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Identification of Saharan dust particles in Pleistocene dune sand-
paleosol sequences of Fuerteventura (Canary Islands)

GyOrcY VARGA! and CristorHER-BasTIAN ROETTIG?

Abstract

Automated static image analysis and newly introduced evaluation techniques were applied in this paper
to identify Saharan dust material in the unique sand-paleosol sequence of Fuerteventura (Canary Islands).
Measurements of ~50,000 individual mineral particles per samples provided huge amount of granulometric
data on the investigated sedimentary units. In contrast to simple grain size and shape parameters of bulk
samples, (1) parametric curve-fitting allowed the separation of different sedimentary populations suggesting
the presence of more than one key depositional mechanisms. Additional (2) Raman-spectroscopy of manually
targeted individual particles revealed a general relationship among grain size, grayscale intensity and miner-
alogy. This observation was used to introduce the (3) intensity based assessment technique for identification
of large number of quartz particles. The (4) cluster and (5) network analyses showed that only joint analysis
of size, shape and grayscale intensity properties provided suitable results, there is no specific granulometric
parameter to distinguish Saharan dust due to their irregular shape characteristics. The presented methods al-
lowed the separation of Saharan dust-related quartz grains from local sedimentary deposits, but due to the lack
of robust granulometric characterization of coarsest fractions and due to the diverse geochemical properties
of North African sources, exact volumetric amount of deposited dust material and sedimentation rates could
not be determined from these data.
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Introduction

Global mineral dust particle emission from
arid-semiarid areas can be set into the range
between 2 and 3 billion tons per year. Wind-
blown particles are playing important role
in several climatic and other environmen-
tal processes, while the accumulated eolian
dust deposits are valuable climatic archives
(Harrison, S.P. et al. 2001; KonreLp, K. and
TeGeN, 1. 2007; MAHER, B.A. et al. 2010; Pés-
FaI, M. and Buseck, P.R. 2010; Suao, Y. et al.
2011). Huge amount of dust is deposited far
from the source area, contributing to local

sedimentary units as exotic mineral material
and has an influence on parent material for
soils. Examples for atmospheric dust addi-
tion with significantly different geochemical
fingerprint were reported from several plac-
es, e.g. quartz-rich dust addition to basaltic
environments: Hawaii (Jackson, M.L. et al.
1971); Cheju (L1ym, J. ef al. 2005); San Clem-
ente Island (Muss, D.R. et al. 2007b); Canary
Islands (CoupEe-GausseN, G. et al. 1987); clay-
rich dust delivery to Caribbean soils (Pros-
PERO, ].M. and Lawms, P.J. 2003) and Florida
(Muns, D.R. et al. 2007a) and dust contribu-
tion to the formation of red soils in the Medi-
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terranean (Yaaron, D.H. and Ganogr, E. 1973;
MacLeop, D.A. 1980; Yaaron, D.H. 1997) or
in Australia (Mg, A.C. et al. 2004).

North African regions are responsible for
50-70 per cent of the global dust budget and
are regarded as the most intense and domi-
nant sources of atmospheric eolian dust
(TeGeN, L et al. 1996, MarnowaLrp, N.M. ef al.
1999, 2006; Ginoux, P.M. et al. 2001; MILLER,
R.L. et al. 2004). This dust is transported into
the direction of Europe, Middle East and the
Atlantic Ocean (IsraeLevicH, P.L. et al. 2002;
BaRrkAN, J. et al. 2005; ENGELSTAEDTER, S. et al.
2006; Stuur, J.-B.W. et al. 2009). The largest
amount is transported westward by high al-
titude Saharan Air Layer towards the Canary
Islands, Caribbean and North America, and
by the so-called ‘Harmattan” winds of the
northeasterly trade winds to South Atlantic
and South America (Prospero, .M. et al. 1970;
Swap, R. et al. 1992; ProsPERO, ].M. 1996).

