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Lithological mapping with pseudo-labelling: Promise or
overestimation in data-scarce settings?

SziLARD SZABO!, ABDELMAJEED A. ELRASHEED? LiLLa KOVACS?, Imre J. HOLB?,
SziLArD B. LIKO® and DAvip ABRIHA®

Abstract

Reference data are the most crucial points in model building. In geoscience, a scarcity of sufficient reference data
is common. Pseudo-labelling (PL), i.e. incorporating high-probability data in the model-building process, offers a
potential solution. We aimed to reveal the efficiency of PL in lithological mapping in a vegetation-free arid region
of Sudan. Multiple Adaptive Regression Splines (MARS) and Random Forest (RF) were used to classify a Landsat 9
image. Reference data were collected during fieldwork and through visual interpretation. Image processing yielded
classified maps with associated probability layers, from which 1000 additional traditional samples (PL data) were
extracted at a 95 percent probability. A detailed accuracy assessment was conducted, and accuracy measures were
evaluated using statistical analysis and visual inspection. MARS was found to be an ambiguous classifier because
the probability was too optimistic related to the overall accuracy (OA) (81% of samples had above 99% probabil-
ity, OA =98.2%) compared to RF (21% above 99%, OA = 98.1%); that is, despite the high probability, the accuracy
improvement was only 0.1 percent. At the class level, the correlation between probability and the Fl-score was
low (0.21%). The original and PL-based models resulted in different maps with improved accuracy, although the
new model version showed lower probability values for both the classifiers. Visual inspection proved essential for
better insights into the spatial patterns: expert knowledge is crucial for controlling the occurrence of rock types
and identifying false classifications. The main finding is that probability should be handled carefully, as it does
not guarantee high model performance in classification, although the PL approach can lead to more reliable maps.
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Introduction a given area and represents a fundamental

step in most geological investigations, includ-
Lithological mapping is the process of identi-  ing mineral exploration, groundwater assess-
fying different lithological units (rocks) within ~ ment, petroleum studies, natural resource
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evaluation, and environmental management
(Amusuk, D.J. et al. 2016; Asrams, M. and
Yamacuchy, Y. 2019). Consequently, obtain-
ing an accurate lithological map is crucial for
mineral exploration. Traditionally, lithologi-
cal mapping is executed mainly through inter-
pretation of aerial photographs, followed by
extensive field-based investigations in which
geologists collect samples, register observa-
tions, measure geological structures (such as
dip and strike), identify mineral composition
and textures, or interpret field relationships
(Szan1awska, L. 2018). However, this tradi-
tional mapping approach can be challenging
because it requires skilled field geologists,
is time-consuming, and requires a suitable
budget to cover costs, especially in harsh en-
vironments and inaccessible or isolated plac-
es. These difficulties have recently decreased
through the integration of cutting-edge tech-
nologies, such as remote sensing and machine
learning, in the lithological mapping process
(BacHgry, L. et al. 2019; ABDELKAREEM, M. et al.
2021; SairmARD, H. et al. 2022).

Geological features can be identified using
extensive datasets of remote sensing technol-
ogy (EL-Omairr, M.A. and Garouani, A.E.
2023). Valuable insights can be drawn from the
geographic data obtained by sensors, based
on the distinctive properties of the local area
(NaIR, P. ef al. 2023). Machine learning offers
an efficient way of processing remote sensing
data. After the training phase, algorithms can
identify rock types, faults, or mineral deposits
if the spectral resolution of the images makes
it possible. These algorithms can handle large
datasets, allowing the discovery of plausible
patterns in complex geological datasets (HaN,
W. et al. 2023). However, machine learning
requires high-quality training data to build
a reliable model. Additionally, independent
testing data (known as reference data) are es-
sential for validating a model’s performance
(James, G. et al. 2013).

Reference data is the most crucial constitu-
ent of all models. Training subsets are used
for model building, while testing subsets are
used to assess accuracy. In remote sensing, we
may have millions of pixels (i.e. data points),

which may give the impression that the de-
lineation of reference data is easy, however,
this is not true for all tasks. For example, in
land cover mapping, the traditional approach
is to classify surface objects into simple classes
such as forests, grasslands, and water bod-
ies. These classes can include thousands of
pixels as reference data because simple visual
interpretations of the images can provide suf-
ficient information. However, when the aim is
a more specific problem, such as identifying
plant or tree species, detecting plant diseases,
or classifying roof types, reference data collec-
tion requires field observations and/or ground
measurements, which makes this step labour-
intensive and time-consuming. Lithological
mapping faces the same problem: Field ob-
servations are essential for a reliable reference
dataset. If the number of labelled instances is
insufficient, the model cannot be adequately
trained because of the insufficient size of the
reference dataset.

