
55Dunakavics  –  2026 / 01. 55

Összefoglalás: A cikk azt vizsgálja, hogy a keretrendszerek nélküli (Vanilla)
JavaScript oktatása hogyan járul hozzá az egyetemi hallgatók programozói
gondolkodásának fejlődéséhez. A modellképzéshez olyan gyakorlatokat és
feladatkört alkalmaztam, amelyek az alapalgoritmusok kézzel történő imp-
lementálására, a JavaScript beépített függvényeire, az eseménykezelésre, a
DOM-kezelésre és a JavaScriptben való rajzolásra koncentrálnak. A kutatás
kvalitatív jellegű, a hallgatók gyakorlati munkájának és a forráskód-elemzés-
nek tapasztalati vizsgálatára épül. Nem tartalmaz mérhető pontszámokat vagy
statisztikai elemzést, célja a Vanilla JavaScript-oktatás hatásainak minőségi fel-
tárása. Eredményeim szerint a Vanilla JavaScript alapú oktatás növeli a nyelvi
tudatosságot, javítja a hibakeresési készségeket és erősíti az algoritmikus gon-
dolkodás kialakulását, ugyanakkor nagyobb kezdeti kognitív terheléssel jár.
Kulcsszavak: Vanilla JavaScript, programozói gondolkodás, algoritmikus gon-
dolkodás, hibakeresés, DOM-manipuláció, eseménykezelés, vizuális vissza-
csatolás, kognitív terhelés.

Abstract: This article explores how teaching framework-free (Vanilla) JavaS-
cript contributes to the development of programming thinking among uni-
versity students. The instructional approach involved exercises and tasks
designed to emphasize manual implementation of fundamental algorithms,
utilization of JavaScript’s built-in functions, event handling, DOM manip-
ulation, and graphical programming in JavaScript. The study is qualitative
in nature, relying on empirical examination of students’ practical work and
source code analysis. It does not employ measurable scores or statistical anal-
ysis; rather, its aim is to qualitatively investigate the effects of teaching Vanilla
JavaScript. The findings suggest that this approach enhances language aware-
ness, improves debugging skills, and fosters algorithmic thinking, though it
is accompanied by a higher initial cognitive load.

R Dunaújvárosi Egyetem, Informa-
tikai Intézet, Szoftverfejlesztési és
Alkalmazási Tanszék
Email: dudasn@uniduna.hu
ORCID: 0009-0001-5825-4965

A Vanilla JavaScript szerepe a programozói
gondolkodás fejlesztésében

HADARICSNÉ DUDÁS NÓRA ERZSÉBET
R

https://doi.org/10.63684/dk.2026.01.01

66 Dunakavics  –  2026 / 01.

Keywords: Vanilla JavaScript, programming thinking, algorithmic thinking, debugging, DOM manipula-
tion, event handling, visual feedback, cognitive load.

Bevezetés

A webfejlesztés az elmúlt évtizedben jelentős átalakuláson ment keresztül. A modern JavaScript-keret-
rendszerek, mint a React vagy Angular, a fejlesztési folyamatot magas szintű absztrakciók bevezetésével
tették hatékonyabbá, és lehetővé teszik, hogy a fejlesztők gyorsan hozzanak létre összetett webalkalmazá-
sokat. Ugyanakkor ezek az eszközök sok esetben elfedik a JavaScript nyelv valódi működését, így a kezdő
fejlesztők gyakran anélkül alkalmazzák a keretrendszereket, hogy teljes mértékben megértenék a nyelv
alapvető mechanizmusait. Ennek következtében a hallgatók a webprogramozás tanulása során sokszor
„kész rendszerek” logikáját követik anélkül, hogy átlátnák a háttérben zajló folyamatokat, valamint a kód
és a böngésző közötti kapcsolatot. Ez a helyzet vezette a fejlesztői közösséget is a Vanilla JavaScript kifeje-
zés kialakításához, amely a nyelv natív, keretrendszerektől mentes használatát jelenti.

A Vanilla JavaScript kifejezés a JavaScript nyelv natív, keretrendszerektől és külső könyvtáraktól mentes
változatát jelöli. A „vanilla” szó az egyszerű, alapformát jelenti, szemben a magas szintű, előre elkészített
komponenseket kínáló keretrendszerekkel. A terminológia a fejlesztői közösségben alakult ki, és mára
széles körben elfogadott a szakirodalomban és az oktatási gyakorlatban is. A Vanilla JavaScript lehetővé
teszi, hogy a fejlesztők közvetlenül a böngésző által biztosított API-kon keresztül, a nyelv alapvető elemeit
használva valósítsanak meg funkciókat, anélkül, hogy előre elkészített komponensekre vagy magasabb
szintű absztrakciókra támaszkodnának. A Vanilla JavaScript csupán a natív eszközökre támaszkodik, és
minden lépést a fejlesztőnek kell explicit módon megvalósítania.

