()OS https://doi.org/10.63684/dk.2026.01.01

HADARICSNE DUDAS NORA ERZSEBET *

A Vanilla JavaScript szerepe a programozoi

gondolkodads fejlesztésében

Osszefoglalas: A cikk azt vizsgélja, hogy a keretrendszerek nélkiili (Vanilla)
JavaScript oktatasa hogyan jarul hozzd az egyetemi hallgatok programozoi
gondolkodasanak fejlédéséhez. A modellképzéshez olyan gyakorlatokat és
feladatkort alkalmaztam, amelyek az alapalgoritmusok kézzel torténd imp-
lementaldsara, a JavaScript beépitett fiiggvényeire, az eseménykezelésre, a
DOM-kezelésre és a JavaScriptben valo rajzolasra koncentralnak. A kutatds
kvalitativ jellegti, a hallgatok gyakorlati munkajanak és a forraskod-elemzés-
nek tapasztalati vizsgalatara épiil. Nem tartalmaz mérhetd pontszamokat vagy
statisztikai elemzést, céljaa Vanilla JavaScript-oktatas hatasainak minéségi fel-
tarasa. Eredményeim szerint a Vanilla JavaScript alapu oktatas néveli a nyelvi
tudatossagot, javitja a hibakeresési készségeket és erdsiti az algoritmikus gon-
dolkodas kialakulasat, ugyanakkor nagyobb kezdeti kognitiv terheléssel jar.
Kulcsszavak: Vanilla JavaScript, programozoi gondolkodas, algoritmikus gon-
dolkodas, hibakeresés, DOM-manipulacio, eseménykezelés, vizualis vissza-
csatolas, kognitiv terhelés.

Abstract: This article explores how teaching framework-free (Vanilla) JavaS-
cript contributes to the development of programming thinking among uni-
versity students. The instructional approach involved exercises and tasks
designed to emphasize manual implementation of fundamental algorithms,
utilization of JavaScript’s built-in functions, event handling, DOM manip-
ulation, and graphical programming in JavaScript. The study is qualitative
in nature, relying on empirical examination of students” practical work and
source code analysis. It does not employ measurable scores or statistical anal-
ysis; rather, its aim is to qualitatively investigate the effects of teaching Vanilla
JavaScript. The findings suggest that this approach enhances language aware-
ness, improves debugging skills, and fosters algorithmic thinking, though it
is accompanied by a higher initial cognitive load.

Dunakavics - 2026/ 01.

* Dunatijvdrosi Egyetem, Informa-
tikai Intézet, Szoftverfejlesztési és
Alkalmazdsi Tanszék

Email: dudasn@uniduna.hu
ORCID: 0009-0001-5825-4965



Hadaricsné Dudas Nora Erzsébet

Keywords: Vanilla JavaScript, programming thinking, algorithmic thinking, debugging, DOM manipula-
tion, event handling, visual feedback, cognitive load.

Bevezetés

A webfejlesztés az elmult évtizedben jelentds atalakuldson ment keresztiil. A modern JavaScript-keret-
rendszerek, mint a React vagy Angular, a fejlesztési folyamatot magas szintii absztrakciok bevezetésével
tették hatékonyabba, és lehet6vé teszik, hogy a fejleszték gyorsan hozzanak létre 6sszetett webalkalmaza-
sokat. Ugyanakkor ezek az eszkozok sok esetben elfedik a JavaScript nyelv valodi mitkodését, igy a kezd6
fejleszt6k gyakran anélkiil alkalmazzak a keretrendszereket, hogy teljes mértékben megértenék a nyelv
alapveté mechanizmusait. Ennek kovetkeztében a hallgatok a webprogramozds tanuldsa soran sokszor
»kész rendszerek” logikajat kovetik anélkiil, hogy atlatnak a hattérben zajlo folyamatokat, valamint a kod
és a bongészé kozotti kapcsolatot. Ez a helyzet vezette a fejlesztdi kozosséget is a Vanilla JavaScript kifeje-
zés kialakitasdhoz, amely a nyelv nativ, keretrendszerekt6l mentes hasznalatat jelenti.

