustness. 
Visual analysis enhanced the relevance of 
specific knowledge of the area by confirm-
ing or excluding the outcomes of the best 
and impossible occurrences of rock types. 
We revealed the relevance of PL in geologi-
cal mapping for both RF and MARS, and the 
additional data helped to gain better maps. 
Based on class-level accuracy metrics, PL 
provided better maps in the case of MARS 
(33 out of 36) and fewer cases with RF (17 out 
of 36), considering 1000 additional samples 
of 95 percent probability. 
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