A natív JavaScript oktatása különösen fontos a kezdő programozók számára, mivel így jobban megért-
hetik a kód és a böngésző viselkedése közötti kapcsolatot, valamint átfogó, transzparens tudást szerezhet-
nek a webes működés alapelveiről. Ez a tudás nem csupán a szintaktikai elemek elsajátítására korlátozódik,
hanem a problémák strukturált, algoritmikus megközelítésének megértésére is kiterjed, elősegítve a kogni-
tív modellek kialakulását. A hallgatók így képesek megérteni, hogy az általuk írt kód miként eredményez
konkrét viselkedést a böngészőben, és hogyan épülnek fel a programozott interakciók, vizuális változások
és adatkezelési folyamatok.

Az utóbbi években a Vanilla JavaScript újra a figyelem középpontjába került, mivel a minimalista meg-
közelítés lehetőséget nyújt arra, hogy az oktatásban a hallgatók közvetlen kapcsolatba kerüljenek a nyelv
működésével és a böngésző natív API-jaival. Ezáltal a tanulók nemcsak a konkrét kódolási technikákat sa-
játítják el, hanem a webes működés mögöttes logikáját is, ami hosszú távon stabil alapot biztosít a későbbi
keretrendszeres fejlesztéshez.

 Hadaricsné Dudás Nóra Erzsébet

77Dunakavics  –  2026 / 01.

A tanulmány célja annak feltárása, hogy a Vanilla JavaScript oktatása milyen módon járulhat hozzá a
programozói gondolkodás fejlődéséhez, különös tekintettel az algoritmikus gondolkodás, a hibakeresési
készségek és az önálló problémamegoldás támogatására. A kutatás arra is kiterjed, hogy feltárja a kezdő
hallgatók kognitív terhelését, valamint azt, hogy a natív JavaScript gyakorlati alkalmazása milyen előnyök-
kel és kihívásokkal jár az oktatásban.

Elméleti háttér

A programozói gondolkodás (computational thinking) a problémák strukturált, algoritmikus megköze-
lítését jelenti. A szoftverfejlesztés oktatásában nem csupán a nyelvi szintaktika elsajátítása a cél, hanem a
gondolkodási minták, az absztrakciók és a logikai összefüggések megértése is központi szerepet játszanak.
A modern JavaScript-keretrendszerek előnye, hogy csökkentik a fejlesztői terhelést és gyorsabb eredmé-
nyeket tesznek lehetővé. Ugyanakkor az oktatási környezetben gyakran „fekete doboz-hatást” idéznek elő:
a hallgatók a működést nem értik, csak alkalmazzák a kész komponenseket és függvényhívásokat.

Ezzel szemben a Vanilla JavaScript explicit módon tárja a tanuló elé az eseménykezelés, a DOM (Docu-
ment Object Model) manipuláció, az aszinkron folyamatokat és az állapotkezelés mechanizmusait. A kód
transzparenciája elősegíti a kognitív modellek kialakulását, vagyis azt, hogy a hallgató megértse: a kódja
miként eredményez konkrét viselkedést a böngészőben.

Ennek következtében a Vanilla JavaScript-alapú oktatás elősegítheti a tartós, fogalmi tudás kialakulá-
sát, amelyre később akár keretrendszeres fejlesztés már biztonságosan építhető.

Kutatási célok

A fenti bevezető és az elméleti háttér alapján világossá válik, hogy a Vanilla JavaScript oktatása nem csupán
a programozási nyelv szintaktikájának elsajátítását teszi lehetővé, hanem a hallgatók algoritmikus gondol-
kodásának, hibakeresési képességeinek és problémamegoldó stratégiáinak fejlesztésére is alkalmas. A ta-
nulmány célja annak vizsgálata, hogy a keretrendszerektől mentes, natív JavaScript alkalmazása az oktatás
során milyen mértékben járul hozzá a hallgatók programozói gondolkodásának fejlődéséhez, és milyen
kognitív folyamatokat stimulál a tanulási környezetben.

A kutatás különös figyelmet fordít arra, hogy a hallgatók hogyan sajátítják el az alapalgoritmusok ma-
nuális implementálását, a DOM-manipulációt, az eseménykezelést, az adatvalidációt és a Canvas API
használatát.

A Vanilla JavaScript szerepe a programozói gondolkodás fejlesztésében

88 Dunakavics  –  2026 / 01.88 Dunakavics  –  2025 / 12.

A cél az, hogy feltárjam, milyen módon segítik ezek a feladatok a kód és a böngésző közti kapcsolat
megértését, az önálló problémamegoldást, valamint a strukturált gondolkodási minták kialakulását.

