• AFFEK, H. P. 2013: Clumped isotopic equilibrium and the rate of isotope exchange between CO2 and water. — American Journal of Science 313/4, 309–325. https://doi.org/10.2475/04.2013.02
  • AFFEK, H. P. & ZAARUR, S. 2014: Kinetic isotope effect in CO2 degassing: Insight from clumped and oxygen isotopes in laboratory precipitation experiments. — Geochimica et Cosmochimica Acta 143, 319–330. https://doi.org/10.1016/j.gca.2014.08.005
  • AFFEK, H. P., BAR-MATTHEWS, M., AYALON, A., MATTHEWS, A. & EILER, J. M. 2008: Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry. — Geochimica et Cosmochimica Acta 72/22, 5351–5360. https://doi.org/10.1016/j.gca.2008.06.031
  • BERGMAN, S. C., HUNTINGTON, K. W. & CRIDER, J. G. 2013: Tracing paleofluid sources using clumped isotope thermometry of diagenetic cements along the Moab Fault, Utah. — American Journal of Science 313/5, 490–515. https://doi.org/10.2475/05.2013.03
  • BERNASCONI, S. M., HU, B., WACKER, U., FIEBIG, J., BREITENBACH, S. F. & RUTZ, T. 2013: Background effects on Faraday collectors in gassource mass spectrometry and implications for clumped isotope measurements. — Rapid Communications in Mass Spectrometry 27/5, 603–612. https://doi.org/10.1002/rcm.6490
  • BIGELEISEN, J. 1955: Statistical Mechanics of Isotopic Systems with Small Quantum Corrections. I. General Considerations and the Rule of the Geometric Mean. — The Journal of Chemical Physics 23/12, 2264–2267. https://doi.org/10.1063/1.1740735
  • BIGELEISEN, J. 1965: Chemistry of Isotopes — Isotope chemistry has opened new areas of chemical physics, geochemistry, and molecular biology. — Science 147/3657, 463–471. https://doi.org/10.1126/science.147.3657.463
  • BIGELEISEN, J. & MAYER, M. G. 1947: Calculation of equilibrium constants for isotopic exchange reactions. — Journal of Chemical Physics 15/5, 261–267. https://doi.org/10.1063/1.1746492
  • BONIFACIE, M., CALMELS, D., EILER, J. M., HORITA, J., CHADUTEAU, C., VASCONCELOS, C., AGRINIER, P., KATZ, A., PASSEY, B. H., FERRY, J. M. & BOURRAND, J.-J. 2017: Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates. — Geochimica et Cosmochimica Acta 200, 255–279. https://doi.org/10.1016/j.gca.2016.11.028
  • BRADBURY, H. J., VANDEGINSTE, V. & JOHN, C. M. 2015: Diagenesis of phosphatic hardgrounds in the Monterey Formation: A perspective from bulk and clumped isotope geochemistry. — Geological Society of America Bulletin 127/9–10, 1453–1463. https://doi.org/10.1130/b31160.1
  • BRAND, U., CAME, R. E., AFFEK, H., AZMY, K., MOOI, R. & LAYTON, K. 2014: Climate-forced change in Hudson Bay seawater composition and temperature, Arctic Canada. — Chemical Geology 388, 78–86. https://doi.org/10.1016/j.chemgeo.2014.08.028
  • BRISTOW, T. F., BONIFACIE, M., DERKOWSKI, A., EILER, J. M. & GROTZINGER, J. P. 2011: A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. — Nature 474/7349, 68–71. https://doi.org/10.1038/nature10096
  • BUDD, D. A., FROST, E. L., HUNTINGTON, K. W. & ALLWARDT, P. F. 2013: Syndepositional Deformation Features in High-Relief Carbonate Platforms: Long-Lived Conduits for Diagenetic Fluids. — Journal of Sedimentary Research 83/1, 12–36. https://doi.org/10.2110/jsr.2013.3
  • BURGENER, L., HUNTINGTON, K. W., HOKE, G. D., SCHAUER, A., RINGHAM, M. C., LATORRE, C. & DÍAZ, F. P. 2016: Variations in soil carbonate formation and seasonal bias over >4 km of relief in the western Andes (30°S) revealed by clumped isotope thermometry. — Earth and Planetary Science Letters 441, 188–199. https://doi.org/10.1016/j.epsl.2016.02.033
  • CAME, R. E., EILER, J. M., VEIZER, J., AZMY, K., BRAND, U. & WEIDMAN, C. R. 2007: Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. — Nature 449/7159, 198–201. https://doi.org/10.1038/nature06085
  • CAME, R. E., BRAND, U. & AFFEK, H. P. 2014: Clumped isotope signatures in modern brachiopod carbonate. — Chemical Geology 377, 20–30. https://doi.org/10.1016/j.chemgeo.2014.04.004
  • CAME, R. E., AZMY, K., TRIPATI, A. & OLANIPEKUN, B.-J. 2017: Comparison of clumped isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature range of 73–176 °C. — Geochimica et Cosmochimica Acta 199, 31–47. https://doi.org/10.1016/j.gca.2016.10.028
  • CANAVAN, R. R., FIELD, D. J., ZELENITSKY, D. K., THERRIEN, F. O. & AFFEK, H. P. 2016: Eggshell clumped isotope temperatures: implications for dinosaur thermoregulation. — 5th International Clumped Isotope Workshop, St. Petersburg, Florida, p. 6.