A Vanilla JavaScript kifejezés a JavaScript nyelv nativ, keretrendszerektdl és kiils6 konyvtaraktdl mentes
valtozatat jel6li. A ,vanilla” sz6 az egyszer(, alapformat jelenti, szemben a magas szint(, el6re elkészitett
komponenseket kinald keretrendszerekkel. A terminologia a fejlesztdi kozosségben alakult ki, és mara
széles korben elfogadott a szakirodalomban és az oktatasi gyakorlatban is. A Vanilla JavaScript lehetévé
teszi, hogy a fejleszték kozvetleniil a bongész6 dltal biztositott API-kon keresztiil, a nyelv alapvetd elemeit
hasznalva valésitsanak meg funkcidkat, anélkiil, hogy eldre elkészitett komponensekre vagy magasabb
szintl absztrakciokra tdmaszkodnanak. A Vanilla JavaScript csupan a nativ eszkozokre tamaszkodik, és
minden 1épést a fejlesztének kell explicit médon megvalositania.

A nativ JavaScript oktatasa kiilonosen fontos a kezdé programozék szamdra, mivel igy jobban megért-
hetik a kod és a bongész6é viselkedése kozotti kapcsolatot, valamint atfogo, transzparens tudast szerezhet-
nek a webes mtikodés alapelveir6l. Ez a tudas nem csupan a szintaktikai elemek elsajatitasara korlatozodik,
hanem a problémak strukturalt, algoritmikus megkozelitésének megértésére is kiterjed, el8segitve a kogni-
tiv modellek kialakuldsat. A hallgatok igy képesek megérteni, hogy az altaluk irt kdd miként eredményez
konkrét viselkedést a bongészében, és hogyan épiilnek fel a programozott interakciok, vizudlis valtozasok
és adatkezelési folyamatok.

Az ut6bbi években a Vanilla JavaScript djra a figyelem kozéppontjaba keriilt, mivel a minimalista meg-
kozelités lehet8séget nyujt arra, hogy az oktatasban a hallgatok kozvetlen kapcsolatba keriiljenek a nyelv
mikodésével és a bongész6 nativ API-jaival. Ezaltal a tanulék nemcsak a konkrét kddolasi technikakat sa-
jatitjak el, hanem a webes miikodés mogottes logikajat is, ami hosszu tavon stabil alapot biztosit a késdbbi
keretrendszeres fejlesztéshez.

6 Dunakayvics - 2026/ 01.



A Vanilla JavaScript szerepe a programozoi gondolkodas fejlesztésében

A tanulmany célja annak feltardsa, hogy a Vanilla JavaScript oktatasa milyen médon jarulhat hozza a
programozdéi gondolkodas fejlédéséhez, kiilonds tekintettel az algoritmikus gondolkodas, a hibakeresési
készségek és az 6nallé problémamegoldas tamogatasara. A kutatas arra is kiterjed, hogy feltarja a kezd6
hallgatok kognitiv terhelését, valamint azt, hogy a nativ JavaScript gyakorlati alkalmazasa milyen elényok-
kel és kihivasokkal jar az oktatasban.

Elméleti hattér

A programozdi gondolkodas (computational thinking) a problémak strukturalt, algoritmikus megkoze-
litését jelenti. A szoftverfejlesztés oktatasdban nem csupdn a nyelvi szintaktika elsajatitasa a cél, hanem a
gondolkodasi mintak, az absztrakciok és a logikai 6sszefiiggések megértése is kozponti szerepet jatszanak.
A modern JavaScript-keretrendszerek eldnye, hogy csokkentik a fejlesztéi terhelést és gyorsabb eredmé-
nyeket tesznek lehetévé. Ugyanakkor az oktatasi kdrnyezetben gyakran , fekete doboz-hatast” idéznek eld:
a hallgatok a miikodést nem értik, csak alkalmazzak a kész komponenseket és fiiggvényhivasokat.