Hipotézis:
A Vanilla JavaScript oktatása elősegíti a JavaScript nyelv működésének mélyebb megértését, mivel a hallga-
tók közvetlenül láthatják a kód és a böngésző viselkedése közti kapcsolatot. Ennek következtében javul az
algoritmikus gondolkodásuk, fejlődik a hibakeresési képességük, és erősödik az önálló problémamegoldó
készségük. Ugyanakkor a natív JavaScript használata kezdetben nagyobb kognitív terhelést jelent, mivel
minden funkciót és mechanizmust a nyelv és a böngésző natív eszközein keresztül kell megérteniük, külső
keretrendszerek vagy könyvtárak nélkül.

Ez a kutatási megközelítés lehetővé teszi, hogy a vizsgálat eredményei a Vanilla JavaScript szerepét ne
csupán a gyakorlati kódolási képességek fejlesztésében, hanem a mélyebb programozói gondolkodás és a
problémamegoldó stratégiák kialakulásában is mérhetően bemutassa.

Módszertan

A vizsgálat során egyetemi hallgatókkal dolgoztam, akik egy féléves Internet technológiák című kurzus
keretében először a HTML5 és CSS3, majd a Vanilla JavaScript alapjaival ismerkedtek. A kurzus első felé-
ben a hangsúly az oldalak szerkezetének felépítésén és a vizuális megjelenítés alapjainak elsajátításán volt.
Világossá vált mindenki számára, hogy a HTML adja a weboldal szerkezetét, a CSS a megjelenést, míg a
JavaScript a működést és a logikát biztosítja.

A félév második felében a JavaScript került előtérbe, és a feladatokat úgy alakítottam ki, hogy fejlesszék
a hallgatók programozói gondolkodását, a nyelvi tudatosságot és a hibakeresési készségeket. A hallga-
tók gyakorolták az alapalgoritmusok megvalósítását, az egyszerű logikai feladatok és számítási műveletek
implementálását, valamint a JavaScript beépített függvényeinek használatát. Emellett a DOM-manipuláció
és az eseménykezelés révén megtanulták, hogyan érhetik el az oldal elemeit, módosíthatják, eltávolíthatják
vagy új elemekkel bővíthetik a weboldalt, és hogyan reagálhat a felhasználói interakciókra.

A grafikus megjelenítés és vizualizáció terén a hallgatók a <canvas> HTML elemen belül a JavaScript
Canvas API-t használták rajzolásra, ami lehetővé tette a program logikájának és az eseménykezelés vizuális
szemléltetését. A formok és adatvalidációs feladatok során a hallgatók a felhasználói bevitel ellenőrzését és
a hibakezelést gyakorolták. Továbbá az idő- és dátumkezelés révén megtanulták az aktuális idő és dátum
lekérését, azok formázását, valamint a programozott események és vizuális változások (például háttérszín
váltása) kezelését.

 Hadaricsné Dudás Nóra Erzsébet

99Dunakavics  –  2026 / 01.

A vizsgálat kizárólag kvalitatív megközelítést alkalmazott: a hallgatók kódját, a problémamegoldási
stratégiáikat és a gyakorlati órák során szerzett megfigyeléseket elemeztem. A cél nem a mennyiségi mérés,
hanem a programozói gondolkodás fejlődésének minőségi feltárása. Minden feladatot külön értékeltem,
figyelve az algoritmusok szerkezetére, a hibakezelési stratégiák alkalmazására, a DOM-manipuláció és ese-
ménykezelés helyességére, valamint a Canvas API használatára. Részletesen vizsgáltam, hogy a hallgatók
miként közelítik meg a problémákat, milyen logikai lépéseket követnek, és milyen módszerekkel próbál-
nak hibákat kijavítani. A gyakorlati órák során folyamatosan jegyzeteltem a hallgatók problémamegoldási
viselkedését és a kognitív terhelés jeleit, például a bizonytalanságot, segítségkéréseket vagy a kód iteratív
módosításait.

Ez a kvalitatív megközelítés lehetővé tette, hogy részletesen értékeljem a nyelvi tudatosság, a hibake-
resési készségek és az algoritmikus gondolkodás fejlődését, valamint azt, hogy a hallgatók a megszerzett
tudást később biztonságosan alkalmazhassák bármilyen fejlettebb fejlesztési környezetben. A kvalitatív
elemzést a hallgatók által írt forráskód és a gyakorlati órák során szerzett megfigyelések alapján végeztem.

Az alábbi táblázat összegzi a kvalitatív elemzés fő szempontjait, a vizsgált készségeket és az értékelés
kritériumait, hogy áttekinthető módon látható legyen, mely feladatok hogyan járultak hozzá a hallgatók
programozói gondolkodásának fejlődéséhez.