  • CAO, X. & LIU, Y. 2012: Theoretical estimation of the equilibrium distribution of clumped isotopes in nature. — Geochimica et Cosmochimica Acta 77, 292–303. https://doi.org/10.1016/j.gca.2011.11.021
  • CRUSET, D., CANTARERO, I., TRAVÉ, A., VERGÉS, J. & JOHN, C. M. 2016: Crestal graben fluid evolution during growth of the Puig-reig anticline (South Pyrenean fold and thrust belt). — Journal of Geodynamics 101, 30–50. https://doi.org/10.1016/j.jog.2016.05.004
  • CSANK, A. Z., TRIPATI, A. K., PATTERSON, W. P., EAGLE, R. A., RYBCZYNSKI, N., BALLANTYNE, A. P. & EILER, J. M. 2011: Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies. — Earth and Planetary Science Letters 304/3–4, 291–299. https://doi.org/10.1016/j.epsl.2011.02.030
  • CUI, L. & WANG, X. 2014: Determination of clumped isotopes in carbonate using isotope ratio mass spectrometer: Effects of extraction potential and long-term stability. — International Journal of Mass Spectrometry 372, 46–50. https://doi.org/10.1016/j.ijms.2014.08.006
  • CUMMINS, R. C., FINNEGAN, S., FIKE, D. A., EILER, J. M. & FISCHER, W. W. 2014: Carbonate clumped isotope constraints on Silurian ocean temperature and seawater 8O. — Geochimica et Cosmochimica Acta 140, 241–258. https://doi.org/10.1016/j.gca.2014.05.024
  • DAËRON, M., GUO, W., EILER, J., GENTY, D., BLAMART, D., BOCH, R., DRYSDALE, R., MAIRE, R., WAINER, K. & ZANCHETTA, G. 2011: 13C18O clumping in speleothems: Observations from natural caves and precipitation experiments. — Geochimica et Cosmochimica Acta 75/12, 3303–3317. https://doi.org/10.1016/j.gca.2010.10.032
  • DAËRON, M., BLAMART, D., PERAL, M. & AFFEK, H. P. 2016: Absolute isotopic abundance ratios and the accuracy of Δ47 measurements. — Chemical Geology 442, 83–96. https://doi.org/10.1016/j.chemgeo.2016.08.014
  • DALE, A., JOHN, C. M., MOZLEY, P. S., SMALLEY, P. C. & MUGGERIDGE, A. H. 2014: Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. — Earth and Planetary Science Letters 394, 30–37. https://doi.org/10.1016/j.epsl.2014.03.004
  • DEFLIESE, W. F., HREN, M. T. & LOHMANN, K. C. 2015: Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations. — Chemical Geology 396, 51–60. https://doi.org/10.1016/j.chemgeo.2014.12.018
  • DEFLIESE, W. F. & LOHMANN, K. C. 2016: Evaluation of meteoric calcite cements as a proxy material for mass-47 clumped isotope thermometry. — Geochimica et Cosmochimica Acta 173, 126–141. https://doi.org/10.1016/j.gca.2015.10.022
  • DEL REAL, P. G., MAHER, K., KLUGE, T., BIRD, D. K., BROWN, G. E. & JOHN, C. M. 2016: Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks. — Geochimica et Cosmochimica Acta 193, 222–250. https://doi.org/10.1016/j.gca.2016.08.003
  • DENNIS, K. J. & SCHRAG, D. P. 2010: Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. — Geochimica et Cosmochimica Acta 74/14, 4110–4122. https://doi.org/10.1016/j.gca.2010.04.005
  • DENNIS, K. J., AFFEK, H. P., PASSEY, B. H., SCHRAG, D. P. & EILER, J. M. 2011: Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. — Geochimica et Cosmochimica Acta 75/22, 7117–7131. https://doi.org/10.1016/j.gca.2011.09.025
  • DENNIS, K. J., COCHRAN, J. K., LANDMAN, N. H. & SCHRAG, D. P. 2013: The climate of the Late Cretaceous: New insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossil. — Earth and Planetary Science Letters 362, 51–65. https://doi.org/10.1016/j.epsl.2012.11.036
  • DOUGLAS, P. M. J., STOLPER, D. A., SMITH, D. A., WALTER ANTHONY, K. M., PAULL, C. K., DALLIMORE, S., WIK, M., CRILL, P. M., WINTERDAHL, M., EILER, J. M. & SESSIONS, A. L. 2016: Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues. — Geochimica et Cosmochimica Acta 188, 163–188. https://doi.org/10.1016/j.gca.2016.05.031
  • DRURY, A. J. & JOHN, C. M. 2016: Exploring the potential of clumped isotope thermometry on coccolith-rich sediments as a sea surface temperature proxy. — Geochemistry, Geophysics, Geosystems 17/10, 4092–4104. https://doi.org/10.1002/2016gc006459
  • EAGLE, R. A., SCHAUBLE, E. A., TRIPATI, A. K., TUTKEN, T., HULBERT, R. C. & EILER, J. M. 2010: Body temperatures of modern and extinct vertebrates from 13C–18O bond abundances in bioapatite. — Proceedings of the National Academy of Sciences of the United States of America 107/23, 10377–10382. https://doi.org/10.1073/pnas.0911115107
  • EAGLE, R. A., TÜTKEN, T., MARTIN, T. S., TRIPATI, A. K., FRICKE, H. C., CONNELY, M., CIFELLI, R. L. & EILER, J. M. 2011: Dinosaur body temperatures determined from isotopic (13C–18O) ordering in fossil biominerals. — Science 333/6041, 443–445. https://doi.org/10.1126/science.1206196
  • EAGLE, R. A., EILER, J. M., TRIPATI, A. K., RIES, J. B., FREITAS, P. S., HIEBENTHAL, C., WANAMAKER, A. D., TAVIANI, M., ELLIOT, M., MARENSSI, S., NAKAMURA, K., RAMIREZ, P. & ROY, K. 2013: The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks. — Biogeosciences 10/7, 4591–4606. https://doi.org/10.5194/bg-10-4591-2013
  • EAGLE, R. A., ENRIQUEZ, M., GRELLET-TINNER, G., PEREZ-HUERTA, A., HU, D., TUTKEN, T., MONTANARI, S., LOYD, S. J., RAMIREZ, P., TRIPATI, A. K., KOHN, M. J., CERLING, T. E., CHIAPPE, L. M. & EILER, J. M. 2015: Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs. — Nature Communications 6/8296, 1–11. https://doi.org/10.1038/ncomms9296
  • EILER, J. M. 2007: “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. — Earth and Planetary Science Letters 262/3–4, 309–327. https://doi.org/10.1016/j.epsl.2007.08.020
  • EILER, J. M. & SCHAUBLE, E. 2004: 18O13C16O in Earth’s atmosphere. — Geochimica et Cosmochimica Acta 68/23, 4767–4777. https://doi.org/10.1016/j.gca.2004.05.035
  • EPSTEIN, S., BUCHSBAUM, R., LOWENSTAM, H. & UREY, H. C. 1951: Carbonate-water isotopic temperature scale. — Geological Society of America Bulletin 62/4, 417–426. https://doi.org/10.1130/0016-7606
  • EPSTEIN, S., BUCHSBAUM, R., LOWENSTAM, H. A. & UREY, H. C. 1953: Revised carbonate-water isotopic temperature scale. — Geological Society of America Bulletin 64/11, 1315–1326. https://doi.org/10.1130/0016-7606(1953)64[1315:rcits]2.0.co;2
  • FAIRCHILD, I. J. & BAKER, A. 2012: Speleothem Science: From Process to Past Environments. — Wiley-Blackwell, Chichester, UK, pp. 450. https://doi.org/10.1002/9781444361094
  • FALK, E. S. & KELEMEN, P. B. 2015: Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement. — Geochimica et Cosmochimica Acta 160, 70–90. https://doi.org/10.1016/j.gca.2015.03.014
  • FALK, E. S., GUO, W., PAUKERT, A. N., MATTER, J. M., MERVINE, E. M. & KELEMEN, P. B. 2016: Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. — Geochimica et Cosmochimica Acta 192, 1–28. https://doi.org/10.1016/j.gca.2016.06.026
  • FAN, M., HOUGH, B. G. & PASSEY, B. H. 2014: Middle to late Cenozoic cooling and high topography in the central Rocky Mountains: Constraints from clumped isotope geochemistry. — Earth and Planetary Science Letters 408, 35–47. https://doi.org/10.1016/j.epsl.2014.09.050
  • FERNANDEZ, A., TANG, J. & ROSENHEIM, B. E. 2014: Siderite ‘clumped’ isotope thermometry: A new paleoclimate proxy for humid continental environments. — Geochimica et Cosmochimica Acta 126, 411–421. https://doi.org/10.1016/j.gca.2013.11.006
  • FERNANDEZ, A., VAN DIJK, J., MÜLLER, I. A. & BERNASCONI, S. M. 2016: Early Eocene latitudinal temperature gradient estimated from siderite clumped isotope thermometry. — 5th International Clumped Isotope Workshop, St. Petersburg, Florida, 19 p.