Ezzel szemben a Vanilla JavaScript explicit modon tarja a tanul6 elé az eseménykezelés, a DOM (Docu-
ment Object Model) manipulacio, az aszinkron folyamatokat és az allapotkezelés mechanizmusait. A kod
transzparencidja elésegiti a kognitiv modellek kialakuldsat, vagyis azt, hogy a hallgatéo megértse: a kddja
miként eredményez konkrét viselkedést a bongészében.

Ennek kovetkeztében a Vanilla JavaScript-alapu oktatas eldsegitheti a tartos, fogalmi tudas kialakula-
sat, amelyre késébb akar keretrendszeres fejlesztés mar biztonsagosan épithetd.

KuTATASI CELOK

A fenti bevezetd és az elméleti hattér alapjan vildgossa valik, hogy a Vanilla JavaScript oktatdsa nem csupan
a programozasi nyelv szintaktikdjanak elsajatitasat teszi lehetévé, hanem a hallgatok algoritmikus gondol-
kodasdnak, hibakeresési képességeinek és problémamegoldé stratégidinak fejlesztésére is alkalmas. A ta-
nulmany célja annak vizsgalata, hogy a keretrendszerektdl mentes, nativ JavaScript alkalmazasa az oktatas
soran milyen mértékben jarul hozzd a hallgatok programozdi gondolkodasanak fejlédéséhez, és milyen
kognitiv folyamatokat stimuldl a tanulasi kornyezetben.

A kutatas kiillonos figyelmet fordit arra, hogy a hallgatok hogyan sajatitjéak el az alapalgoritmusok ma-
nudlis implementalasat, a DOM-manipulaciét, az eseménykezelést, az adatvalidaciot és a Canvas API
hasznélatat.

Dunakavics - 2026/ 01. 7



Hadaricsné Dudas Nora Erzsébet

A cél az, hogy feltarjam, milyen mddon segitik ezek a feladatok a kdd és a bongészé kozti kapcsolat
megértését, az 6nallé problémamegoldast, valamint a strukturalt gondolkoddsi minték kialakuldsat.

Hipotézis:
A Vanilla JavaScript oktatdsa elGsegiti a JavaScript nyelv miikodésének mélyebb megértését, mivel a hallga-
tok kozvetleniil lathatjak a kod és a bongész6 viselkedése kozti kapcsolatot. Ennek kovetkeztében javul az
algoritmikus gondolkodasuk, fejlédik a hibakeresési képességiik, és er6sodik az 6nallé problémamegoldé
készségiik. Ugyanakkor a nativ JavaScript hasznalata kezdetben nagyobb kognitiv terhelést jelent, mivel
minden funkcidt és mechanizmust a nyelv és a bongész6 nativ eszkozein keresztiil kell megérteniiik, kiils6
keretrendszerek vagy konyvtarak nélkiil.

Ez a kutatasi megkozelités lehetdvé teszi, hogy a vizsgalat eredményei a Vanilla JavaScript szerepét ne
csupan a gyakorlati kodolasi képességek fejlesztésében, hanem a mélyebb programozdéi gondolkodas és a
problémamegold¢ stratégiak kialakuldsaban is mérhetéen bemutassa.

MODSZERTAN

A vizsgalat soran egyetemi hallgatokkal dolgoztam, akik egy féléves Internet technoldgidk cimii kurzus
keretében elészor a HTML5 és CSS3, majd a Vanilla JavaScript alapjaival ismerkedtek. A kurzus elsé felé-
ben a hangsuly az oldalak szerkezetének felépitésén és a vizualis megjelenités alapjainak elsajatitasan volt.
Vilagossa valt mindenki szamara, hogy a HTML adja a weboldal szerkezetét, a CSS a megjelenést, mig a
JavaScript a mtikodést és a logikat biztositja.