1. táblázat. Kvalitatív elemzés szempontjai

Elemzés szempontja Vizsgált aspektus Megfigyelt viselkedés/értékelési kritérium
Algoritmusok szerkezete Hogyan építik fel a hallgatók a kódot, ciklu-

sok, feltételes utasítások
Logikai sorrendiség, hatékony szerkezet,
helyes lépések

Hibakeresés Hogyan észlelik, majd javítják a kód hibáit Kód-iteráció, hibák azonosítása, javítási
stratégiák

DOM-manipuláció HTML elemek elérése, módosítása, eltávolí-
tása, új elem létrehozása

Megfelelő elemválasztás, események helyes
kezelése

Eseménykezelés Felhasználói interakciók kezelése
(pl. gombnyomás, adatbevitel)

Helyes esemény-hozzárendelés, válasz a
felhasználói műveletekre

Canvas API Rajzolási feladatok, vizuális visszajelzés Kód és megjelenítés kapcsolata, logikai
összefüggések vizualizálása

Adatvalidáció Űrlapok helyes kitöltésének ellenőrzése,
reguláris kifejezések használata

Érvényes adatok ellenőrzése, hibajelzés
implementálása

Idő- és dátumkezelés Aktuális dátum/óra lekérése, formázás,
vizuális változások

Feltételes logika, aszinkron események keze-
lése, kódmegjelenítés-kapcsolat

A Vanilla JavaScript szerepe a programozói gondolkodás fejlesztésében

1010 Dunakavics  –  2026 / 01.

A táblázatban összegzett szempontok a hallgatók kognitív és gyakorlati készségeit tükrözik, és a kvalita-
tív elemzés fő irányvonalait szemléltetik. Az elemzési szempontok alapján világossá vált, hogy a hallgatók
készségei és gondolkodási mintázatai jól nyomon követhetők voltak a feladatmegoldások során.

Az algoritmusok szerkezete és a hibakeresés vizsgálata az algoritmikus gondolkodás és a probléma-
megoldó képesség fejlődését, míg a DOM-manipuláció, az eseménykezelés és a Canvas API használata a
kód–megjelenítés kapcsolatának megértését támogatta. Az algoritmusok manuális implementálása segít
fejben modellezni a logikai lépéseket és a folyamatok sorrendjét. Különösen hatékony, ha ezt algoritmus-
leíró eszközökkel, például pszeudókóddal vagy folyamatábrával szemléltetjük.

Az eseménykezelés révén a hallgatók megértik, hogyan kezeli a program a felhasználói műveleteket
és az aszinkron eseményeket. A DOM-manipuláció tanulása lehetővé teszi, hogy a hallgatók megértsék,
hogyan jelennek meg a HTML-elemek, hogyan módosíthatók, és milyen hatással vannak a felhasználói
interakciókra. Az adatvalidáció, valamint az idő- és dátumkezelési feladatok különösen a logikai gondol-
kodás, a feltételes utasítások és az aszinkron események kezelésének gyakorlását tették lehetővé, miközben
azonnali visszajelzést adtak a kód működéséről.

A webfejlesztés során például a felhasználói felület manipulációja két alapvető paradigmát követhet:
a közvetlen, imperatív DOM-manipulációt Vanilla JavaScript-ben, illetve a deklaratív, komponensalapú
frissítést Angularban. Az 1. ábra vizuálisan szemlélteti ezen két megközelítés közti különbséget, kiemelve,
hogy a fejlesztői beavatkozás és a DOM-változás miként történik a gyakorlatban.

1.ábra. A DOM-manipuláció két paradigmája

A webfejlesztés során például a felhasználói felület manipulációja két alapvető paradigmát követhet: a
közvetlen, imperatív DOM-manipulációt Vanilla JavaScript-ben, illetve a deklaratív, komponens-alapú
frissítést Angularban. Az 1. ábra vizuálisan szemlélteti ezen két megközelítés közti különbséget,
kiemelve, hogy a fejlesztői beavatkozás és a DOM-változás miként történik a gyakorlatban.

1.ábra A DOM-manipuláció két paradigmája

Az ábra két megközelítést hasonlít össze a webes felületek frissítésében: a közvetlen DOM-manipulációt
Vanilla JavaScript (JS) használatával, valamint az Angular keretrendszer deklaratív adatbinding-jét.

Bal oldal – Vanilla JavaScript

A bal oldalon a DOM-hoz való közvetlen hozzáférés látható, például
document.getElementById(...).innerHTML = ... használatával. Ebben a
megközelítésben a JavaScript azonnal módosítja a kiválasztott HTML elem tartalmát. A fejlesztő
feladata, hogy minden változást explicit módon kezeljen a DOM-ban. Ez az imperatív stílus egyszerű,
de nagyobb projektek esetén nehezen karbantartható, mivel a DOM frissítésének minden lépését kézzel
kell végrehajtani.