  • FERRY, J. M., PASSEY, B. H., VASCONCELOS, C. & EILER, J. M. 2011: Formation of dolomite at 40–80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. — Geology 39/6, 571–574. https://doi.org/10.1130/g31845.1
  • FIEBIG, J., HOFMANN, S., NIKLAS, L., LÜDECKE, T., METHNER, K. & WACKER, U. 2016: Slight pressure imbalances can affect accuracy and precision of dual inlet-based clumped isotope analysis. — Isotopes in Environmental and Health Studies 52/1–2, 12–28. https://doi.org/10.1080/10256016.2015.1010531
  • FINNEGAN, S., BERGMANN, K., EILER, J. M., JONES, D. S., FIKE, D. A., EISENMAN, I., HUGHES, N. C., TRIPATI, A. K. & FISCHER, W. W. 2011: The magnitude and duration of Late Ordovician – Early Silurian glaciation. — Science 331/6019, 903–906. https://doi.org/10.1126/science.1200803
  • GALLAGHER, T. M. & SHELDON, N. D. 2016: Combining soil water balance and clumped isotopes to understand the nature and timing of pedogenic carbonate formation. — Chemical Geology 435, 79–91. https://doi.org/10.1016/j.chemgeo.2016.04.023
  • GARZIONE, C. N., HOKE, G. D., LIBARKIN, J. C., WITHERS, S., MACFADDEN, B., EILER, J., GHOSH, P. & MULCH, A. 2008: Rise of the Andes. — Science 320/5881, 1304–1307. https://doi.org/10.1126/science.1148615
  • GHOSH, P., ADKINS, J., AFFEK, H., BALTA, B., GUO, W., SCHAUBLE, E. A., SCHRAG, D. & EILER, J. M. 2006a: 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. — Geochimica et Cosmochimica Acta 70/6, 1439–1456. https://doi.org/10.1016/j.gca.2005.11.014
  • GHOSH, P., GARZIONE, C. N. & EILER, J. M. 2006b: Rapid uplift of the Altiplano revealed through 13C–18O bonds in paleosol carbonates. — Science 311/5760, 511–515. https://doi.org/10.1126/science.1119365
  • GHOSH, P., EILER, J., CAMPANA, S. E. & FEENEY, R. F. 2007: Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. — Geochimica et Cosmochimica Acta 71/11, 2736–2744. https://doi.org/10.1016/j.gca.2007.03.015
  • GILBERT, P. U. P. A., BERGMANN, K. D., MYERS, C. E., MARCUS, M. A., DEVOL, R. T., SUN, C.-Y., BLONSKY, A. Z., TAMRE, E., ZHAO, J., KARAN, E. A., TAMURA, N., LEMER, S., GIUFFRE, A. J., GIRIBET, G., EILER, J. M. & KNOLL, A. H. 2017: Nacre tablet thickness records formation temperature in modern and fossil shells. — Earth and Planetary Science Letters 460, 281–292. https://doi.org/10.1016/ j.epsl.2016.11.012
  • GRAUEL, A.-L., SCHMID, T. W., HU, B., BERGAMI, C., CAPOTONDI, L., ZHOU, L. & BERNASCONI, S. M. 2013: Calibration and application of the ‘clumped isotope’ thermometer to foraminifera for high-resolution climate reconstructions. — Geochimica et Cosmochimica Acta 108, 125–140. https://doi.org/10.1016/j.gca.2012.12.049
  • GRAUEL, A.-L., HODELL, D. A. & BERNASCONI, S. M. 2016: Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka. — Earth and Planetary Science Letters 438, 37–46. https://doi.org/10.1016/j.epsl.2016.01.001
  • GUO, W. 2008: Carbonate clumped isotope thermometry: application to carbonaceous chondrites & effects of kinetic isotope fractionation. — PhD Thesis, California Institute of Technology, Pasadena, CA, USA, CaltechETD:etd-12182008-115035, 243 p.