The question of how much reference data
is needed depends on the algorithms and is
widely discussed in the literature. While there
are basic rules, generally, the more the refer-
ence data, the better. Studies have shown that
accurate, balanced, and large training datasets
are often more important than the choice of
algorithms in terms of the output (L1, C. et al.
2014; MaxweLL, A.E. et al. 2018; CorrLins, L.
et al. 2020). There is no universally accepted
minimum number of training data points.
However, Foopy, G.M. (2009) defined a method
for calculating the minimum amount of testing
data based on the desired overall accuracy, ac-
ceptable standard error, and classification er-
ror. For example, for four categories with an 85
percent target accuracy and a standard error of
0.02 (2%), at least 1275 testing data samples are
required, which is approximately 320 per class.
Class imbalance also can be a crucial point
when the target class or some classes are un-
derrepresented causing false accuracy metrics
(Luqug, A. et al. 2019), which is common when
the target features are limited owing to unique
characteristics (e.g. rare species, specific roof-
ing types, or uncommon rock types or plant
species), collecting a sufficient number of data
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points may be infeasible, while easy to collect
non-target classes. Even with fewer reference
data than the optimal, accurate outcomes are
still possible depending on the data distribu-
tion and representativeness of the data which
introduces a higher risk of uncertain results.
An alternative method, known as self-train-
ing or pseudo-labelling (PL), involves selecting
high-probability data from the predictions of
an initial model conducted with fewer data
points, and the model training is repeated with
data from a classified map with the highest
probability. The effectiveness of this method
has been proven to improve the classification
results, including soil class mapping (ZHang,
L. et al. 2021), detection of geochemical anoma-
lies (CreN, Y. ef al. 2023), prediction of inva-
sive species distribution (Cruz, C. et al. 2023;
K1y, E. et al. 2024), and identification of spo-
radically distributed species (Lix6, Sz.B. et al.
2024). However, PL does not always improve
classification accuracy or even result in worse
predictions. Although PL appears to be a good
solution for overcoming the issue of limited
reference data, users cannot assume that the
outcome will be better than that of the model

ﬁ{ b

S}H’la‘ i,) ,ﬁ'

n
47 Nt

output based on the original data. Geological
mapping presents a unique challenge, as both
natural and anthropogenic processes (e.g.
physical and chemical weathering and min-
ing) can alter rock characteristics. However,
the spatial pattern can easily be validated by
visual interpretation (e.g. the given rock type
can occur at a given location).

We aimed to determine the effectiveness of
PL in geological mapping. The selected study
site was in an arid environment, where the lack
of vegetation made it possible to observe rock
types in satellite imagery. We had the follow-
ing questions related to the probabilities and
PL: (i) what was the probability of the related
rock type and how did it change with the in-
creased training data; (ii) what was the stand-
ard deviation (SD) of classes in the changed
areas, and how large areas were influenced;
and (iii) what was the direction of the changes
in terms of probability? Accordingly, we for-
mulated the following hypotheses: (i) high
probability values ensure high model perfor-
mance and (ii) pseudo-labelling improves map
quality by providing additional training data
for the modelling process.

State border
= Study area

Fig. 1. Location of the study area: Sudan and study area location (a), and Landsat 8 colour composite of the
study area in 7, 5, and 2 bands (b). Source: Authors” own elaboration.
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Data and methodology
Study area

The study area was located in the Red Sea
State, northeast Sudan, 90 km from Port Su-
dan (Figure 1). Geologically, the area is part of
the Red Sea Hills (RSHs), the Sudanese sec-
tion of the Arabian Nubian Shield, which is
a juvenile continental crust formed between
900 Ma and 550 Ma (AspeLsaram, M.G. et al.
2000; Hamimi, Z. et al. 2021; ABDELRAHMAN,
S. et al. 2024). These rocks are highly sheared
and deformed, and their geology is complex
(ABDELSALAM, M.G. and StERN, R.J. 1993). The
study area is part of the Gebeit terrane, and
the major lithological units include highly
sheared low-grade meta-volcanics (meta-ba-
saltic andesite, meta-andesitic basalt, and me-
ta-dacite), meta-sediments (marble), sheared
granitoids, and superficial deposits. Accord-
ingly, we identified and mapped the follow-
ing six rock types: artisanal (art), granite (gra),
marble (marb), meta-volcanic rocks (mtvo),
ophiolite (ophi), and wadi deposits (WDi).

Applied data

A Landsat 9 image (LC09_L2SP_172046_202
31014_20231015_02_T1, US Geological Sur-
vey) was used in the analysis on a cloud-free
date. Through a thorough review of current
geological maps, close visual inspection, and
analysis of processed Landsat data, as well as
high spatial resolution imagery from Google
Earth, we carefully produced reference data.
In addition, extensive fieldwork was con-
ducted along regularly planned traverses.

Image processing

Machine learning

Multivariate Adaptive Regression Spline
(MARS) and Random Forest (RF) and algo-

rithms were tested in this study because both
provide a probability layer that indicates the

reliability of the classification pixel-by-pixel
regarding the classes.