Fuerteventura is the second largest mem-
ber of the archipelago of the Canary Islands
located closest to the African continent, 100
kilometres west of Morocco. The basaltic
Eastern Canary Islands are influenced by
Saharan dust events, locally called ‘Calima’
(Figure 1). The silt, clay and very fine-sand
sized mineral particles are deposited on
the widespread, shelf-originated carbon-

ate eolianites of the island. Cyclic nature
of Quaternary climates, changing amount
of transported mineral dust, sea-level vari-
ations and related sand availability created
a unique carbonate sand dune-paleosol se-
quence on the basaltic island, making it an
excellent natural laboratory to study the com-
plex Quaternary eolian dynamics (RoETTIG,
C-B. et al. 2017). The sedimentary deposits
are excellent archives of past environmental
changes and landscape evolution history. It
is especially true for relatively isolated areas,
where to some extent limited transport and
depositional mechanisms have played a role
in the formation of sedimentary deposits.
The present study aims to (1) provide in-
formation on granulometric character of vari-
ous windblown deposits of Fuerteventura;
(2) present a set of new methods to identify
Saharan dust material in the carbonate eoli-
anite-paleosol sequences of the island. Both
of these proposed aims will be discussed
by using the results of automated static im-
age analysis technique. Determination of
granulometric parameters is standing in the
focal point of sedimentary studies and it is
of growing interest in the Earth sciences.
Accurate grain size and shape data of sedi-
mentary deposits provide valuable informa-
tion on entrainment, transport and accumu-

nary Islands

Fuerteventu

7

Fig.1. Location of Fuerteventura (Canary Islands) and satellite images of Saharan dust events on 4* February
2013 (NASA Aqua MODIS) (on the left), and on 8" March 2012 (NASA Terra MODIS) (on the right). Source:
https://worldview.earthdata.nasa.gov/
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lation mechanisms of sedimentary particles,
and makes us able to gain insights into soil
erodibility (CENTER], Cs. et al. 2015).

Investigation area

Geological setting of Fuerteventura can be
characterized by the products of Neogene
and Quaternary alkali basaltic volcanism,
unconsolidated carbonate eolianites deliv-
ered from exposed shelf areas of the island
and admixtured Saharan dust material.
Paleo-dune fields and sand sheets of coarse
grained biogenetic sandy shelf material with
intercalated silty paleosols provide insight
into the complex eolian dynamics of the Qua-
ternary. Main phases of sand accumulation
are dependent on sand availability and geo-
morphic stability determined by humidity-
driven soil formation. However, as it was
reported by Criapo, C. et al. (2012), not all
reddish layers are in-situ soils, but rather
they are formed by higher admixture of silt-
sized Saharan dust material with quartz and
calcite with some additional feldspar, illite,
kaolinite and hematite during periods of
reduced sand supply (RoetTig, C-B. et al. in
press). Nowadays, sand availability has also
been a key-issue at the island as the demand
for sand has grown tremendously by road
and building constructions

The identification of past Saharan dust par-
ticles and the assessment of their admixture
into terrestrial archives play a key role in (1)
the understanding of past climate-driven
atmospheric circulations; (2) recognition of
periods with stable geomorphic evolution
and soil formation. Recent observations and
measurements allow us to get an overview
on dust transportation, deposition and gen-
eral characteristics of Saharan dust particles.
Three different synoptic meteorological situ-
ations have to be taken into account regard-
ing the dust availability on Fuerteventura: (1)
low altitude easterly winds dominant all year
long with winter-spring maximum; (2) sum-
mertime dust-bearing Saharan Air Layer as a
results of northward migration of the inter-

tropical convergence zone (although the main
dust transport route is between N15°-21°, a
southerly component of flow occur in the
lee of the easterly wave); (3) low-level conti-
nental trade winds. Modern annual Saharan
dust deposition rate is around 20 to 80 g/m?/
year in the region, the reported grain sizes are
primarily in the medium and coarse silt frac-
tions (MENENDEZ, L. et al. 2007). The amount of
deposited dust in the past could even be sig-
nificantly higher (Tsoar, H. and Pyg, K. 1987).

Methods
Granulometric characterization of eolian deposits

Samples were taken from 24 silty units con-
sidered as paleo-surfaces of stable geomor-
phic periods with reduced sand movements
and relatively enhanced Saharan dust influ-
ence, additional dune sand and sand sheet
samples were also investigated as refer-
ences for intense sand transportation inter-
vals. Detailed description of the units and
stratigraphic analysis of selected sites can be
found in the works of Fausr, D. et al. (2015)
and Roertig, C-B. ef al. (2017, in press). Air-
dried and 2 mm sieved samples were meas-
ured by Malvern Morphologi G3-ID instru-
ment in the Laboratory for Sediment and Soil
Analysis (Geographical Institute, Research
Centre for Astronomy and Earth Sciences,
Hungarian Academy of Sciences).