  • GUO, W. & EILER, J. M. 2007: Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. — Geochimica et Cosmochimica Acta 71/22, 5565–5575. https://doi.org/10.1016/j.gca.2007.07.029
  • GUO, W., MOSENFELDER, J. L., GODDARD, W. A. & EILER, J. M. 2009: Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements. — Geochimica et Cosmochimica Acta 73/24, 7203–7225. https://doi.org/10.1016/j.gca.2009.05.071
  • HALEVY, I., FISCHER, W. W. & EILER, J. M. 2011: Carbonates in the Martian meteorite Allan Hills 84001 formed at 18±4 °C in a nearsurface aqueous environment. — Proceedings of the National Academy of Sciences of the United States of America 108/41, 16895–16899. https://doi.org/10.1073/pnas.1109444108
  • HE, B., OLACK, G. A. & COLMAN, A. S. 2012: Pressure baseline correction and high-precision CO2 clumped-isotope (Δ47) measurements in bellows and micro-volume modes. — Rapid Communications in Mass Spectrometry 26/24, 2837–2853. https://doi.org/10.1002/rcm.6436
  • HEIMHOFER, U., MEISTER, P., BERNASCONI, S. M., ARIZTEGUI, D., MARTILL, D. M., RIOS-NETTO, A. M. & SCHWARK, L. 2017: Isotope and elemental geochemistry of black shale-hosted fossiliferous concretions from the Cretaceous Santana Formation fossil Lagerstätte (Brazil). — Sedimentology 64/1, 150–167. https://doi.org/10.1111/sed.12337
  • HENDY, C. H. & WILSON, A. T. 1968: Palaeoclimatic data from speleothems. — Nature 219/5149, 48–51. https://doi.org/10.1038/219048a0
  • HENKES, G. A., PASSEY, B. H., WANAMAKER, A. D., GROSSMAN, E. L., AMBROSE, W. G. & CARROLL, M. L. 2013: Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. — Geochimica et Cosmochimica Acta 106, 307–325. https://doi.org/10.1016/j.gca.2012.12.020
  • HENKES, G. A., PASSEY, B. H., GROSSMAN, E. L., SHENTON, B. J., PEREZ-HUERTA, A. & YANCEY, T. E. 2014: Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. — Geochimica et Cosmochimica Acta 139, 362–382. https://doi.org/10.1016/j.gca.2014.04.040
  • HILL, P. S., TRIPATI, A. K. & SCHAUBLE, E. A. 2014: Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals. — Geochimica et Cosmochimica Acta 125, 610–652. https://doi.org/10.1016/j.gca.2013.06.018
  • HODSON, K. R., CRIDER, J. G. & HUNTINGTON, K. W. 2016: Temperature and composition of carbonate cements record early structural control on cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA. — Tectonophysics 690, 240–252. https://doi.org/10.1016/j.tecto.2016.04.032
  • HOEFS, J. 2015: Stable Isotope Geochemistry. — Springer International Publishing, 389 p. https://doi.org/10.1007/978-3-319-19716-6
  • HOUGH, B. G., FAN, M. & PASSEY, B. H. 2014: Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction. — Earth and Planetary Science Letters 391, 110–120. https://doi.org/10.1016/j.epsl.2014.01.008
  • HU, B., RADKE, J., SCHLUTER, H. J., HEINE, F. T., ZHOU, L. & BERNASCONI, S. M. 2014: A modified procedure for gas-source isotope ratio mass spectrometry: the long-integration dual-inlet (LIDI) methodology and implications for clumped isotope measurements. — Rapid Communications in Mass Spectrometry 28/13, 1413–1425. https://doi.org/10.1002/rcm.6909
  • HUNTINGTON, K. W. & LECHLER, A. R. 2015: Carbonate clumped isotope thermometry in continental tectonics. — Tectonophysics 647–648, 1-20. https://doi.org/10.1016/j.tecto.2015.02.019
  • HUNTINGTON, K. W., EILER, J. M., AFFEK, H. P., GUO, W., BONIFACIE, M., YEUNG, L. Y., THIAGARAJAN, N., PASSEY, B., TRIPATI, A., DAERON, M. & CAME, R. 2009: Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. — Journal of Mass Spectrometry 44/9, 1318–1329. https://doi.org/10.1002/jms.1614
  • HUNTINGTON, K. W., BUDD, D. A., WERNICKE, B. P. & EILER, J. M. 2011: Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. — Journal of Sedimentary Research 81/9, 656–669. https://doi.org/10.2110/jsr.2011.51
  • INAGAKI, F., HINRICHS, K. U., KUBO, Y., BOWLES, M. W., HEUER, V. B., HONG, W. L., HOSHINO, T., IJIRI, A., IMACHI, H., ITO, M., KANEKO, M., LEVER, M. A., LIN, Y. S., METHE, B. A., MORITA, S., MORONO, Y., TANIKAWA, W., BIHAN, M., BOWDEN, S. A., ELVERT, M., GLOMBITZA, C., GROSS, D., HARRINGTON, G. J., HORI, T., LI, K., LIMMER, D., LIU, C. H., MURAYAMA, M., OHKOUCHI, N., ONO, S., PARK, Y. S., PHILLIPS, S. C., PRIETO-MOLLAR, X., PURKEY, M., RIEDINGER, N., SANADA, Y., SAUVAGE, J., SNYDER, G., SUSILAWATI, R., TAKANO, Y., TASUMI, E., TERADA, T., TOMARU, H., TREMBATH-REICHERT, E., WANG, D. T. & YAMADA, Y. 2015: Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. — Science 349/6246, 420–424. https://doi.org/10.1126/science.aaa6882
  • JOHN, C. M. & BOWEN, D. 2016: Community software for challenging isotope analysis: First applications of ‘Easotope’ to clumped isotopes. — Rapid Communications in Mass Spectrometry 30/21, 2285–2300. https://doi.org/10.1002/rcm.7720
  • KAR, N., GARZIONE, C. N., JARAMILLO, C., SHANAHAN, T., CARLOTTO, V., PULLEN, A., MORENO, F., ANDERSON, V., MORENO, E. & EILER, J. 2016: Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction. — Earth and Planetary Science Letters 447, 33–47. https://doi.org/10.1016/j.epsl.2016.04.025
  • KELE, S., BREITENBACH, S. F. M., CAPEZZUOLI, E., NELE MECKLER, A., ZIEGLER, M., MILLAN, I. M., KLUGE, T., DEÁK, J., HANSELMANN, K., JOHN, C. M., YAN, H., LIU, Z. & BERNASCONI, S. M. 2015: Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95 °C temperature range. — Geochimica et Cosmochimica Acta 168, 172–192. https://doi.org/10.1016/j.gca.2015.06.032
  • KELSON, J. R., HUNTINGTON, K. W., SCHAUER, A. J., SAENGER, C. & LECHLER, A. R. 2017: Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship. — Geochimica et Cosmochimica Acta 197, 104–131. https://doi.org/10.1016/j.gca.2016.10.010
  • KIMBALL, J., EAGLE, R. & DUNBAR, R. 2016: Carbonate “clumped” isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals. — Biogeosciences 13/23, 6487–6505. https://doi.org/10.5194/bg-13-6487-2016
  • KLUGE, T. & AFFEK, H. P. 2012: Quantifying kinetic fractionation in Bunker Cave speleothems using Δ47. — Quaternary Science Reviews 49, 82–94. https://doi.org/10.1016/j.quascirev.2012.06.013
  • KLUGE, T., AFFEK, H. P., MARX, T., AESCHBACH-HERTIG, W., RIECHELMANN, D. F. C., SCHOLZ, D., RIECHELMANN, S., IMMENHAUSER, A., RICHTER, D. K., FOHLMEISTER, J., ACKERBARTH, A., MANGINI, A. & SPÖTL, C. 2013: Reconstruction of drip-water 􀀀18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany). — Climate of the Past 9/1, 377–391. https://doi.org/10.5194/cp-9-377-2013
  • KLUGE, T., AFFEK, H. P., ZHANG, Y. G., DUBLYANSKY, Y., SPÖTL, C., IMMENHAUSER, A. & RICHTER, D. K. 2014: Clumped isotope thermometry of cryogenic cave carbonates. — Geochimica et Cosmochimica Acta 126, 541–554. https://doi.org/10.1016/j.gca.2013.11.011
  • KLUGE, T. & JOHN, C. M. 2015: Effects of brine chemistry and polymorphism on clumped isotopes revealed by laboratory precipitation of mono- and multiphase calcium carbonates. — Geochimica et Cosmochimica Acta 160, 155–168. https://doi.org/10.1016/j.gca.2015.03.031
  • KLUGE, T., JOHN, C. M., JOURDAN, A.-L., DAVIS, S. & CRAWSHAW, J. 2015: Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25–250°C temperature range. — Geochimica et Cosmochimica Acta 157, 213–227. https://doi.org/10.1016/j.gca.2015.02.028
  • LI, S., YEUNG, L. Y., YOUNG, E. D., OSTROM, N. E. & HASLUN, J. A. 2016: Triple-isotopologue Analysis of N2 as a Tracer of the Global Nitrogen Cycle. — 5th International Clumped Isotope Workshop, St. Petersburg, Florida, p. 29.