A félév masodik felében a JavaScript keriilt el6térbe, és a feladatokat gy alakitottam ki, hogy fejlesszék
a hallgatok programozéi gondolkodasat, a nyelvi tudatossagot és a hibakeresési készségeket. A hallga-
tok gyakoroltak az alapalgoritmusok megvaldsitasat, az egyszert logikai feladatok és szamitasi mtiveletek
implementaldsat, valamint a JavaScript beépitett fliggvényeinek haszndlatat. Emellett a DOM-manipulacio
és az eseménykezelés révén megtanultak, hogyan érhetik el az oldal elemeit, modosithatjak, eltavolithatjak
vagy Uj elemekkel bévithetik a weboldalt, és hogyan reagalhat a felhasznaldi interakciokra.

A grafikus megjelenités és vizualizacid terén a hallgaték a <canvas> HTML elemen beliil a JavaScript
Canvas API-t hasznaltak rajzolasra, ami lehet6vé tette a program logikdjanak és az eseménykezelés vizualis
szemléltetését. A formok és adatvalidacids feladatok soran a hallgatdk a felhasznaldi bevitel ellendrzését és
a hibakezelést gyakoroltdk. Tovébba az idd- és datumkezelés révén megtanultak az aktudlis id6 és datum
lekérését, azok formdzasat, valamint a programozott események és vizualis valtozasok (példaul héttérszin
valtasa) kezelését.

Dunakayics - 2025/ 02.



A Vanilla JavaScript szerepe a programozoi gondolkodas fejlesztésében

A vizsgalat kizardlag kvalitativ megkozelitést alkalmazott: a hallgatok kodjat, a problémamegoldasi
stratégidikat és a gyakorlati orak sordn szerzett megfigyeléseket elemeztem. A cél nem a mennyiségi mérés,
hanem a programozoi gondolkodas fejlédésének mindéségi feltarasa. Minden feladatot kiilon értékeltem,
figyelve az algoritmusok szerkezetére, a hibakezelési stratégidk alkalmazasara, a DOM-manipuldcié és ese-
ménykezelés helyességére, valamint a Canvas API hasznalatara. Részletesen vizsgaltam, hogy a hallgatok
miként kozelitik meg a problémakat, milyen logikai lépéseket kovetnek, és milyen médszerekkel probal-
nak hibakat kijavitani. A gyakorlati 6rak soran folyamatosan jegyzeteltem a hallgatok problémamegoldasi
viselkedését és a kognitiv terhelés jeleit, példaul a bizonytalansagot, segitségkéréseket vagy a kdd iterativ
modositasait.

Ez a kvalitativ megkozelités lehetvé tette, hogy részletesen értékeljem a nyelvi tudatossag, a hibake-
resési készségek és az algoritmikus gondolkodas fejlédését, valamint azt, hogy a hallgatok a megszerzett
tudast késdbb biztonsagosan alkalmazhassak barmilyen fejlettebb fejlesztési kornyezetben. A kvalitativ
elemzést a hallgatok altal irt forraskod és a gyakorlati ordk soran szerzett megfigyelések alapjan végeztem.

Az alabbi tablazat 6sszegzi a kvalitativ elemzés {6 szempontjait, a vizsgalt készségeket és az értékelés
kritériumait, hogy attekintheté mddon lathato legyen, mely feladatok hogyan jarultak hozza a hallgaték
programozdéi gondolkodasanak fejlddéséhez.