The applied automated static image analysis
technique is a new, innovative mode of grain
size and shape analyses completed with chem-
ical identity assessments of Raman spectrome-
try. In contrast to widely used laser diffraction
measurements, image analysis provides direct
observational data of particle size, and due to
the automatic measurement technique large
number of particles are characterized allowing
us a more robust and objective granulometric
description of particles compared to manual
microscopic approaches (Figure 2).

7 mm? of mineral particles per samples
were dispersed by 4 bar compressed air onto
a glass slide with 60 s settling time. The used
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Fig. 2. Key grain size and shape parameters of mineral particles (modified after Varca, Gy. et al. 2018). — Aspect
Ratio = Width/Length; CE Diameter = diameter of a circle with the same area as the projected 2D particle image;
Circularity = (2 x TI** x Area’’)/Perimeter; Convexity = Perimeter. . /Perimeter; Elongation = 1 — Width/

Length, the same as 1 — Aspect Ratio; SE Volume = volume of a sphere with the same CE Diameter as the

projected 2D particle image; Solidity = Area

20 x objective lens provide a 960 x magnifica-
tion, suitable for detailed characterization of
particles in the size range between fine silt
and fine sand fractions. Two-dimensional
imaging was completed with the usage of
additional vertical focal planes, two addi-
tional layers were applied above and two
other ones below the focus, equivalent to a
total of 27.5 pm.

The captured high-resolution grayscale im-
ages of ~50,000 individual mineral particles
were automatically analysed by the device soft-
ware to get a raw granulometric data-matrix.
Each row of the table represents one sedimen-
tary particle (with its own identity number),
while the columns are various size and shape
parameters, completed with light transmissiv-
ity data and Raman correlation scores.

Circle-equivalent (CE) diameter is the key
size descriptor, calculated as the diameter of a
circle with the same area as the projected two-
dimensional image of a given mineral grain.
Beside several other simple size properties
(e.g. length, width, perimeter, sphere-equiv-
alent volume), various shape parameters are
derived from these sizes. Aspect ratio is the
ratio of width and length, circularity describes
the proportional relationship between circum-
ference of a circle equal to the projected area
of the particle and perimeter. Convexity (and
solidity) parameters are measures of edge
roughness by using the ratio of particle and
convex hull perimeter (and area). Circularity

/Area

Convex hull

and convexity values are also suitable to filter
out stacked particles and aggregated particles,
in this study particles with lower than 0.65 cir-
cularity and convexity values were excluded
from further calculations.

Intensity mean and standard deviation
parameters are determined from the gray-
scale images as a results of light transmissiv-
ity of particles. These values are dependent
on mineralogy, particle thickness, chemical
homogeneity and surface roughness (for de-
tailed description of the method, see: Varaa,
Gv. et al. 2018). Intensity values together with
chemical identity analyses of the build-in
Raman spectrometer provide useful addi-
tional information for separation of granu-
lometrically similar particles.

Identification of Saharan dust material

Based on the fact that the Saharan dust de-
posited at Fuerteventura is mainly (1) silt-
sized and (2) contains a lot of quartz parti-
cles (regarded as exotic in the basaltic and
carbonate-rich environment of the island),
these two deterministic factors were evaluat-
ed separately to identify North African dust
particles. Three different assessment meth-
ods were applied to determine the amount of
Saharan dust material of the samples.

An indirect approach was applied to theo-
retically discriminate the silt-sized sedimen-
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tary subpopulations which were mathemati-
cally separated. The polymodal grain size dis-
tribution curves were partitioned into several
unimodal Weibull-distributions by applying
parametric curve-fitting technique (Sun, D.
et al. 2002, 2004; Varca, Gy. et al. in press).
According to the applied parametric curve
fitting technique the polymodal particle size
curves can be interpreted as sum of several, in
this case three overlapping Weibull-functions
which represent three sediment populations:

W +W,+W,=c -[ij-x“‘l -ei[ﬁ‘] +cz-(

%
1

where, shape (a, ), location (B, ;) and weight-
ing (c,,) parameters of the three Weibull-
functions were modified by an iterative nu-
merical method as a least-square problem
to assess the appropriate goodness of fit of
measured data and calculated size distribu-
tions of constructed subpopulations (Varaca,
Gy. et al. 2012, in press). According to pub-
lished data on recent dust events from the
area (Crrapo, C. and Dorta, P. 2003; von
SucHopoLreTz, H. et al. 2009; MENENDEZ, 1.
et al. 2013) and measurements of other far-
travelled North African dust material (Var-
Ga, Gv. et al. 2016), the subpopulation with
smallest particles are regarded as the product
of long-ranged dust transport.