  • LIU, Q. & LIU, Y. 2016: Clumped-isotope signatures at equilibrium of CH4, NH3, H2O, H2S and SO2. — Geochimica et Cosmochimica Acta 175, 252–270. https://doi.org/10.1016/j.gca.2015.11.040
  • LLOYD, M. K., EILER, J. M. & NABELEK, P. I. 2017: Clumped isotope thermometry of calcite and dolomite in a contact metamorphic environment. — Geochimica et Cosmochimica Acta 197, 323–344. https://doi.org/10.1016/j.gca.2016.10.037
  • LOYD, S. J., DICKSON, J. A. D., SCHOLLE, P. A. & TRIPATI, A. K. 2013: Extensive, uplift-related and non-fault-controlled spar precipitation in the Permian Capitan Formation. — Sedimentary Geology 298, 17–27. https://doi.org/10.1016/j.sedgeo.2013.10.001
  • LOYD, S. J., CORSETTI, F. A., EAGLE, R. A., HAGADORN, J. W., SHEN, Y., ZHANG, X., BONIFACIE, M. & TRIPATI, A. K. 2015: Evolution of Neoproterozoic Wonoka–Shuram Anomaly-aged carbonates: evidence from clumped isotope paleothermometry. — Precambrian Research 264, 179–191. https://doi.org/10.1016/j.precamres.2015.04.010
  • LUETKEMEYER, P. B., KIRSCHNER, D. L., HUNTINGTON, K. W., CHESTER, J. S., CHESTER, F. M. & EVANS, J. P. 2016: Constraints on paleofluid sources using the clumped-isotope thermometry of carbonate veins from the SAFOD (San Andreas Fault Observatory at Depth) borehole. — Tectonophysics 690, 174–189. https://doi.org/10.1016/j.tecto.2016.05.024
  • MACDONALD, J., JOHN, C. & GIRARD, J.-P. 2015: Dolomitization processes in hydrocarbon reservoirs: insight from geothermometry using clumped isotopes. — Procedia Earth and Planetary Science 13, 265–268. https://doi.org/10.1016/j.proeps.2015.07.062
  • MCCREA, J. M. 1950: On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. — The Journal of Chemical Physics 18/6, 849–857. https://doi.org/10.1063/1.1747785
  • MECKLER, A. N., ZIEGLER, M., MILLAN, M. I., BREITENBACH, S. F. & BERNASCONI, S. M. 2014: Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. — Rapid Communications in Mass Spectrometry 28/15, 1705–1715. https://doi.org/10.1002/rcm.6949
  • MECKLER, A. N., AFFOLTER, S., DUBLYANSKY, Y. V., KRÜGER, Y., VOGEL, N., BERNASCONI, S. M., FRENZ, M., KIPFER, R., LEUENBERGER, M., SPÖTL, C., CAROLIN, S., COBB, K. M., MOERMAN, J., ADKINS, J. F. & FLEITMANN, D. 2015: Glacial–interglacial temperature change in the tropical West Pacific: A comparison of stalagmite-based paleo-thermometers. — Quaternary Science Reviews 127, 90–116. https://doi.org/10.1016/j.quascirev.2015.06.015
  • METHNER, K., MULCH, A., FIEBIG, J., WACKER, U., GERDES, A., GRAHAM, S. A. & CHAMBERLAIN, C. P. 2016: Rapid Middle Eocene temperature change in western North America. — Earth and Planetary Science Letters 450, 132–139. https://doi.org/10.1016/j.epsl.2016.05.053
  • MILLÁN, M. I., MACHEL, H. & BERNASCONI, S. M. 2016: Constraining temperatures of formation and composition of dolomitizing fluids in the Upper Devonian Nisku Formation (Alberta, Canada) with clumped isotopes. — Journal of Sedimentary Research 86/2, 107–112. https://doi.org/10.2110/jsr.2016.6
  • MROZ, E. J., ALEI, M., CAPPIS, J. H., GUTHALS, P. R., MASON, A. S. & ROKOP, D. J. 1989: Detection of multiply deuterated methane in the atmosphere. — Geophysical Research Letters 16/7, 677–678. https://doi.org/10.1029/GL016i007p00677
  • MÜLLER, I. A., VIOLAY, M. E. S., STORCK, J.-C., FERNANDEZ, A., VAN DIJK, J., MADONNA, C. & BERNASCONI, S. M. 2017: Clumped isotope fractionation during phosphoric acid digestion of carbonates at 70 °C. — Chemical Geology 449, 1–14. https://doi.org/10.1016/j.chemgeo.2016.11.030
  • MURRAY, S. T., ARIENZO, M. M. & SWART, P. K. 2016: Determining the Δ47 acid fractionation in dolomites. — Geochimica et Cosmochimica Acta 174, 42–53. https://doi.org/10.1016/j.gca.2015.10.029
  • ONO, S., WANG, D. T., GRUEN, D. S., SHERWOOD LOLLAR, B., ZAHNISER, M. S., MCMANUS, B. J. & NELSON, D. D. 2014: Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy. — Analitical Chemistry 86/13, 6487–6494. https://doi.org/10.1021/ac5010579
  • PASSEY, B. H., LEVIN, N. E., CERLING, T. E., BROWN, F. H. & EILER, J. M. 2010: High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. — Proceedings of the National Academy of Sciences of the United States of America 107/25, 11245–11249. https://doi.org/10.1073/pnas.1001824107
  • PASSEY, B. H. & HENKES, G. A. 2012: Carbonate clumped isotope bond reordering and geospeedometry. — Earth and Planetary Science Letters 351–352, 223–236. https://doi.org/10.1016/j.epsl.2012.07.021
  • PETERS, N. A., HUNTINGTON, K. W. & HOKE, G. D. 2013: Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry. — Earth and Planetary Science Letters 361, 208–218. https://doi.org/10.1016/j.epsl.2012.10.024
  • PETERSEN, S. V., WINKELSTERN, I. Z., LOHMANN, K. C. & MEYER, K. W. 2016a: The effects of Porapak trap temperature on 18O, 13C, and Δ47 values in preparing samples for clumped isotope analysis. — Rapid Communications in Mass Spectrometry 30/1, 199–208. https://doi.org/10.1002/rcm.7438