Jobb oldal – Angular

A jobb oldalon az Angular deklaratív megközelítése látható. Itt a logikai egység a komponens, amely
tartalmazza az adatmodellhez kapcsolódó adatokat és viselkedést. A DOM frissítése az Angular
adatbinding mechanizmusán keresztül automatikusan történik: amikor a komponens adatmodellje
megváltozik, a keretrendszer a megfelelő HTML elemeket frissíti, anélkül, hogy a fejlesztőnek
közvetlenül kellene módosítania a DOM-ot. Ez a deklaratív stílus növeli a karbantarthatóságot és
csökkenti a hibalehetőségeket.

Ezek az eredmények megalapozzák a következő fejezetben részletezett elemzést, amely bemutatja,
milyen konkrét hatással volt a Vanilla JavaScript alapú oktatás a hallgatók programozói képességeire és
problémamegoldó stratégiáira.

Eredmények

A hallgatók kódjainak kvalitatív elemzése és a gyakorlati órákon szerzett megfigyelések alapján
világossá vált, hogy a Vanilla JavaScript alapú feladatok erősítették az algoritmikus gondolkodást.
Különösen az alapalgoritmusok kézi implementálása során, amikor a hallgatóknak saját logikai és
számítási lépéseiket kellett meghatározniuk. Ezt a korábbi kutatások is alátámasztják, amelyek szerint

 Hadaricsné Dudás Nóra Erzsébet

-

1111Dunakavics  –  2026 / 01. 1111

Az ábra két megközelítést hasonlít össze a webes felületek frissítésében: a közvet-
len DOM-manipulációt Vanilla JavaScript (JS) használatával, valamint az Angular-
keretrendszer deklaratív adatbindingjét.

Bal oldal – Vanilla JavaScript
A bal oldalon a DOM-hoz való közvetlen hozzáférés látható, például document.

getElementById(...).innerHTML = ... használatával. Ebben a megközelítésben a Ja-
vaScript azonnal módosítja a kiválasztott HTML elem tartalmát. A fejlesztő feladata,
hogy minden változást explicit módon kezeljen a DOM-ban. Ez az imperatív stílus
egyszerű, de nagyobb projektek esetén nehezen karbantartható, mivel a DOM frissí-
tésének minden lépését kézzel kell végrehajtani.

Jobb oldal – Angular
A jobb oldalon az Angular deklaratív megközelítése látható. Itt a logikai egység

a komponens, amely tartalmazza az adatmodellhez kapcsolódó adatokat és viselke-
dést. A DOM frissítése az Angular adatbinding mechanizmusán keresztül automa-
tikusan történik: amikor a komponens adatmodellje megváltozik, a keretrendszer a
megfelelő HTML elemeket frissíti, anélkül, hogy a fejlesztőnek közvetlenül kellene
módosítania a DOM-ot. Ez a deklaratív stílus növeli a karbantarthatóságot és csök-
kenti a hibalehetőségeket.

Ezek az eredmények megalapozzák a következő fejezetben részletezett elemzést,
amely bemutatja, milyen konkrét hatással volt a Vanilla JavaScript-alapú oktatás a
hallgatók programozói képességeire és problémamegoldó stratégiáira.

Eredmények

A hallgatók kódjainak kvalitatív elemzése és a gyakorlati órákon szerzett megfigye-
lések alapján világossá vált, hogy a Vanilla JavaScript-alapú feladatok erősítették az
algoritmikus gondolkodást. Különösen az alapalgoritmusok kézi implementálása
során, amikor a hallgatóknak saját logikai és számítási lépéseiket kellett meghatá-
rozniuk. Ezt a korábbi kutatások is alátámasztják, amelyek szerint az algoritmusok
manuális implementálása elősegíti a strukturált problémamegoldást és a programo-
zói gondolkodás fejlődését [1] [2].

[1] Grover, S.–Pea, R.
(2013): Computational
thinking in K–12: A
review of the state of
the field. Educational
Researcher, 42., (1.),
pp. 38–43. (Teljes cikk
elérhető PDF ben:
https://multimedia.
uoc.edu/carlos/chipro/
wp-content/uplo-
ads/2013/10/38.full_.
pdf)

[2] Taub, R.–Armoni,
M.–Ben Ari, M. (2012):
CS Unplugged and
middle school stu-
dents’ views, attitudes,
and intentions regard-
ing CS. ACM Transac-
tions on Computing
Education, 12., (2.).
(Teljes cikk elérhető
PDF ben: https://www.
researchgate.net/pub-
lication/241623893_
CS_Unplugged_and_
Middle-School_Stu-
dents%27_Views_At-
titudes_and_Inten-
tions_Regarding_CS)

A Vanilla JavaScript szerepe a programozói gondolkodás fejlesztésében

1212 Dunakavics  –  2026 / 01.

A beépített függvények és a DOM-manipuláció gyakorlása hozzájárult a nyelvi tudatosság fejlődéséhez.
A hallgatók egyre biztosabban tudták alkalmazni a nyelv beépített eszközeit, és felismerni azok működését
a böngészőben, ami a későbbi hibakeresést és a kód transzparenciáját is elősegítette. Az eseménykezelési
feladatok révén a hallgatók megtanulták, hogyan reagáljon a program a felhasználói interakciókra, vala-
mint hogyan kezeljék az aszinkron eseményeket és a vizuális visszajelzéseket.