1. tabldzat. Kvalitativ elemzés szempontjai

Elemzés szempontja

Vizsgalt aspektus

Megfigyelt viselkedés/értékelési kritérium

Algoritmusok szerkezete

Hogyan épitik fel a hallgatok a kodot, ciklu-
sok, feltételes utasitasok

Logikai sorrendiség, hatékony szerkezet,
helyes Iépések

Hibakeresés

Hogyan észlelik, majd javitjak a kod hibait

Koéd-iteracio, hibak azonositasa, javitasi
stratégiak

DOM-manipulacié

HTML elemek elérése, modositdsa, eltavoli-
tasa, Uj elem létrehozasa

Megfelel$ elemvalasztas, események helyes
kezelése

regularis kifejezések haszndlata

Eseménykezelés Felhaszn4ldi interakciok kezelése Helyes esemény-hozzarendelés, valasz a
(pl. gombnyomas, adatbevitel) felhasznaldi miiveletekre
Canvas API Rajzolasi feladatok, vizualis visszajelzés Koéd és megjelenités kapcsolata, logikai
osszefiiggések vizualizalasa
Adatvalidacio Urlapok helyes kitdltésének ellendrzése, Ervényes adatok ellendrzése, hibajelzés

implementaldsa

1d6- és datumkezelés

Aktualis datum/ébra lekérése, formdzas,
vizualis véltozasok

Feltételes logika, aszinkron események keze-
1ése, kodmegjelenités-kapcsolat

Dunakavyics -

2026 / 01.

©




Hadaricsné Dudas Nora Erzsébet

A tablazatban 0sszegzett szempontok a hallgatok kognitiv és gyakorlati készségeit titkrozik, és a kvalita-
tiv elemzés f6 iranyvonalait szemléltetik. Az elemzési szempontok alapjan vilagossa valt, hogy a hallgatok
készségei és gondolkodasi mintazatai jol nyomon kévethetdk voltak a feladatmegoldasok soran.

Az algoritmusok szerkezete és a hibakeresés vizsgalata az algoritmikus gondolkodas és a probléma-
megoldd képesség fejldését, mig a DOM-manipulacio, az eseménykezelés és a Canvas API hasznalata a
kod-megjelenités kapcsolatainak megértését tamogatta. Az algoritmusok manudlis implementalasa segit
fejben modellezni a logikai 1épéseket és a folyamatok sorrendjét. Kiilonosen hatékony, ha ezt algoritmus-
leir eszkozokkel, példaul pszeuddkdddal vagy folyamatabraval szemléltetjiik.

Az eseménykezelés révén a hallgatok megértik, hogyan kezeli a program a felhasznal6i muveleteket
és az aszinkron eseményeket. A DOM-manipuldcié tanuldsa lehetévé teszi, hogy a hallgatok megértsék,
hogyan jelennek meg a HTML-elemek, hogyan mddosithatdk, és milyen hatassal vannak a felhasznaldi
interakciokra. Az adatvaliddcid, valamint az id6- és datumkezelési feladatok killonosen a logikai gondol-
kodas, a feltételes utasitasok és az aszinkron események kezelésének gyakorlasat tették lehetévé, mikozben
azonnali visszajelzést adtak a kdd miikodésérdl.

A webfejlesztés soran példaul a felhasznaldi felillet manipuldcidja két alapveté paradigmat kovethet:
a kozvetlen, imperativ DOM-manipulaciot Vanilla JavaScript-ben, illetve a deklarativ, komponensalapu
frissitést Angularban. Az 1. dbra vizudlisan szemlélteti ezen két megkozelités kozti killonbséget, kiemelve,
hogy a fejleszt6i beavatkozas és a DOM-véltozas miként torténik a gyakorlatban.

1.dbra. A DOM-manipuldcié két paradigmdija
Vanilla JS vs Angular - DOM-frissités vizualizacioja

Vanilla JS Angular

Komponens

*binding DOM

| Adatmodell H <div>.../div>

Kézvetlen manipulacié Deklarrativ binding / Absztrakcié

document.getElementById
(...).innerHTML = ..;

10 Dunakayvics - 2026/ 01.



A Vanilla JavaScript szerepe a programozoéi gondolkodas fejlesztésében

Az ébra két megkozelitést hasonlit 9ssze a webes feliiletek frissitésében: a kozvet-
len DOM-manipuldcidt Vanilla JavaScript (JS) hasznalataval, valamint az Angular-
keretrendszer deklarativ adatbindingjét.