  • PETERSEN, S. V., DUTTON, A. & LOHMANN, K. C. 2016b: End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. — Nature Communications 7/12079, 1–9. https://doi.org/10.1038/ncomms12079
  • PETERSEN, S. V., TABOR, C. R., LOHMANN, K. C., POULSEN, C. J., MEYER, K. W., CARPENTER, S. J., ERICKSON, J. M., MATSUNAGA, K. K. S., SMITH, S. Y. & SHELDON, N. D. 2016c: Temperature and salinity of the Late Cretaceous Western Interior Seaway. — Geology 44/11, 903–906. https://doi.org/10.1130/g38311.1
  • PETRIZZO, D. A. & YOUNG, E. D. 2014: High-precision determination of 13C–18O bonds in CO2 using multicollector peak hopping. — Rapid Communications in Mass Spectrometry 28/11, 1185–1193. https://doi.org/10.1002/rcm.6888
  • PETRYSHYN, V. A., RIVERA, M. J., AGIĆ, H., FRANTZ, C. M., CORSETTI, F. A. & TRIPATI, A. E. 2016: Stromatolites in Walker Lake (Nevada, Great Basin, USA) record climate and lake level changes ~35,000 years ago. — Palaeogeography, Palaeoclimatology, Palaeoecology 451, 140–151. https://doi.org/10.1016/j.palaeo.2016.02.054
  • PIASECKI, A., SESSIONS, A., PETERSON, B. & EILER, J. 2016: Prediction of equilibrium distributions of isotopologues for methane, ethane and propane using density functional theory. — Geochimica et Cosmochimica Acta 190, 1–12. https://doi.org/10.1016/j.gca.2016.06.003
  • PRICE, G. D. & PASSEY, B. H. 2013: Dynamic polar climates in a greenhouse world: Evidence from clumped isotope thermometry of Early Cretaceous belemnites. — Geology 41/8, 923–926. https://doi.org/10.1130/g34484.1
  • QUADE, J., GARZIONE, C. & EILER, J. 2007: Paleoelevation Reconstruction using Pedogenic Carbonates. — Reviews in Mineralogy and Geochemistry 66/1, 53–87. https://doi.org/10.2138/rmg.2007.66.3
  • QUADE, J., EILER, J., DAËRON, M. & ACHYUTHAN, H. 2013: The clumped isotope geothermometer in soil and paleosol carbonate. — Geochimica et Cosmochimica Acta 105, 92–107. https://doi.org/10.1016/j.gca.2012.11.031
  • QUESNEL, B., BOULVAIS, P., GAUTIER, P., CATHELINEAU, M., JOHN, C. M., DIERICK, M., AGRINIER, P. & DROUILLET, M. 2016: Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe. — Geochimica et Cosmochimica Acta 183, 234–249. https://doi.org/10.1016/j.gca.2016.03.021
  • RINGHAM, M. C., HOKE, G. D., HUNTINGTON, K. W. & ARANIBAR, J. N. 2016: Influence of vegetation type and site-to-site variability on soil carbonate clumped isotope records, Andean piedmont of Central Argentina (32–34°S). — Earth and Planetary Science Letters 440, 1–11. https://doi.org/10.1016/j.epsl.2016.02.003
  • RITTER, A.-C., KLUGE, T., BERNDT, J., RICHTER, D. K., JOHN, C. M., BODIN, S. & IMMENHAUSER, A. 2015: Application of redox sensitive proxies and carbonate clumped isotopes to Mesozoic and Palaeozoic radiaxial fibrous calcite cements. — Chemical Geology 417, 306–321. https://doi.org/10.1016/j.chemgeo.2015.10.008
  • RITTER, A.-C., MAVROMATIS, V., DIETZEL, M., KWIECIEN, O., WIETHOFF, F., GRIESSHABER, E., CASELLA, L. A., SCHMAHL, W. W., KOELEN, J., NEUSER, R. D., LEIS, A., BUHL, D., NIEDERMAYR, A., BREITENBACH, S. F. M., BERNASCONI, S. M. & IMMENHAUSER, A. 2017: Exploring the impact of diagenesis on (isotope) geochemical and microstructural alteration features in biogenic aragonite. — Sedimentology. https://doi.org/10.1111/sed.12356
  • RÖCKMANN, T., POPA, M. E., KROL, M. C. & HOFMANN, M. E. 2016: Statistical clumped isotope signatures. — Scientific Reports 6/31947, 1–14. https://doi.org/10.1038/srep31947
  • ROSENHEIM, B. E., TANG, J. & FERNANDEZ, A. 2013: Measurement of multiply substituted isotopologues (‘clumped isotopes’) of CO2 using a 5 kV compact isotope ratio mass spectrometer: performance, reference frame, and carbonate paleothermometry. — Rapid Communications in Mass Spectrometry 27/16, 1847–1857. https://doi.org/10.1002/rcm.6634
  • ROSMAN, K. J. R. & TAYLOR, P. D. P. 1998: Isotopic Compositions of the Elements 1997: Technical Report. — Pure and Applied Chemistry 70/1, 217–235.
  • SAENGER, C., AFFEK, H. P., FELIS, T., THIAGARAJAN, N., LOUGH, J. M. & HOLCOMB, M. 2012: Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects. — Geochimica et Cosmochimica Acta 99, 224–242. https://doi.org/10.1016/j.gca.2012.09.035
  • SAMPLE, J. C., TORRES, M. E., FISHER, A., HONG, W.-L., DESTRIGNEVILLE, C., DEFLIESE, W. F. & TRIPATI, A. E. 2017: Geochemical constraints on the temperature and timing of carbonate formation and lithification in the Nankai Trough, NanTroSEIZE transect. — Geochimica et Cosmochimica Acta 198, 92–114. https://doi.org/10.1016/j.gca.2016.10.013
  • SCHAUBLE, E. A., GHOSH, P. & EILER, J. M. 2006: Preferential formation of 13C–18O bonds in carbonate minerals, estimated using firstprinciples lattice dynamics. — Geochimica et Cosmochimica Acta 70/10, 2510–2529. https://doi.org/10.1016/j.gca.2006.02.011
  • SCHMID, T. W. 2011: Clumped-isotopes – A new tool for old questions – Case studies on biogenic and inorganic carbonates. — PhD Thesis, ETH Zürich, DISS ETH NO. 19607, 172 p.