MARS is a nonparametric, robust algorithm
that efficiently manages a large amount of in-
put data and nonlinear relationships between
the target and explanatory variables with no
assumptions (FrRiepman, J.H. 1991). The fea-
ture space is split into regions based on knots,
which define the boundaries of the piecewise
linear basis functions that contribute to the
overall prediction. Each basis function votes
on a class for the data instances, and finally,
the function with the majority votes is select-
ed as the prediction. Probability calculation
for classification tasks are similar to the pro-
cedure of logistic regression (logistic transfor-
mation to convert the continuous values to 0
and 1 probabilities), but the main difference is
that the MARS, instead of using linear terms,
calculates the weighted sum of the basic func-
tions (FriepmaN, J.H. 1991; Boeumke, B. and
GREENWELL, B.M. 2019, 2020). In the R imple-
mentation, the earth package (MiLBorrROW, S.
et al. 2024), the “degree’ should be specified,
which is the degree of interaction among the
input variables, ‘nprune’ refers to the number
of basic functions. The performance of MARS
models is high; however, a grid search of hy-
per-parameters is important.

RF is a widely used and robust algorithm
(BremaN, L. 2001), and its efficiency has been
proven in several fields such as land cover
mapping, soil science, and geology (BeLciu,
M. and DrAgur, L. 2016; SHAHARE, Y.R. ef al.
2024; StmarMATA, N. et al. 2025). RF does not
assume normal distribution, homoscedastic-
ity, or multi-collinearity due to its calculation
method, and classification is based on hun-
dreds of decision trees (DTs) using randomly
chosen data (36.8% subset of the training
dataset) and variables. The number of trees
(ntree) parameter is usually set between 100
and 500, and we used the default setting of
the “caret’ package (Kunn, M. 2022), which is
500. The number of variables (mtry) is chosen
at each split of a single DT, the default is the
square root of the number of all variables,
and hyper-parameter tuning testing can be
tested between 1:20.
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Models were developed and conducted in
R 4.4.2 (R Core Team, 2024) with the ‘caret’
package (Kunn, M. 2022). Both models re-
sulted in two outputs: prediction of the
classes (classified map) and calculation of
the related probabilities (probability map).
Probabilities were calculated by classes, but
in the analysis, we used only the maximum
values, i.e. instead of having six values (for
the six classes) with the related probabilities
in six raster layers, only the highest values
were extracted to a single raster layer. It was
important, because the maximums deter-
mined the resulting classified output, and
we were able to pair and evaluate the classes
with the probabilities by pixels: for six class-
es 16.67 percent (100/6 = 16.66) of maximum
probability was enough to classify a pixel,
whereas the maximum was 100 percent.

Accuracy assessment

Model testing is a crucial step in all predic-
tions (Bur, D.H. and Mucsi, L. 2022). We
used our previously developed module,
programmed for an automated accuracy as-
sessment, the Classification Assessment Tool
(SzaBO, Sz. et al. 2024), which calculates ac-
curacies using advanced solutions by taking
random subsamples from the entire testing
dataset based on a predefined ratio obtained
from the testing data (0-1) and the number of
repetitions of random sampling. We applied
0.6 for the fraction (60% of data were used
at a time with stratified random sampling),
and for repetitions, we applied 10. Boxplot
diagrams were used to visualise the differ-
ences among the classes. The following class-
level metrics were calculated: Precision (or
User’s Accuracy, UA), Sensitivity (Producer’s
Accuracy, PA) (CongaLton, R.G. 1991; Bar-
sI, A. et al. 2018), Specificity (True Negative
Rate), Fl-scores (or Dice Similarity Coeffi-
cient), Jaccard Index (or Intersection over Un-
ion, IOU) (Willem, 2017; GrRaNDINI, M. ef al.
2020), and Matthews correlation coefficient
(MCC) (Cao, C. et al. 2020; Cuicco, D. and
Jurman, G. 2020).

Pseudo-labelling and statistical
evaluation

For pseudo-labelling, users must choose a prob-
ability map based on an accuracy assessment
(e.g. the highest accuracy). A threshold value
should be set to define pixels with a minimum
probability to delineate the area where the new-
ly labelled classes will be collected. Although
the threshold can be between 1 and 100 percent,
only higher values (e.g. 0.9 [> 90%]) are useful;
accordingly, we chose 95 percent. This step as-
signed the relating area to the probability maps.
We selected 1000 spatially random data points
from the assigned area as PL-data (abbreviated
as PL1000), involved in the new training phase,
merged with the original training data; possi-
ble duplicates were removed. Next, the clas-
sification step was repeated with an accuracy
assessment.

Furthermore, we compared the class-level
accuracy metrics (independent variables:
Precision, Sensitivity, Specificity, MCC, F1,
IOU) of the original maps with the map
where the model was trained with the larg-
est number (1000) of pseudo-labelled, resa-
mpled data (PL1000) (i.e. input datasets as
dependent variables). A multivariate method,
Hotelling’s T-squared test, was used to test H,
(group means for all independent variables
were equal). The analysis was conducted with
R 4.4.2 with the Hotelling package (CURRAN,
J. and HersH, T. 2012). Besides the p-values,
effect sizes of partial n* and Mahalanobis
Distance Squared (D?) were also determined
to express the magnitude of the differences
between the two values of the dependent var-
iable. For partial n? 0.01-0.06 is considered
as small, 0.06-0.14 as medium, > 0.14 as large
effect; for D?, 0.25-0.50 is considered as small,
0.50-1.00 as medium, and > 1.00 as large ef-
fect (ConeN, J. 2013; MaTcHARASHVILL, T. ef al.
2019; SHAKER, A. 2023).