Raman-spectroscopy (at 785 nm wave-
length with 3 um spot) was also applied
to directly identify the quartz grains as an
indicator of Saharan dust contribution. The
acquired spectra of targeted particles were
compared to Raman spectral reference librar-
ies using KnowitAll® software from Bio-Rad
to identify the minerals present.

The third applied technique was based on
the grayscale intensity mean values of par-
ticles, the relatively high values were used
as a proxy for quartz grains as it was found
that there is a strong correlation between
light transmissivity and chemical identity
(especially in this special case of an environ-
ment characterized with the overwhelming
majority of carbonate and quartz particles).

Cluster and networks analysis techniques
were also applied to differentiate various
mineral particle populations based on their
general normalized shape (aspect ratio, cir-
cularity, convexity, solidity) and grayscale
intensity (mean, standard deviation) values.
Hierarchical cluster trees were created by
using the Euclidean distance pairs of the
selected parameters of separated quartz
and carbonate size fractions (fine, medium,
coarse silt and sand).
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For network analysis 192 x 192 ([24 sam-
ples x 2 minerals x 4 size fractions] x [24 x 2 x
4]) matrix was compiled, where coefficient of
determination was calculated for each pair of
records based on the normalized shape and
grayscale intensity parameters. This matrix
was transformed into an adjacency matrix
with values of 0, if r><0.99 and 1, if r>> 0.99,
in this way all of the similar mineral grains
were coupled and the whole database can
be handled as a network or a finite graph,
where the similar records (nodes) are con-
nected (edges) to each other. The Gephi
network visualization software was used to
analyse the compiled network by applying
the ForceAtlas2 continuous graph layout al-
gorithm (Jacomy, M. et al. 2014).

Results

General granulometric character of sedimentary
samples from Fuerteventura

Grain size distribution curves of samples
from the paleo surface units were poly-
modal, mostly with two-three distinct peaks
in coarse silt, fine sand and medium sand
fractions. Samples taken additionally from
sand members of the sedimentary sequence
showed a pure unimodal distribution almost
entirely in the sand fractions. It is also worth
noting, that even these medium and coarse
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sand dominated samples contained small
amount (< 0.5 vol.%) of silt-sized particles.

General granulometric characteristics by
size fractions are presented in Table 1. and
Figure 3. The dominance of sand-sized frac-
tion is clearly visible on circle-equivalent
diameter, length and width box-plots; this
fraction determines also the bulk grain size
values. Shape parameters of samples showed
amore diverse picture. Mean aspect ratio val-
ues were between 0.75 and 0.80 for all frac-
tions, but higher standard deviation scores
could be observed in case of sand-sized par-
ticles. Circularity and convexity parameters
of silt grains were relatively high, especially
compared to sand particles, which had a
more irregular shape character. Particles
with highest solidity values were from the
medium and coarse silt-sized fractions, so-
lidity parameters of fine silt- and sand-sized
grains were lower, but in case of clay parti-
cles it could be the result of the small number
of pixels on the acquired images of individu-
al clay-sized grains.

Parametric curve-fitting: the mathematical-
statistical approach

All of the measured volume-based grain
size distribution curves of the measured
samples showed a polymodal character. Be-
side the sand-sized modes, a clear medium
and coarse silt-sized peak is present on the
diagrams. By using three three-parameter
Weibull-distribution functions, proper good-
ness-of-fit values were reached among the
constructed and measured distributions (r?
values were 0.98+0.2) during the parametric
curve-fitting (Figure 4).

Samples could be represented by diverse
grain size distributions; the amount of the
coarsest fraction was especially various.
During the measurements an average of
~50,000 individual mineral particles were
scanned, so even a few sand-sized grains
could have a significant effect on volume-
based grain size distributions. As the result
of polydisperse grain size of samples (parti-

cle sizes covering several orders of magni-
tude: submicron to some few hundred mi-
crons) to get a more robust representation
several millions of scanned mineral particles
would be necessary (Varca, Gy. et al. 2018).

Mean modal value of circle-equivalent
diameter was 62.3 um (+12.1 um standard
deviation), while the average median was
calculated as 49.2 pm (9.5 um standard de-
viation) for the 24 samples.