A Canvas API használata különösen hatékony volt a program logikájának vizuális szemléltetésében.
A hallgatók egyszerű rajzolási feladatok során (például négyszögek, karikák, vonalak, változó sugarú ka-
rikák, valamint az olimpiai ötkarika rajzolása) közvetlenül láthatták, hogyan jelennek meg a rajzelemek a
kód hatására a képernyőn. Ez elősegítette a programozói gondolkodás és a kód–megjelenítés kapcsolatá-
nak megértését, valamint növelte a kognitív megértés mélységét.

Az űrlapok és adatvalidáció feladatok során a hallgatók megtanulták a bevitt adatok ellenőrzését és a
hibakezelést, valamint a programozott logika alkalmazását a valós felhasználói interakciók kezelésére. A
feladatok során a hallgatóknak különböző típusú mezőket kellett validálniuk: a névmezőben csak betűk
engedélyezettek, az email mezőben a bevitt szövegnek érvényes email-formátumnak kellett megfelelnie, az
irányítószámnak pontosan négy számjegyből kellett állnia, a telefonmezőben pedig a +36 XX XXX XXXX
formátumot kellett ellenőrizniük. Ezekhez a validációkhoz reguláris kifejezéseket alkalmaztak, ami lehe-
tővé tette a bevitt adatok formátumának pontos és automatizált ellenőrzését.

Emellett a hallgatóknak a valós idejű ellenőrzést is implementálniuk kellett, hogy a felhasználó ne tud-
jon érvénytelen karaktereket beírni, valamint a submit gombnál ellenőrizni, hogy minden mező helyesen
legyen kitöltve, és szükség esetén hibaüzenetet jelenítsen meg. Ezek a feladatok különösen erősítették a
problémamegoldó képességet, a logikai gondolkodást és a programozói tudatosságot, mivel a hallgatók-
nak figyelembe kellett venniük a felhasználói interakciókat és az adatfeldolgozás helyes sorrendjét a webes
környezetben.

Az idő- és dátumkezelési feladatok többféle készséget és gondolkodási mintázatot fejlesztettek. A
hallgatóknak meg kellett érteniük, hogyan épülnek fel a dátum- és időadatok (év, hónap, nap, óra, perc,
másodperc), és figyelembe kellett venniük a programozott események sorrendjét és függőségeit, például
amikor a háttérszín változott. A feladatok során ciklusokat, feltételes utasításokat és függvényeket kellett
alkalmazniuk, például a hét napjának meghatározására vagy ismétlődő vizuális változások kezelésére, mi-
közben a setTimeout használatával az aszinkron események működését is gyakorolták.

A hallgatók megtanulták, hogyan lehet a dátumot és az időt különböző formátumokban megjeleníteni,
például rövid dátumként vagy a hét napját szövegesen, és hogyan biztosítható a vizuális visszajelzés a kód
hatására, ami közvetlen kapcsolatot teremtett a programozói logika és a látvány között. A feladatok kom-
binálták a dátumkezelést, a feltételes logikát és a vizuális megjelenítést, így erősítve a problémamegoldó
készséget, a kódolási tudatosságot és a hibakeresési képességeket, mivel minden apró logikai vagy szintak-
tikai hiba azonnal látható eredményeltérést okozott.

 Hadaricsné Dudás Nóra Erzsébet

1313Dunakavics  –  2026 / 01.

Összességében a kutatás eredményei azt mutatják, hogy a Vanilla JavaScript-alapú oktatás jelentősen
hozzájárul a hallgatók önálló problémamegoldó képességének fejlődéséhez, javítja a hibakeresési készsé-
geket, és erősíti az algoritmikus gondolkodást. Ugyanakkor a tanulási folyamat kezdeti szakasza nagyobb
kognitív terhelést jelent, mivel a hallgatóknak minden mechanizmust a nyelv és a böngésző natív eszközein
keresztül kell megérteniük, külső keretrendszerek vagy könyvtárak nélkül.

Ezek a megfigyelések összhangban vannak azzal a feltételezéssel, hogy a keretrendszerek nélküli, natív
JavaScript oktatás hosszú távon stabilabb alapot biztosít a hallgatóknak, mivel a megszerzett tudásra ké-
sőbb bármilyen magasabb szintű fejlesztési környezet biztonságosan építhető.

A webfejlesztésben a felhasználói felület (UI) manipulációja két alapvető paradigma mentén történhet:
közvetlen DOM-manipuláció (Vanilla JS) és reaktív, komponens-alapú architektúra (például Angular).