Maps produced with the original training
and PL1000 data were compared using cross-
tabulation and quantified by cross-entropy
and visual analysis. Cross-entropy is a ro-
bust index for identifying hotspot areas of
change (the higher the value, the larger the



344 Szabo, Sz. et al. Hungarian Geographical Bulletin 74 (2025) (4) 339-357.

change) (Suim, J.W. 2024). Values below the
upper quartile were blanked to enhance the
relevant differences between the two maps,
and the differences were quantified in com-
parison (agreement) tables. The two maps
were also compared using the Interspersion
and Juxtaposition Index (IJI), which showed
the isolation of the intermixing of patches
(i.e. rock types) (Meap, R.A. ef al. 1981).
Cross-entropy was determined using the
‘spatialEco’ package (Evans, J.S. et al. 2023),
and IJI with the ‘landscapemetrics’ package
(HesseLBartH, M.H.K. et al. 2025).

We also performed a difference analysis
between the original and PL1000 maps, fo-
cusing directly on changes and probabilities.
We determined the probabilities of the classi-
fications and the relationship between the ac-
curacy metrics and probabilities at the class
level by rock type. We focused on the areas
where the classification was different in the
two approaches, and investigated the prob-
ability of the pairs (e.g. in the original ap-
proach, a pixel was “art”, and in the PL1000
it was “WDi”). Finally, we compared the
Fl-scores and mean probabilities by rock
type using Spearman correlation.

Results
Geological maps with original training data
The MARS and RF algorithms provided seem-

ingly similar maps of rock types, but there
were also significant differences. The main

Table 1. Estimated area of rock types by two classification
models: Multiple Adaptive Regression Spline (MARS)

and Random Forest (RF)
Area based on
Rock type MARS RF model,
model, km? km?
art (astisanal) 54.09 58.98
gra (granit) 133.08 150.57
marb (marble) 47.56 60.64
mtvo (meta-volcanic) 54.93 64.81
ophi (ophiolite 29.60 22.88
WDi (wadi deposits) 139.59 100.96

Source. Compiled by the authors.

difference was in the case of WDi: MARS
considerably overestimated WDi and under-
estimated all the other types (Table 1). Consid-
ering the possible occurrence of WD, the RF
model was more reliable, as MARS indicated
the deposits at irrelevant locations as well
(NW and NE corners of the area, Figure 2).

However, the class-level accuracy metrics
showed different results: WDi had the best
performance with MARS (Figure 3). In the
case of other rock types, the accuracies were
similar (or at least slightly, 2-3%, better with
the RF), and the RF had a narrower range
based on the repetitions of the testing proce-
dure, that is, it acted more reliably with the
existing testing data.

Classification accuracies and probabilities

Regarding the probabilities, maps showed
that MARS was supposed to be more accu-
rate as 371.56 km? of the area had > 99 percent
probability (considering the maximum prob-
abilities of all classes by pixels), whilst in the
case of RF it was only 94.85 km? (Figure 4). Al-
though the near-100 percent pixels dominated
the MARS model, it did not perform better;
only the probabilities were overoptimistic,
and the accuracy measures were only slightly
better than RF (Figure 5, a). The median (de-
rived from the accuracy assessment data) dif-
ferences between the two models in the case
of the robust F1 and MCC did not demon-
strate the superiority of any of the models:
for art, marb, and ophi, the RF performed bet-
ter than the MARS with 4.6-2.2-6.6 percent
(MCC) and 4.0-1.8-5.9 percent (F1), whereas
the MARS was shown to be a better model for
gra, mtvo, and WDi with 2.9-1.4-12.2 percent
(MCC) and 2.7-1.0-10.9 percent (F1).

Class level accuracy and the Fl-score had
no connection with the two classifiers; the
Spearman correlation coefficient was 0.21
(p=0.51, i.e. not significant). In half of the rock
types, the RF performed better, and in the oth-
er half, the MARS performed better based on
the Fl-scores (Figure 5, b). Although the val-
ues theoretically followed a linear relationship,
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Fig. 2. Geological maps of the Multiple Adaptive Regression Spline (MARS), and Random Forest (RF) models

and their pseudo-labelled (PL) versions. Rock types: art = artisanal; gra = granite; marb = marble; mtvo = meta-

volcanic; ophi = ophiolite; WDi = wadi deposits. (PL = 1000 pseudo-label data with 95% probability; white
rectangles and numbers: evaluated areas). Source: Authors” own elaboration.

there were outliers in both models: in the case
of MARS_, the mean accuracy (F1) was one of
the lowest (0.81), while the probability was 92
percent, and RF__, had a large F1-score (0.98)
with the lowest probability (58%).