Direct differentiation of quartz grains via
Raman-spectroscopy

The applied measurement system of Mal-
vern Morphology G3-ID enables the chemical
characterization of dispersed mineral parti-
cles with the use of integrated Raman probe.
Due to the relatively low number of interpret-
able spectra, special focus was given to the
medium silt to fine sand-sized components
of the samples studied. Only few hundreds of
30-120 um quartz (Raman shift ~464 cm™ and
carbonate (Raman shift ~1,086 cm™) grains
were identified, and this low number of par-
ticles did not allow a mathematically robust,
quantitative determination of quartz content.
However, some general, broad conclusions
could be drawn based on the whole mass of
measured samples. Two distinct clusters of
quartz and carbonate particles were visible
on the circle-equivalent diameter and mean
grayscale intensity scatterplots. As mean in-
tensity scores are primarily dependent on
particle thickness and mineralogy, with the
assumptions of high proportion of isotropic
particles, lower circle-equivalent diameter re-
sults a higher mean grayscale intensity values
(Figure 5). This relationship is clearly visible in
case of carbonate particles, but quartz grains
are lighter in colour, these can be character-
ized by higher grayscale intensity values.
General grain size properties of the identi-
fied quartz and carbonate particles are also
presented. As the selection of mineral grains
for manually targeted chemical identity
analysis cannot be regarded as representa-
tive due to the relatively high number of not



127

Varga, Gy. et al. Hungarian Geographical Bulletin 67 (2018) (2) 121-141.

06'SC ov'1e 01960 91260 £9%8°0 €600 L0¥S 7'oct £981 £9°SL 06¢°0C €9L'¢ 0608C°0 05°sv1 y¢-oud-dl
80°'SC 60°LT 87060 6988°0 G840 YILLO £'L9€ 0%8T qLET 9994 09261 L6C°€ 00862°0 05’161 ¢¢-ougd-al
99°LT SI'1e 1£96°0 GS68°0 P1€8°0 14840 €08 9°0¥1 8681 19'18 00591 6SL°1 092210 0L%ST g-oug-dl
08T 0r°2¢ $€96°0 9260 16580 60540 9°09¢ <16 8Tl G904 00042 01cC 098€T°0 6£'86 1Z-ouyg-dl
£6'9C 0Tee 96¥6°0 S¥16°0 6€8°0 LEEL0 7965 1°9¢T 6'961 78'68 66€°6 0450 017610 06'SST 0cg-dug-dl
6£'9C 89°LT 04460 99060 04880 YAS YAV 7'¥8L G841 8'G¥C 6S°LL 06281 699°¢ OTISH 0 02'90¢ 61-2ud-dl
81'9¢C 0€0g LLL6°0 97€6'0 68880 £8€L0 9'66S oSyl ve6l 06'SL 00¥'I¢C 897°¢C 0€¥ET0 00991 81-ouyd-dl
9E¥T 667C S¥26°0 5160 65780 798270 G978 9'4TT ceee 11°88 0%0°0T VAN 0€9€T°0 08°0ST L1-oug-dl
8T LT 0ce 98560 89060 SLV80 LSLLO €865 0¥PL 1081 vTes 091°GL W91 0S09T°0 0S°0ST 91-dug-dl
19'42 609¢ $296°0 ¥2€6°0 w80 L68L°0 116 Y166 8'8CL S0°LL 0¥T1C LLGT 0€0€T0 01901 S1-dug-dl
£0'8¢ 12°8C 89560 9280 6280 0%92°0 9°¢89 0'80T 09C L6'C8 026'ST S10'L 2616070 0€°0cT P1-oug-dl
£9'/T 6C'CE 80960 89060 080 0€84°0 9TUY LLET 9641 8298 0egCl 9%9°0 9C1I¥0°0 (V548 ¢1-oug-dl
LT 1c6¢ 69760 29480 01180 T8LL0 V'LLL 8'8L1 ¥'qq¢ €468 0sycL 0691 006210 047261 ¢1-oug-dl
€8T 90'6C €£56°0 68480 86180 694L°0 1°6€9 9'L81 74 L0'T6 08C'8 G650 €0150°0 0€'861 11-oug-dl
ST'8T €8°'6C 11960 €980 61280 €080 9109 1981 6'0¥C 91'88 986 8041 0£992°0 0% 261 01-2ug-dl
8€°LT 0v'6C 09560 9968°0 L0780 14840 6129 8191 1°80C 0906 900°6 SPe0 012<0°0 01’841 6-oud-dl
16'9C 0T'Le TS26°0 81660 29060 G080 6'L£€ 7’68 LTIT YU 0167 98L°¢ 08€9T°0 96'S6 g-oug-dl
Q04T 80°'6C €860 £€968°0 4880 c6vL'0 6'LE9 981 89¥¢C 2908 04€'81 4L6°0 10¥€0°0 01'%0C £-Pud-dl
LT'8C £5°6C 81960 0€48°0 65780 89080 G808 €'qle £'96¢C 8C'¥8 (V448 VAN G8090°0 0¥'Lec 9-oug-dl
Q96T ¥8'9¢ €1460 12¥6°0 £98°0 <0180 9'%99 8HeL 0°41C 6V’ VL 0CT'¥¢ STE'L 0TI€F0°0 007241 ¢-oug-dr
¥¥ve €5°TC ¥296°0 87880 weso 1€4L0 6086 0'89T S19¢ ¥S'¢6 8419 0920 026100 09'98C p-oud-al
88'6T 119 02260 €¥26°0 68980 8508°0 €657 /91 19¢C 0892 0Z1'1C 9€0C LEEVO0 06'¢81 €-oug-dl
L0¥C 9°%C 76560 6260 S948°0 8870 1694 670C 0'18C 1198 0281 0201 SEL¥00 0€'6CC ¢-oug-dr
0S¢ ¥9°'£C 8¥756°0 16€6°0 99980 0€64°0 6'cSy T'ovl 8°/81 €9'TL 019'¢¢ 8L’ 9%080°0 0£°0ST [-oug-dl
ars ueawr 4 X & oner wrd % 104 wn swreu
1pros | Axeauo) | Ajuemmoi) : s s .
Aysuayuy | Aysuejup padsy | zepewiag | wpim pBua pueg mmhmou Eswv..&z 1S UL 1D ardureg