  • SCHMID, T. W. & BERNASCONI, S. M. 2010: An automated method for ‘clumped-isotope’ measurements on small carbonate samples. — Rapid Communications in Mass Spectrometry 24/14, 1955–1963. https://doi.org/10.1002/rcm.4598
  • SCHMID, T. W., RADKE, J. & BERNASCONI, S. M. 2012: Clumped-isotope measurements on small carbonate samples with a Kiel IV carbonate device and a MAT 253 mass spectrometer. — Thermo Fisher Application Note 30233, 3.
  • SENA, C. M., JOHN, C. M., JOURDAN, A. L., VANDEGINSTE, V. & MANNING, C. 2014: Dolomitization of Lower Cretaceous peritidal carbonates by modified seawater: constraints from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes. — Journal of Sedimentary Research 84/7, 552–566. https://doi.org/10.2110/jsr.2014.45
  • SHARP, Z. 2007: Principles of Stable Isotope Geochemistry. — Pearson Education, Upper Saddle River, NJ, USA, 344 p.
  • SHENTON, B. J., GROSSMAN, E. L., PASSEY, B. H., HENKES, G. A., BECKER, T. P., LAYA, J. C., PEREZ-HUERTA, A., BECKER, S. P. & LAWSON, M. 2015: Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization. — Geological Society of America Bulletin 127/7–8, 1036–1051. https://doi.org/10.1130/B31169.1
  • SIMAN-TOV, S., AFFEK, H. P., MATTHEWS, A., AHARONOV, E. & RECHES, Z. E. 2016: Shear heating and clumped isotope reordering in carbonate faults. — Earth and Planetary Science Letters 445, 136–145. https://doi.org/10.1016/j.epsl.2016.03.041
  • SNELL, K. E., KOCH, P. L., DRUSCHKE, P., FOREMAN, B. Z. & EILER, J. M. 2014: High elevation of the ‘Nevadaplano’ during the Late Cretaceous. — Earth and Planetary Science Letters 386, 52–63. https://doi.org/10.1016/j.epsl.2013.10.046
  • SPOONER, P. T., GUO, W., ROBINSON, L. F., THIAGARAJAN, N., HENDRY, K. R., ROSENHEIM, B. E. & LENG, M. J. 2016: Clumped isotope composition of cold-water corals: A role for vital effects? — Geochimica et Cosmochimica Acta 179, 123–141. https://doi.org/10.1016/j.gca.2016.01.023
  • STAUDIGEL, P. T. & SWART, P. K. 2016: Isotopic behavior during the aragonite-calcite transition: Implications for sample preparation and proxy interpretation. — Chemical Geology 442, 130–138. https://doi.org/10.1016/j.chemgeo.2016.09.013
  • STOLPER, D. A. & EILER, J. M. 2016: Constraints on the formation and diagenesis of phosphorites using carbonate clumped isotopes. — Geochimica et Cosmochimica Acta 181, 238–259. https://doi.org/10.1016/j.gca.2016.02.030
  • STOLPER, D. A., SESSIONS, A. L., FERREIRA, A. A., SANTOS NETO, E. V., SCHIMMELMANN, A., SHUSTA, S. S., VALENTINE, D. L. & EILER, J. M. 2014a: Combined 13C–D and D–D clumping in methane: Methods and preliminary results. — Geochimica et Cosmochimica Acta 126, 169–191. https://doi.org/10.1016/j.gca.2013.10.045
  • STOLPER, D. A., LAWSON, M., DAVIS, C. L., FERREIRA, A. A., SANTOS NETO, E. V., ELLIS, G. S., LEWAN, M. D., MARTINI, A. M., TANG, Y., SCHOELL, M., SESSIONS, A. L. & EILER, J. M. 2014b: Formation temperatures of thermogenic and biogenic methane. — Science 344/6191, 1500–1503. https://doi.org/10.1126/science.1254509
  • STOLPER, D. A., MARTINI, A. M., CLOG, M., DOUGLAS, P. M., SHUSTA, S. S., VALENTINE, D. L., SESSIONS, A. L. & EILER, J. M. 2015: Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. — Geochimica et Cosmochimica Acta 161, 219–247. https://doi.org/10.1016/j.gca.2015.04.015
  • STREIT, E., KELEMEN, P. & EILER, J. 2012: Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman. — Contributions to Mineralogy and Petrology 164/5, 821–837. https://doi.org/10.1007/s00410-012-0775-z
  • SUAREZ, M. B. & PASSEY, B. H. 2014: Assessment of the clumped isotope composition of fossil bone carbonate as a recorder of subsurface temperatures. — Geochimica et Cosmochimica Acta 140, 142–159. https://doi.org/10.1016/j.gca.2014.05.026
  • SUMNER, K. K., CAMP, E. R., HUNTINGTON, K. W., CLADOUHOS, T. T. & UDDENBERG, M. 2015: Assessing Fracture Connectivity using Stable and Clumped Isotope Geochemistry of Calcite Cements. — Fortieth Workshop on Geothermal Reservoir Engineering, Stanford, California, SGP-TR-204, pp. 1–12.
  • SWANSON, E. M., WERNICKE, B. P., EILER, J. M. & LOSH, S. 2012: Temperatures and fluids on faults based on carbonate clumped-isotope thermometry. — American Journal of Science 312/1, 1–21. https://doi.org/10.2475/01.2012.01
  • TANG, J., DIETZEL, M., FERNANDEZ, A., TRIPATI, A. K. & ROSENHEIM, B. E. 2014: Evaluation of kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation. — Geochimica et Cosmochimica Acta 134, 120–136. https://doi.org/ 10.1016/j.gca.2014.03.005
  • THIAGARAJAN, N., ADKINS, J. & EILER, J. 2011: Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. — Geochimica et Cosmochimica Acta 75/16, 4416–4425. https://doi.org/10.1016/j.gca.2011.05.004
  • THOMPSON, P., SCHWARCZ, H. P. & FORD, D. C. 1974: Continental Pleistocene climatic variations from speleothem age and isotopic data. — Science 184/4139, 893–895. https://doi.org/10.1126/science.184.4139.893
  • TREMAINE, D. M., FROELICH, P. N. & WANG, Y. 2011: Speleothem calcite farmed in situ: Modern calibration of 􀀀18O and 13C paleoclimate proxies in a continuously-monitored natural cave system. — Geochimica et Cosmochimica Acta 75/17, 4929–4950. https://doi.org/ 10.1016/j.gca.2011.06.005
  • TRIPATI, A. K., EAGLE, R. A., THIAGARAJAN, N., GAGNON, A. C., BAUCH, H., HALLORAN, P. R. & EILER, J. M. 2010: 13C–18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. — Geochimica et Cosmochimica Acta 74/20, 5697– 5717. https://doi.org/10.1016/j.gca.2010.07.006
  • TRIPATI, A. K., HILL, P. S., EAGLE, R. A., MOSENFELDER, J. L., TANG, J., SCHAUBLE, E. A., EILER, J. M., ZEEBE, R. E., UCHIKAWA, J., COPLEN, T. B., RIES, J. B. & HENRY, D. 2015: Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition. — Geochimica et Cosmochimica Acta 166, 344–371. https://doi.org/10.1016/j.gca.2015.06.021
  • TSUJI, K., TESHIMA, H., SASADA, H. & YOSHIDA, N. 2012: Spectroscopic isotope ratio measurement of doubly-substituted methane. — Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 98, 43–46. https://doi.org/10.1016/j.saa.2012.08.028
  • UREY, H. C. 1947: The thermodynamic properties of isotopic substances. — Journal of the Chemical Society, 562–581. https://doi.org/ 0.1039/JR9470000562
  • VAN DIJK, J., FERNANDEZ, A., MÜLLER, I. A., WHITE, T., LEVER, M. & BERNASCONI, S. M. 2016: Microbially-mediated and abiotic synthesis of siderite from 10 to 70 °C: a new Δ47 and 18O calibration. — 5th International Clumped Isotope Workshop, St. Petersburg, Florida, p. 14.