Bal oldal - Vanilla JavaScript

A bal oldalon a DOM-hoz val6 kozvetlen hozzatérés lathatd, példaul document.
getElementById(...).innerHTML = ... hasznalataval. Ebben a megkdzelitésben a Ja-
vaScript azonnal moédositja a kivalasztott HTML elem tartalmat. A fejleszt6 feladata,
hogy minden valtozast explicit médon kezeljen a DOM-ban. Ez az imperativ stilus
egyszer(, de nagyobb projektek esetén nehezen karbantarthat6, mivel a DOM frissi-
tésének minden lépését kézzel kell végrehajtani.

Jobb oldal - Angular

A jobb oldalon az Angular deklarativ megkozelitése lathato. Itt a logikai egység
a komponens, amely tartalmazza az adatmodellhez kapcsolédé adatokat és viselke-
dést. A DOM frissitése az Angular adatbinding mechanizmusan keresztiil automa-
tikusan térténik: amikor a komponens adatmodellje megvaltozik, a keretrendszer a
megfelel6 HTML elemeket frissiti, anélkiil, hogy a fejlesztének kozvetleniil kellene
modositania a DOM-ot. Ez a deklarativ stilus noveli a karbantarthatésagot és csok-
kenti a hibalehet8ségeket.

Ezek az eredmények megalapozzak a kovetkezd fejezetben részletezett elemzést,
amely bemutatja, milyen konkrét hatdssal volt a Vanilla JavaScript-alapt oktatas a
hallgatok programozdi képességeire és problémamegoldd stratégiaira.

Eredmények

A hallgatok kddjainak kvalitativ elemzése és a gyakorlati drakon szerzett megfigye-
1ések alapjan vilagossa valt, hogy a Vanilla JavaScript-alapu feladatok erésitették az
algoritmikus gondolkodast. Kiilondsen az alapalgoritmusok kézi implementalasa
soran, amikor a hallgatoknak sajat logikai és szamitasi 1épéseiket kellett meghata-
rozniuk. Ezt a korabbi kutatasok is alatamasztjak, amelyek szerint az algoritmusok
manualis implementaldsa el3segiti a strukturalt problémamegoldast és a programo-
z6i gondolkodas fejlédését [1] [2].

Dunakavics - 2026/ 01.

[1] Grover, S.-Pea, R.
(2013): Computational
thinking in K-12: A
review of the state of
the field. Educational
Researcher, 42., (1.),
pp. 38-43. (Teljes cikk
elérheté PDF ben:
https://multimedia.
uoc.edu/carlos/chipro/
wp-content/uplo-
ads/2013/10/38.full_.
pdf)

[2] Taub, R.—Armoni,
M.-Ben Ari, M. (2012):
CS Unplugged and
middle school stu-
dents’ views, attitudes,
and intentions regard-
ing CS. ACM Transac-
tions on Computing
Education, 12., (2.).
(Teljes cikk elérhetd
PDF ben: https://www.
researchgate.net/pub-
lication/241623893 _
CS_Unplugged_and_
Middle-School_Stu-
dents%27_Views_At-
titudes_and_Inten-
tions_Regarding_CS)

11



Hadaricsné Dudas Nora Erzsébet

A beépitett fliggvények és a DOM-manipulacio6 gyakorldsa hozzajarult a nyelvi tudatossag fejlédéséhez.
A hallgatok egyre biztosabban tudtak alkalmazni a nyelv beépitett eszkozeit, és felismerni azok miikodését
a bongészbben, ami a késobbi hibakeresést és a kdd transzparenciajat is eldsegitette. Az eseménykezelési
feladatok révén a hallgatok megtanultak, hogyan reagdljon a program a felhasznaldi interakcidkra, vala-
mint hogyan kezeljék az aszinkron eseményeket és a vizualis visszajelzéseket.