sajduiws pajuSrysaau fo siajawuwivd advys puv azis w8 uvaN ‘I |quL



Varga, Gy. et al. Hungarian Geographical Bulletin 67 (2018) (2) 121-141.

128

“(wrl 6°29-0"0T) 1S 9s1e0d =3715-D) (W (:0z-¢'9) 1S
wNIpaw = J1s-JAL ‘(Wi §'9—(°g) I[IS UL = J[IS-] “I9joWeIp Jus[eamba-apIn = 193aurerp 4D — 'suondey az1s Aq s1ojourered srpawomuerd snotrea jo syord-xog ¢ 817

Mg pues WSO WS-N sS4 Ming  pues Ws-0 ns-N ais-4 ying pues  Ws-D  WS-N WS-
. . . . — — . . . — 0z . T . . .
: = = T 1060
b =3 0 | = {ov
= & L 1260
H 151 L = 109
L _ 160
L == {oz | " Jos B : .
+ L _w_ — 1960
_ : lgz L {ooL | - - — + - 1860
e B4 + ==
— mH = ==
E s s s s s 0g E L L L L n 410CL L s s n s 00°L
as Aususyu ues|y Aysusjul Aupijos
jqng  pues WSSO WIS iS4 c80 Ming pues us-0 us-N uis-4 ing pues  Ws-D  WS-N WS-
. — . . . — : . . s T . w . . .
T — H {020
. P = 1080| T -
| _ === - .
| e : {sg0 | _ - - — Hszo
| - . W - = _ |
. {s60 | i _ 1060 m _m_ : = —
== P ; o 4 {080
= + — X i ! i
= : £ oL | - = = %0 i
Ajxanuod Aenou) oney 1adsy
ing pues  Jis-0 WIS ws-4 ing pues Ws-0 Is-N Jis-4 ving pues  Ws-D  WS-N WS-
— . ' . —0 — . ' . —0 — . . . —0
L = ‘Om T L —_ 4 Om
T for | T ot nE 1004
== = =
L 1002 " m s E 1002
4 oo {jooe | ! |
r : {osz . m m ; 0sz
m + " FoT m {o00¢
L e . . dooe b = . . doov . - .