Models trained with original and pseudo-labelling
We compared the maps produced with the

original and PL1000 (95% probability) training
datasets and found that the original training

set performed similarly to the case with an ad-
ditional 1000 data points, at least on the level of
accuracy metrics. Comparison matrices showed
smaller agreements for MARS (art, marb, and
ophi had <50%, WDi 58%) and slight differenc-
es for the RF (all rock types had > 80% agree-
ment, except marb, having only 65%).

Visual analysis brought controversial ob-
servations: although both the RF and MARS
maps differed by 25 percent from the PL
versions regarding the hot-spot chang-
ing areas (in addition to the simple expres-
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Fig. 4. Probability layers of classification models of the MARS and RF models, visualising the maximum prob-
abilities Source: Authors” own elaboration.
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Fig. 5. Cumulative probabilities and accuracies of the MARS and RF models. Proportions of pixels by prob-
ability thresholds (a); Probabilities and F1-scores by rock type (b). For rock types see Fig. 2. Source: Authors’
own elaboration.

sion of the area, the cross-entropy levels
differed significantly), the changes caused
by the additional data improved the maps
(Table 2). In area 1, the PL versions outper-
formed the original classifications for both RF

and MARS; in area 2, RF.PL outperformed all
other versions, and MARS.PL outperformed
the original MARS. For area 3, MARS.PL pro-
vided the best outcome, but RF.PL was also
better than the original version. In areas 4
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Table 2. Summary of best models based in visual inspection of spatial patterns*

Area | Characteristic rock type | Rock type Best model

1 ophi, WDi generally RF.PL and MARS.PL
2 gra, WDi generally RF.PL

3 gra, mtvo, WDi generally MARS.PL and RF.PL
4 art, ophi, WDi generally RF.PL

5 ophi, marb, gra generally RF.PL

6 marb, mtvo, ophi ophi RF.PL

6 marb, mtvo, ophi marb MARS.PL

7 art, marb, mtvo, WDi mtvo MARS and MARS.PL
7 art, marb, mtvo, WDi WDi RF.PL

8 gra, WDi generally RF.PL

9 art, marb, mtwo, WDi art RF.PL

9 art, marb, mtwo, WDi WDi, mtvo | MARS.PL

*Area codes depicted in Figure 2. RF = Random Forest; MARS = Multiple
Adaptive Regression Spline; PL = pseudo labelled; art = artisanal, gra =
granite, marb = marble, mtvo = meta-volcanic, ophi = ophiolite, WDi =
wadi deposits. Source. Compiled by the authors.

and 5, the RE.PL was the most reliable solu-
tion. For area 6, MARS was the least accurate,
and RF.PL provided the best solution for ophi,
and MARS.PL for marb. MARS and MARS.PL
mapped mtvo better than the other models,
and RF.PL mapped WDi the best in the case of
area 7. Generally, RF.PL was the best for area
8. In case area 9, RF.PL had the best classifica-
tion for art and MARS.PL for mtvo and WDi.
Accordingly, the PL model versions performed

well, and based on the visual analysis, the spa-
tial patterns were determined in several cases
as the best outcomes.

Although cross-entropy showed that the
hot-spot areas of differences were 25 percent
for both model pairs (original vs. PL), in the
case of RF, the values were higher, indicating
that there was a difference in sparse pixels;
that is, the level of mixing of standalone pix-
els had changed (Figure 6). IJI confirmed that

RF.entropy

Northing
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- 25

Easting

Fig. 6. Differences of the pseudo-labelled model (PL1000) to the original models using the cross-entropy of
MARS and RF (values <2.5, i.e. upper quartile, were blanked). Source: Authors” own elaboration.
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interspersion became more uneven with the
RF.PL with 2.0 percent (77.2) related to the
RF (79.2), while in the case of MARS it was
86.2, and for MARS.PL it was 89.5.

The class-level evaluation of the probabil-
ity levels in the two classification approaches
showed that the classifiers reacted differ-
ently. In the case of MARS, the probabilities
were initially high in the changing pixels of
the rock-type pairs, and usually, the larger
probabilities had lower SDs. A small de-
crease in the mean probability levels caused
an increase in SD (Figure 7, a). The relation-
ship between the mean probability and SDs
was almost perfect (e.g. as a second-order
polynomial), but the marb-WDi pair was
an influential data point with a low mean
and SD. Although the changes in probabili-
ties were not significant according to the
Wilcoxon test, they exceeded 10 percent in
14 of 30 cases (Figure 7, b). In 12 instances,
the probability increased. The results were
different for RF; typically, lower mean prob-
abilities had lower SDs and followed a linear
relationship (Figure 8, a). The probabilities of
the original approach were lower than those
of MARS, and the probabilities of the PL ver-
sions were even lower, with significant dif-
ferences (Figure 8, b). The number of cases in
which the change was > 10 percent was nine,
and the number increased by only five. The
magnitudes of the changes also differed; the
maximum increase was 62 percent in the case
of MARS, and 0.09 for RF (additionally, the
largest change regardless of the direction of
changes was only 0.27).