Vanilla JavaScript-paradigma

A hagyományos JavaScript-megközelítésben a fejlesztő közvetlenül a DOM objektumait módosítja. Ez im-
peratív jellegű paradigma, azaz a fejlesztő pontosan meghatározza a DOM-frissítés lépéseit. Az állapot- és
eseménykezelés manuálisan történik, ami kis projektek esetén egyszerűen követhető, ugyanakkor bonyo-
lultabb alkalmazásoknál a kód olvashatósága és karbantarthatósága csökkenhet.

Angular paradigma

Az Angular reaktív, komponensalapú modellt alkalmaz, ahol a DOM-frissítés közvetetten történik az
adatmodellek és sablonok közötti binding mechanizmus által. A változásészlelés automatikusan szinkroni-
zálja a felhasználói felületet az alkalmazás állapotával. Ez a deklaratív megközelítés lehetővé teszi komplex
interakciók egyszerűbb kezelését, magasabb szintű absztrakciót biztosítva, miközben csökkenti a hibale-
hetőségeket.

A Vanilla JavaScript szerepe a programozói gondolkodás fejlesztésében

1414 Dunakavics  –  2026 / 01.

2.táblázat. Összehasonlító megfigyelés

Szempont Vanilla JS Angular

Kód átláthatósága Magas: minden lépés látszik Közepes: absztrakció mögött a DOM
kezelése

Tanulási görbe Alacsony-moderált Magas: CLI, TypeScript, modulok
Gyors prototípus Könnyű kis projekteknél Lassabb setup miatt kezdetben
Skálázhatóság Kis projektekhez ideális Nagy alkalmazásokhoz optimalizált
Kód- és DOM-kapcsolat Közvetlen, vizuálisan látható Absztrakt, Angular kezeli

A táblázat alapján a Vanilla JS magas átláthatóságot biztosít, mivel minden kódlépés közvetlenül látha-
tó, és a DOM-manipuláció explicit módon történik. Angular esetében a DOM kezelése absztrakció mögé
van rejtve, ami csökkenti a közvetlen láthatóságot, ugyanakkor strukturáltabb és moduláris felépítést biz-
tosít. A tanulási görbe szempontjából a Vanilla JS alacsony-moderált, kezdő vagy kisebb projektek esetén
gyorsan alkalmazható, míg Angular komplexitása (CLI, TypeScript, moduláris architektúra) kezdetben
meredekebb tanulást igényel, hosszú távon azonban előnyös a nagyobb, skálázható alkalmazások fejlesz-
téséhez.

A prototípus-készítés során a Vanilla JS gyors implementációt tesz lehetővé kis projektekben, míg An-
gularban a kezdeti setup lassíthatja a fejlesztést. Skálázhatóság tekintetében a Vanilla JS kis projektekhez
ideális, Angular viszont nagy alkalmazásoknál nyújt optimalizált és strukturált megoldást. A kód és a
DOM közötti kapcsolat is eltérő: Vanilla JS-ben a változtatások közvetlenül, vizuálisan követhetők, Angu-
larban a DOM frissítése absztrakt módon történik, a keretrendszer automatikus frissítései által.

A következő diagram a Vanilla JavaScript és az Angular főbb jellemzőit hasonlítja össze az oktatás és
fejlesztés szempontjából. Minden tengely egy-egy kritikus aspektust reprezentál a 2. ábra alapján: kód
átláthatóság, tanulási görbe, gyors prototípus-készítés, skálázhatóság és a kód–DOM-kapcsolat, így vizuá-
lisan érzékelteti az erősségek és korlátok különbségeit.

 Hadaricsné Dudás Nóra Erzsébet

1515Dunakavics  –  2026 / 01.

2. ábra. Vanilla JS és Angular összehasonlítása kulcsfontosságú szempontok alapján

Összességében az összehasonlítás rávilágít arra, hogy a Vanilla JS gyors, közvetlen és könnyen átlátható,
ezért különösen alkalmas oktatási környezetben történő kezdeti tanulásra. Az oktatás során a hallgatók
nem komplex projektek fejlesztésére fókuszálnak, és a tanórai keretek szűkös ideje nem teszi lehetővé az
Angular mélyreható elsajátítását. Ezért a programozás alapjainak megtanításánál és a kódolási készségek
fejlesztésénél a Vanilla JS használata célszerű, hiszen lehetővé teszi a logikai gondolkodás, a DOM-kezelés
és az eseménykezelés alapjainak hatékony elsajátítását.

Következtetés

A kutatás eredményei azt mutatják, hogy a Vanilla JavaScript-alapú oktatás jelentősen hozzájárul a hallga-
tók programozói gondolkodásának és problémamegoldó képességeinek fejlődéséhez. A tanulmány során
tapasztalt kezdeti kognitív terhelés arra utal, hogy a hallgatók számára kihívást jelent a nyelv és a böngésző
natív mechanizmusainak elsajátítása. Ugyanakkor hosszú távon ez a megközelítés stabil, mélyebb tudásbá-
zist biztosít, amelyre később akár keretrendszerek is biztonságosan építhetők.