(wrl) UM (wrl) yibueT “(wr) eewep 35




Varga, Gy. et al. Hungarian Geographical Bulletin 67 (2018) (2) 121-141. 129
Curve flttlng sample #1 R’=0.9271 Curve flttlng sample #2 R’=0.9966
10 1 11 L aaal 1 P R R A 10 L1l 1 11l I PR A
w1w,-44.7709% vo,-zg 5021%

g Wlinos,=54.2648 um | g Wlnos,=59.2428 m |
2 67 e / r
§ £ |
3 44[—w1 FooS 4 [—w1 / +
S| —wz 7| —w2

W3 W3 /
2A _Wsum [ 2A _Wsum / N
— Measured — Measured /
()0 T — T ! \'\\\\\\3 OQ T ! Humr’z' e
10 10 10 10 10 10 10
Grain size (um) Grain size (um)
Curve flttlng sample #3 R =0.9559 Curve fitting: sample #4 R’=0.9976
10 1 P R R A 10 1 Ll I Ll I PR A
vv1w,-45.6922% W1,,=15.7894%

g Wlinoee=63.6151 um | g Wlnoo,=68.8262 m ) |
(0] 67 i [0) 67 c/ i
5 £ ’

3 44[—w1 FooS 4 [—w1 / +
S —we S |—we /
w3 W3 /
29| —w,,, = AT 2 —Wan / r
— Measured / — Measured /
0 PSS S S S LA s e s 0 ~ RS R yuum"’y 7 5
10 10 10 10 10 10 10° 10
Grain size (um) Grain size (um)
Curve flttlng sample #5 R =0.9747 Curve fitting: sample #6 R’=0.9968
10 1 T 10 1 1ol 1 L1l 1 I A
W1V°,—32.9728% W1,,=43.1963%

g Wlnose=48.9549 ym | g Wlnose=75.2854 m L
o O o 0
5 g
= 44 [—w1 oS4 [—w1 F
S| —we S| —w2

— W3 — W3 /‘

2A _Wsum [ 2A _Wsum / N
— Measured — Measured /

0 T ‘2 R 0 T H,ymf‘z e

10° 10 10 10° 10° 10 10 10°
Grain size (um) Grain size (um)
Curve fitting: sample #7 R’=0.9751 Curve fitting: sample #8 R=0.9956
10 I 11l Ll I P R A 10 1 Ll Ll I PR A
W1,,=50% W1,,=50%

g W1inoe=66.2155 um | g Wlnos,=67.4068 m |
S S
(0] 67 i (0] 67 i
§ £
3 44[—w1 FooS 4 [—w1 +
2 | —we2 ST —we

W3 W3
2A _Wsum [ 2A _Wsum N
— Measured D — Measured
0 =TT T =T e e e —T T T P
10° 10’ 10° 10° 10° 10’ 10° 10°
Grain size (um) Grain size (um)

Fig. 4. Results of parametric curve-fitting of the measured grain size distributions
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Fig. 4. Continued
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Fig. 5. Relationship among grain size, grayscale intensity and mineral composition of particles on a grains size
vs. intensity scatter plot of quartz and carbonate particles.

interpretable acquired Raman spectra, it is
assumed that the grain size distributions
are somewhat higher (quartz mode: ~70 pm,
median: 68.5 um; carbonate mode: ~520 pm,
median: ~460 um) than the real particle sizes.

Grayscale intensity-based indirect assessment of
quartz particles

The automatically recorded dimensionless
grayscale intensity values served as proxies
of optical properties of mineral grains. As it
was above shown above, two distinct groups
of particles could be separated on the grain
size - grayscale intensity scatter plots, and
the acquired Raman spectra confirmed our
hypothesis that in a given size-class the gray-
scale intensities of quartz particles were high-
er, meaning brighter (lighter in colour) grains.

By using this observation, we applied spe-
cific grayscale intensity threshold values (+5%;
+10 [standard deviation] above size-class mean
intensities) for every size-classes to identify
possible quartz particles (Figure 6). While +1o

thresholds provided too many outliers (prob-
ably caused by the low number of scanned
particles), the + 5 per cent filtering resulted an
average of modal value around 65.1 um (= 12.7
um standard deviation) and mean median of
the 24 samples was 48.3 um (+ 6.7 pm stand-
ard deviation). These values were very simi-
lar to the results of fine-grained populations
of parametric curve-fittings (W1s), but grain
size mode and median of the directly identified
quartz particles were slightly higher.