Multivariate comparison of the traditional and
pseudo-labelling methods

Multivariate comparison of the MARS
models

The MARS models performed better with
PL1000 than with the original training data,
except for three out of 36 cases (without spe-
cific rock types). The original data provided
more accurate results, and among the three

exceptions, the mean differences were below
2 percent (mostly < 0.5%). The decreases in
F1, IOU, and MCC were up to 18.8 percent,
with a maximum increase of 1.8 percent. For
RF models, PL1000 was not very useful; nev-
ertheless, it provided better metrics in 17 out
of 36 cases, particularly for gra and WDi rock
types (Figure 9).

The difference between the models based
on the original and PL1000 training data was
significant according to the Hotelling test
(T2=447.77, F[6, 593] = 74.63, p < 0.001). n? =
0.4302 indicated a very large effect size and
accounted for 43.02 percent of the multivar-
iate variance by group differences in the in-
dependent variable. The large effect size was
also justified by D? = 0.746. Both indicated
a strong association between the grouping
variables and the set of dependent variables.
Effect sizes suggested that there were sub-
stantial differences in how the models per-
formed across different datasets, consider-
ing all performance metrics simultaneously.
Accordingly, the groups were well-separated
in the multivariate space defined by the de-
pendent variables.

Multivariate comparison of the RF
models

For the RF models, the accuracy metrics
showed varied results related to the MARS,
and the PL1000 training dataset provided
better accuracy measures than the original
in 15 out of 36 cases. The increase was 5.5
percent and the maximum decrease was 4.8
percent (see Figure 9). The Hotelling test re-
vealed a significant difference (T? = 35.31,
F[6, 593] =5.89, p <0.001), but the effect sizes
were not as large as in the case of MARS,
indicating less pronounced differences be-
tween the groups. n?=0.056 was close to the
threshold for a medium effect (0.06), suggest-
ing moderate significance of the group differ-
ence. D?=0.0588 indicated a relatively small
separation between the groups; accordingly,
the difference was statistically significant, but
the effect was not large.



Szabo, Sz. et al. Hungarian Geographical Bulletin 74 (2025) (4) 339-357.

350

o sapmytuSeA () sad 4y spox SurBueyp £q seniiqeqord w8 “1ayIsse SYVIA JO ased ayj ut sanifiqeqoid jo 381y ur suoneoyisse ad Ay ooz jo sadueyd /817

st . o @ s @ e

su 10-3L/"L :anje-d uoxod|im

“UOTJRIOQR[D UMO SIOUINY 2047108 7 817 99s sad Ay ypour 104 *(q) sired ad £y o1 jo seniqeqord

ISPANY(| M ISRINU| s UOIDBUI]
Aypiqeqoad ui abuey)
0L 80 90 70
oV
_m 00V T
- SE0-V
- 87’0V
B 67°0V
- 90V v :
- 907 !

OAJW-eIh
glew-ydo
1ydo-quew
1am-es
Je-onw
eib-glew
oMUW-IM
eib-pe
1le-elb
OAW-QueW
oAjW-Je
eib-1gm
am-ye
QIRW-0AJW
1ydo-e
eib-onyw
QUew-}e
onw-ydo
eib-jydo
1am-omw
1ydo-onyw
1ydo-1am
1ydo-eib
glew-eib
1gM-1ydo
qlew-iam
He-1am
1am-qrew
1e-iydo
Je-qiew

) )Poy

sated adA;

£0 90 S0 ¥'0 €0

Kypqeqoad uesyy
60 80 Lo 90 §0
= 1gM-onw
Je-onw
% roro
Jie-gew
/
He-lam
! - onu-elb
___%.o,\, u % Qlew-0AW
N -]
Ve-elf > OMUHIAM OM-Giew -0
E%.m;ﬁ OAJW- QW rslo
) 1ydo-1am \_ eb-onw
WEUATMN opyu-yre
iam-eib eib-ye
:m.___%\
qlew-eib
S__:._q_mO 020
qlew-ye m._wu_o>>
N 1ydo-esb
qlew-1ydo
¢ b-1yd
eib-ydo
ag._,ﬂo @
sm.g&_ L5700
1ydo-pie
\
A am-ue

UOKRIASP paepuels



351

Szabo, Sz. et al. Hungarian Geographical Bulletin 74 (2025) (4) 339-357.

"UOTJRIOR[d UMO SIOUINY :20410G 7 *814 99s sad Ay oo 10, *(q) sared ad £y spoa ayy jo saniqeqoad

jo sapmuSey (e) sad4£y spox Surduep ayy Aq senriqeqord reurLQ IayIsse]d I3 Jo ased ur sanifiqeqod jo JySi ur suonesyissed ad4) yooix jo saduey)) ‘g ‘517

% £0-9G1°L _w:_m>.n UoXod[Im
3SPIII( e ISPINU| s

fypqeqoad ui abuey)
L0 90 S0 70

uonalQ

€0 4

offs |

oy

Nai

700~

0oy

L0°0 <'I

800V

800-V

60°0-V

600-V

' |

600V

Io-v

o

wov

€LQ-v

E §

8L0-v

woy

LT0-Y 1 o

cov !