2.ábra Vanilla JS és Angular összehasonlítása kulcsfontosságú szempontok alapján

Összességében az összehasonlítás rávilágít arra, hogy a Vanilla JS gyors, közvetlen és könnyen átlátható,
ezért különösen alkalmas oktatási környezetben történő kezdeti tanulásra. Az oktatás során a hallgatók
nem komplex projektek fejlesztésére fókuszálnak, és a tanórai keretek szűkös ideje nem teszi lehetővé
az Angular mélyreható elsajátítását. Ezért a programozás alapjainak megtanításánál és a kódolási
készségek fejlesztésénél a Vanilla JS használata célszerű, hiszen lehetővé teszi a logikai gondolkodás, a
DOM-kezelés és az eseménykezelés alapjainak hatékony elsajátítását.

Következtetés

A kutatás eredményei azt mutatják, hogy a Vanilla JavaScript alapú oktatás jelentősen hozzájárul a
hallgatók programozói gondolkodásának és problémamegoldó képességeinek fejlődéséhez. A
tanulmány során tapasztalt kezdeti kognitív terhelés arra utal, hogy a hallgatók számára kihívást jelent
a nyelv és a böngésző natív mechanizmusainak elsajátítása. Ugyanakkor hosszú távon ez a megközelítés
stabil, mélyebb tudásbázist biztosít, amelyre később akár keretrendszerek is biztonságosan építhetők.

A Vanilla JavaScript oktatásának konkrét előnyei a következők:

• Javuló nyelvi tudatosság és kódtranszparencia,

• Erősödő önálló problémamegoldó képesség,

• Strukturált algoritmikus gondolkodás kialakulása,

• Valós idejű vizuális visszacsatolás a kód működéséről.

Összességében a Vanilla JavaScript oktatás nem csupán a technikai készségeket fejleszti, hanem
alapvetően támogatja a programozói gondolkodás és a strukturált problémamegoldás kialakulását. Ez a
megközelítés hosszú távú előnyt biztosít a hallgatók számára a modern webfejlesztési keretrendszerek
használatában, mivel a natív szintű tudás lehetővé teszi a komplex rendszerek biztonságos és hatékony
kezelését.

A kutatás korlátozásai között szerepel, hogy a vizsgálat kizárólag tanórai keretek között, kezdő hallgatók
körében zajlott, és a vizsgált feladatok kis projektekre korlátozódtak. Emiatt az eredmények
általánosíthatósága nagyobb, komplex fejlesztési környezetekre korlátozott lehet.

Jövőbeli kutatások során érdemes vizsgálni a Vanilla JavaScript alapú oktatás hosszú távú hatását, illetve
összehasonlítani a hallgatók teljesítményét különböző keretrendszerek (pl. Angular, React, Vue)

1

2

3

4

5

Kód
átláthatóság

Tanulási görbe Gyors
prototípus

Skálázhatóság DOM-kapcsolat
láthatósága

Er
ős

sé
g

Szempontok

Vanilla JS és Angular összehasonlítása
fejlesztési szempontok szerint

Vanilla JS Angular

A Vanilla JavaScript szerepe a programozói gondolkodás fejlesztésében

1616 Dunakavics  –  2026 / 01.

A Vanilla JavaScript oktatásának konkrét előnyei a következők:
– Javuló nyelvi tudatosság és kódtranszparencia.
– Erősödő önálló problémamegoldó képesség.
– Strukturált algoritmikus gondolkodás kialakulása.
– Valós idejű vizuális visszacsatolás a kód működéséről.

Összességében a Vanilla JavaScript-oktatás nem csupán a technikai készségeket fejleszti, hanem alap-
vetően támogatja a programozói gondolkodás és a strukturált problémamegoldás kialakulását. Ez a meg-
közelítés hosszú távú előnyt biztosít a hallgatók számára a modern webfejlesztési keretrendszerek haszná-
latában, mivel a natív szintű tudás lehetővé teszi a komplex rendszerek biztonságos és hatékony kezelését.

A kutatás korlátozásai között szerepel, hogy a vizsgálat kizárólag tanórai keretek között, kezdő hallga-
tók körében zajlott, és a vizsgált feladatok kis projektekre korlátozódtak. Emiatt az eredmények általáno-
síthatósága nagyobb, komplex fejlesztési környezetekre korlátozott lehet.

Jövőbeli kutatások során érdemes vizsgálni a Vanilla JavaScript-alapú oktatás hosszú távú hatását, illet-
ve összehasonlítani a hallgatók teljesítményét különböző keretrendszerek (pl. Angular, React, Vue) beveze-
tésével, hogy feltárható legyen, hogyan befolyásolja az alapok elsajátítása a későbbi fejlesztési képességeket.

 Hadaricsné Dudás Nóra Erzsébet