Discussion
Irregular shape character of the quartz particles

The obtained results of the applied various
methods demonstrated that quartz and car-
bonate particles could be distinguished by
simultaneous analysis of size, shape and
grayscale intensity values of the investigated
samples. Cluster analysis of shape param-
eters of medium and coarse silt-sized quartz
and carbonate particles showed that the two
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Fig. 6. Intensity-based assessment of quartz particles based on filtering of + 5 per cent above size-class means of intensity

populations were well separated from each
other, suggesting main shape properties of the
two clusters could be determined to serve as

granulometric fingerprint to

identify external

quartz particles in the investigated deposition-
al environment (Figure 7). However, detailed
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Fig. 6. Continued

analysis of different parameters indicated
that the homogeneous-inhomogeneous shape
characters of carbonate and quartz particles

were the main drivers of clustering. All shape
parameters in all size fractions were falling
into a wider range in case of quartz particles,
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Fig. 6. Continued

while the standard deviation of shape val-
ues of carbonates were significantly smaller
(Table 2). These phenomena were also recog-

nizable on the more platy shape distribution
curves of quartz particles compared to the lep-
tokurtic carbonate shape distrubutions.
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Table 2. Shape and grayscale intensity means and standard deviations of quartz (Q) and carbonate (C) particles by size fractions*
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NW from the large bend of Niger River and
west from the Adrar des Ifoghas. This area is
covered by the deposits of Pleistocene Lake
Araouane, one of the largest pluvial lakes
in Africa (Bripges, E.M. 1990). The salt and
diatomite deposits of the enclosed basin are
visible also on satellite images. The prevail-
ing NE trade winds formed an extensive
system of barchanoid dunes, partly covering
the surface of the ancient lakebed. The dust
emission mechanism of the region and in-
tensive deflation of fine-grained particles of
lacustrine deposits are enhanced by the bom-
bardment energy of saltating sand particles.

A long narrow band of dust sources is lo-
cated at the western part of the Sahara at the
eastern slopes of gently rolling hills running
parallel to the Atlantic coast. Couple of sea-
sonal streams (with frequent flash floods in
the spring) and sebkhas (e.g. Sebkha Ijil) ly-
ing on the pedimented surface of the Adrar
Souttouf and Zemmour Massif are the main
sources of fine-grained material in this region.

Several other sources are associated with
the large alluvial fans and extensive wadi-
system located at the western and north-
western slopes of the Ahaggar. The Tidikelt
Depression at northern part of the region, sur-
rounded by plateaus (the Tanezrouft to the
south and Plateau du Tademait to the north),
by mountains (Ahaggar and Tassili-n-Ajjer to
the east) and by the sand sea of Erg Chech to
the west has an extensive ephemeral drain-
age system including several wadis from el-
evated regions, seasonal marshes and mud
flats (Graccum, R.A. and Prospero, .M. 1980).

Conclusions

Automated static image analysis provided
huge amount of granulometric (size and
shape) data on sedimentary deposits of
Fuerteventura. The presented set of meth-
ods provided new data on the granulometric
character, depositional mechanisms and ad-
mixture of dust material to sandy units. Para-
metric curve-fitting suggested the presence of
more than one key depositional mechanisms,

Raman-spectroscopy of manually targeted
individual particles revealed a general rela-
tionship among grain size, grayscale intensity
and mineralogy, while intensity based assess-
ment technique was introduced for identi-
fication of large number of quartz particles.
All three presented evaluation methods have
their own advantages and drawbacks. Para-
metric curve fitting is a relatively fast tech-
nique, it is only based on single one grain size
distribution, but it does not take any shape or
mineralogy-related information into consid-
eration. Raman spectroscopy provide direct
chemical identity data on the selected parti-
cles, but generally the number of character-
ized grains is several orders of magnitude
smaller than the whole investigated particle
population. The grayscale intensity-based
assessment is an indirect technique, but it is
suitable for identification of large number of
exotic particles.

According to our results, there is no specific
granulometric fingerprint parameter for iden-
tification of Saharan dust material in the de-
posits of Fuerteventura, but joint applications
of several size, shape and grayscale intensity
values and mathematical techniques allowed
the separation of quartz particles from other
local sedimentary units.

However, the lack of robust granulometric
characterization of largest fractions, caused
by the wide polydispersity of the mineral
deposits, did not allow a stable quantitative
assessment of volumetric amount of quartz
material. Determination of the total mass of
deposited Saharan dust material is a more dif-
ficult question in the area, as in most of dust
and sediment samples from North African
source areas, quartz was found to be the most
dominant mineral, but the carbonate-content
of dust is also relevant, what can be also in-
teresting in case of Fuerteventura. The cal-
cite content and consequently the (Ca+Mg)/
Fe ratio of western sources are among the
highest in North Africa. The reason for high
carbonate content of other mentioned sources
is unclear at the moment, but it can be stated
that almost all discussed emission regions
had relatively high carbonate content.
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