1ydo-qrew
Qrew-1am
onw-glew
Je-glew
eib-1gM
qlew-ydo
qlew-eib
eib-qiew
qlew-e
1le-jydo
am-onu
ue-gm
am-ye
eib-pe
1aM-grew
eib-onyw
OAJW-eIb
1ydo-pie
1qM-eib
onuw-ydo
onw-}e
1ie-eib
1ydo-onyw
Je-onw
qIRW-oAW

£0 90 S0 ¥0 €0

5l ‘ o @ s @ e

Aypqeqoid ueayy
L0 90 S0 70 €0
' ' ' ' ' 000
eib-onw-@
®
oze.ﬁme 1ydo-1ie
QemE.Em
___%Iﬁs :m.ewe kozc_.sm 500
ye-igy  eu-Ham
()
emE.ﬁ%
_o%% 1aM-Grew
—)Jie-onw oAjW-}e )
ye-1ydo lew-}1e
= sm._g‘ 5
5 eib-}e
2 4 010
= am-ye
b= onyw-jydo
o \
-]
2. 1ydo-onw
a /
1gM-eib
Je-e
FSLo
Qlew-omus F0C0
q

uoneIAIp prepuelg



352 Szabo, Sz. et al. Hungarian Geographical Bulletin 74 (2025) (4) 339-357.

Specificity

Sensitivity

Precision
e WDI

—art —gra

Specificity

Sensitivity

Precision

marh e MtV0 == ophi

Fig. 9. Difference in model accuracies (Original — PL1000 training data) by rock type and accuracy metrics MARS
(a), and RF (b). IOU = Intersection over Union; MCC = Matthews correlation coefficient. For rock types see Fig. 2.
Source: Authors’ own elaboration.

Discussion
Insights on classification algorithms

Studying the probability maps alone could
lead to misjudging the real performance of
the algorithms, as MARS provided unreliably
high values, and one could state that RF has
poor accuracy. Although probabilities provid-
ed new insights, MARS indicated almost per-
fect reliability (i.e. > 99%) for 81 percent of the
study area; however, this was not validated by
the accuracy metrics, and RF was not worse
than MARS. The OAs only slightly differed
between the MARS and RF models; at the class
level, there were differences in the misclassifi-
cation. The reason for the high probabilities of
MARS can amplify small spectral differences
through its model calculation procedure,
whereas RF naturally moderates its probabili-
ties through vote averaging. The key point of
this result is that, although MARS seems to be
a better classifier based on the probabilities, RF

was not worse when considering the accuracy
metrics. Even with class-level comparisons re-
garding the medians, MARS performed only
1-2 percent better than RF in half of the cases.
The general issue with confirming the results
is that MARS, unlike RF, SVM, XGB, or KNN,
is not frequently used. Quirés, E. et al. (2009)
found that MARS was the best classifier relat-
ed to Maximum Likelihood and Parallelepiped
methods in 13 of 17 test zones in Spain. Nac-
raL, A. and Sing, V. (2019) used MARS and
RF and found that RF was better in six out of
10 datasets. Based on the study by RoTicLiaNo,
E. et al. (2018), MARS outperformed binary lo-
gistic regression for landslide identification,
which is consistent with our finding. HaRVEY,
A.S. and Fororouros, G. (2016) found that RF
was the best classifier; however, in their study,
MARS was not applied. Thus, although direct
comparison is not a common practice, because
MARS is not as popular as RF, we can con-
clude that both classifiers can generally per-
form well.
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Common misclassifications were caused due
to the complexities of geological features, high
inter-class similarity, and difficulties presented
by remote sensing data. Misclassifications are
frequently encountered in lithological map-
ping, especially when employing this type of
data (EL-Omairi, M.A. and Garouani, A.E.
2023). In our study, the rock type classifica-
tion focused on marble, meta-volcanic, ophi-
olite, altered rock, and wadi deposit units.
Discriminating these lithologies is inherently
challenging because of their spectral similari-
ties (OtuMmaN, A.A. and Groaguen, R. 2014).
Misclassifications occurred primarily among
granitoids, wadi deposits, and altered rocks
owing to their heterogeneous nature and over-
lapping spectral characteristics. Specifically,
wadi deposits are largely influenced by the
weathering of granitoids, whereas altered
rocks, often the result of traditional mining ac-
tivities, are typically associated with these de-
posits. In contrast, marble, metavolcanic, and
ophiolite units predominantly comprise iron
(Fe) and magnesium (Mg) minerals, which are
less prone to weathering and, thus, less likely
to be misclassified. These observations are con-
sistent with Liu, H. ef al. (2021), who reported
common misclassifications between similar
lithologies such as granitoids and alluvial sedi-
ments owing to their spectral similarities.