  • VANDEGINSTE, V., JOHN, C. M., COSGROVE, J. W. & MANNING, C. 2014: Dimensions, texture-distribution, and geochemical heterogeneities of fracture–related dolomite geobodies hosted in Ediacaran limestones, northern Oman. — AAPG Bulletin 98/9, 1789–1809. https://doi.org/10.1306/05121413127
  • VANDEVELDE, J. H., BOWEN, G. J., PASSEY, B. H. & BOWEN, B. B. 2013: Climatic and diagenetic signals in the stable isotope geochemistry of dolomitic paleosols spanning the Paleocene–Eocene boundary. — Geochimica et Cosmochimica Acta 109, 254–267. https://doi.org/10.1016/j.gca.2013.02.005
  • WACKER, U., FIEBIG, J. & SCHOENE, B. R. 2013: Clumped isotope analysis of carbonates: comparison of two different acid digestion techniques. — Rapid Communications in Mass Spectrometry 27/14, 1631–1642. https://doi.org/10.1002/rcm.6609
  • WACKER, U., FIEBIG, J., TÖDTER, J., SCHÖNE, B. R., BAHR, A., FRIEDRICH, O., TÜTKEN, T., GISCHLER, E. & JOACHIMSKI, M. M. 2014: Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. — Geochimica et Cosmochimica Acta 141, 127–144. https://doi.org/10.1016/j.gca.2014.06.004
  • WACKER, U., RUTZ, T., LÖFFLER, N., CONRAD, A. C., TÜTKEN, T., BÖTTCHER, M. E. & FIEBIG, J. 2016: Clumped isotope thermometry of carbonate-bearing apatite: Revised sample pre-treatment, acid digestion, and temperature calibration. — Chemical Geology 443, 97– 110. https://doi.org/10.1016/j.chemgeo.2016.09.009
  • WAINER, K., GENTY, D., BLAMART, D., DAËRON, M., BAR-MATTHEWS, M., VONHOF, H., DUBLYANSKY, Y., PONS-BRANCHU, E., THOMAS, L., VAN CALSTEREN, P., QUINIF, Y. & CAILLON, N. 2011: Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large 18O shift between MIS6 and MIS5. — Quaternary Science Reviews 30/1–2, 130–146. https://doi.org/10.1016/j.quascirev.2010.07.004
  • WANG, Z., SCHAUBLE, E. A. & EILER, J. M. 2004: Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. — Geochimica et Cosmochimica Acta 68/23, 4779–4797. https://doi.org/10.1016/j.gca.2004.05.039
  • WANG, D. T., WELANDER, P. V. & ONO, S. 2016: Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath). — Geochimica et Cosmochimica Acta 192, 186–202. https://doi.org/10.1016/j.gca.2016.07.031
  • WATKINS, J. M. & HUNT, J. D. 2015: A process-based model for non-equilibrium clumped isotope effects in carbonates. — Earth and Planetary Science Letters 432, 152–165. https://doi.org/10.1016/j.epsl.2015.09.042
  • WEBB, M. A., WANG, Y., BRAAMS, B. J., BOWMAN, J. M. & MILLER, T. F. 2017: Equilibrium clumped-isotope effects in doubly substituted isotopologues of ethane. — Geochimica et Cosmochimica Acta 197, 14–26. https://doi.org/10.1016/j.gca.2016.10.001
  • WINKELSTERN, I. Z. & LOHMANN, K. C. 2016: Shallow burial alteration of dolomite and limestone clumped isotope geochemistry. — Geology 44/6, 467–470. https://doi.org/10.1130/g37809.1
  • WINKELSTERN, I. Z., KACZMAREK, S. E., LOHMANN, K. C. & HUMPHREY, J. D. 2016: Calibration of dolomite clumped isotope thermometry. — Chemical Geology 443, 32–38. https://doi.org/10.1016/j.chemgeo.2016.09.021
  • YEUNG, L. Y. 2016: Combinatorial effects on clumped isotopes and their significance in biogeochemistry. — Geochimica et Cosmochimica Acta 172, 22–38. https://doi.org/10.1016/j.gca.2015.09.020
  • YEUNG, L. Y., YOUNG, E. D. & SCHAUBLE, E. A. 2012: Measurements of 18O18O and 17O18O in the atmosphere and the role of isotopeexchange reactions. — Journal of Geophysical Research: Atmospheres 117/D18306, 1–20. https://doi.org/10.1029/2012jd017992
  • YEUNG, L. Y., ASH, J. L. & YOUNG, E. D. 2014: Rapid photochemical equilibration of isotope bond ordering in O2. — Journal of Geophysical Research: Atmospheres 119/17, 10552–10566. https://doi.org/10.1002/2014jd021909
  • YEUNG, L. Y., ASH, J. L. & YOUNG, E. D. 2015: Biological signatures in clumped isotopes of O2. — Science 348/6233, 431–434. https://doi.org/10.1126/science.aaa6284
  • YOSHIDA, N., VASILEV, M., GHOSH, P., ABE, O., YAMADA, K. & MORIMOTO, M. 2013: Precision and long-term stability of clumped-isotope analysis of CO2 using a small-sector isotope ratio mass spectrometer. — Rapid Communications in Mass Spectrometry 27, 207–215. https://doi.org/10.1002/rcm.6431
  • ZAARUR, S., AFFEK, H. P. & BRANDON, M. T. 2013: A revised calibration of the clumped isotope thermometer. — Earth and Planetary Science Letters 382, 47–57. https://doi.org/10.1016/j.epsl.2013.07.026