Evaluation of pseudo-labelling

PL is generally regarded as a promising meth-
od for model-based predictions and focuses
on geosciences (e.g. well-log classification:
DunuaMm, M.W. et al. 2020; seismic facies clas-
sification: AsGHAR, S. et al. 2020). In remote
sensing, PL also ensured better models, and
several authors have proven its relevance
(Aypav, P.S.S. and Minz, S. 2018; Ly, J. et al.
2022). However, in our study, the outcomes
were not always straightforward in terms of
usefulness, as reflected by the F1 and MCC val-
ues (see Figure 9). We evaluated the results both
quantitatively (based on accuracy metrics) and
qualitatively (based on visual inspection), and
the final judgement was not obvious.

A comparison of the original and PL ap-
proaches showed that 25 percent of the study
area was affected by the changed training
data, and the accuracy metrics were affect-
ed by the differences between the two ap-
proaches, although the improvement was not
consistent across all rock types. Focusing on
the areas where rock types were classified
differently using the two approaches, we
found that the consequences differed for the
MARS and RF maps. The reason is the ini-
tially high probability of the MARS model,
which was the opposite of the results expe-
rienced in case of RF: the areas of differently
classified pixels had high probability with
low SD in case of MARS where a small de-
crease of probability caused the increase of
SD; while in case of RF followed a more com-
mon trend, having a linear relation with low
SDs for low mean probabilities, and high SDs
for high probabilities by rock pairs. The main
observation was that the probabilities did not
improve in the case of MARS and had signifi-
cantly lower values with RF. Although the
MARS was dominated by > 99 percent prob-
abilities, in the areas of change, these values
were lower, and the PL approach ensured
a higher probability. In the case of RF, the
probabilities were lower and could result in
lower values with PL, but this did not mean
that the performance would have been lower.

Multivariate analyses showed that using
1000 additional data with 95 percent prob-
ability changed the accuracy metrics accord-
ing to the Hotelling test. Furthermore, visual
analysis justified these differences. However,
PL1000 resulted in conflicting results with
several rock types; in these circumstances,
PL1000 was useless, and training the model
using the original data was more adequate. A
summary of the visual analysis results showed
that RF.PL was more useful than MARS. The
PL was not as successful as the metrics sug-
gested. This seems to be a contradiction, but
the explanation can be simple: the amount of
testing data was not sufficient to reveal the
accuracy in detail. A geologically complex
area, such as the study area, would require a
higher amount of testing data, but testing only
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validated spots is recommended to avoid false
accuracy metrics (MEYER, H. and PeBesma, E.
2022; Gao, M. et al. 2023). Accordingly, we did
not use pseudo-labelled data for testing, but
only for training; therefore, the testing points
did not cover the entire area. Furthermore,
spatial patterns cannot be captured using
points, and visual inspection with specific
geological knowledge is more important. The
main question is, based on analogies, whether
there are reasonable (i.e. geologically possible)
occurrences of rock types. The artisanal small-
scale mining exploits certain rock types (meta-
volcanics), and occurrences can be excluded
when they are identified on marble, ophiolite,
and granite. Wadi deposits (WDi) also have
typical areas where wadis can be found, cor-
responding to the topography.

Limitations

Training data is always the main question of
all models, and in our case, we provided a
possible approach by augmenting the avail-
able training data. Testing is another important
point, and we had only a limited amount of
data, 256 records that were collected during ex-
tensive fieldwork, and rock samples that were
investigated and registered. This was sufficient
to conduct an accuracy assessment; however,
visual inspection of the spatial patterns was
useful. Accordingly, further testing is needed
with more testing data and other datasets
where probabilities can be tested as well.

Conclusions

Our aim was to study the efficacy of pseu-
do-labelling in the geological mapping of an
African area. We applied the RF and MARS
classifiers, which provided classified maps
and probability maps, and evaluated the
results using an accuracy assessment and
visual analysis. RF provided more reliable
probability levels, whereas the MARS prob-
ability map was too optimistic; 85.7 percent
of the classified pixels were above 90 percent

probability and 81 percent above 99 percent
probability, which did not correspond to the
accuracy assessment. MARS performed only
slightly better than RF, and as the PL data
were obtained within the 95 percent range
of probability, PL was useful for MARS (with
1000 PL data of 95% probability). For RF, PL
helped to obtain better accuracies, but its rel-
evance was smaller owing to its robustness.
Visual analysis enhanced the relevance of
specific knowledge of the area by confirm-
ing or excluding the outcomes of the best
and impossible occurrences of rock types.
We revealed the relevance of PL in geologi-
cal mapping for both RF and MARS, and the
additional data helped to gain better maps.
Based on class-level accuracy metrics, PL
provided better maps in the case of MARS
(33 out of 36) and fewer cases with RF (17 out
of 36), considering 1000 additional samples
of 95 percent probability.
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