A Canvas API hasznalata killonosen hatékony volt a program logikédjanak vizudlis szemléltetésében.
A hallgatdk egyszerii rajzolasi feladatok soran (példaul négyszogek, karikak, vonalak, valtozo sugaru ka-
rikak, valamint az olimpiai 6tkarika rajzolasa) kozvetleniil lathattdk, hogyan jelennek meg a rajzelemek a
kod hatasara a képernyén. Ez elGsegitette a programozéi gondolkodas és a kdd-megjelenités kapcsolata-
nak megértését, valamint novelte a kognitiv megértés mélységét.

Az trlapok és adatvalidaci6 feladatok sordn a hallgaték megtanultak a bevitt adatok ellenérzését és a
hibakezelést, valamint a programozott logika alkalmazasat a valds felhasznaloi interakciok kezelésére. A
feladatok soran a hallgatéknak kiilonb6zé tipusu mezéket kellett validalniuk: a névmezében csak betiik
engedélyezettek, az email mezGben a bevitt szovegnek érvényes email-formatumnak kellett megfelelnie, az
iranyitészamnak pontosan négy szamjegybdl kellett allnia, a telefonmezében pedig a +36 XX XXX XXXX
formatumot kellett ellendrizniiik. Ezekhez a validaciokhoz regularis kifejezéseket alkalmaztak, ami lehe-
tové tette a bevitt adatok formatumdanak pontos és automatizalt ellenérzését.

Emellett a hallgatoknak a valos ideji ellenérzést is implementalniuk kellett, hogy a felhasznalé ne tud-
jon érvénytelen karaktereket beirni, valamint a submit gombnal ellendrizni, hogy minden mez6 helyesen
legyen kitoltve, és sziikség esetén hibaiizenetet jelenitsen meg. Ezek a feladatok kiilondsen erdsitették a
problémamegoldé képességet, a logikai gondolkodast és a programozoi tudatossagot, mivel a hallgatok-
nak figyelembe kellett venniiik a felhasznaldi interakcidkat és az adatfeldolgozas helyes sorrendjét a webes
kornyezetben.

Az id6- és datumkezelési feladatok tobbféle készséget és gondolkodasi mintazatot fejlesztettek. A
hallgatoknak meg kellett érteniiik, hogyan épiilnek fel a datum- és idéadatok (év, honap, nap, éra, perc,
masodperc), és figyelembe kellett venniiik a programozott események sorrendjét és fliggdségeit, példaul
amikor a hattérszin valtozott. A feladatok soran ciklusokat, feltételes utasitasokat és fiiggvényeket kellett
alkalmazniuk, példdul a hét napjanak meghatarozasara vagy ismétlddo vizualis valtozasok kezelésére, mi-
kozben a setTimeout hasznalataval az aszinkron események mtikodését is gyakoroltak.

A hallgatok megtanultak, hogyan lehet a ddtumot és az id6t kiilonb6z6 formatumokban megjeleniteni,
példaul rovid datumként vagy a hét napjat szovegesen, és hogyan biztosithat6 a vizualis visszajelzés a kdd
hatasara, ami kozvetlen kapcsolatot teremtett a programozoi logika és a latvany kozott. A feladatok kom-
binaltak a datumkezelést, a feltételes logikat és a vizualis megjelenitést, igy erdsitve a problémamegoldd
készséget, a kddolasi tudatossagot és a hibakeresési képességeket, mivel minden apré logikai vagy szintak-
tikai hiba azonnal lathat6 eredményeltérést okozott.

12 Dunakayics - 2026/ 01.



A Vanilla JavaScript szerepe a programozoéi gondolkodas fejlesztésében

Osszességében a kutatds eredményei azt mutatjak, hogy a Vanilla JavaScript-alapt oktatés jelentdsen
hozzajarul a hallgatok 6nallé problémamegoldo képességének fejlddéséhez, javitja a hibakeresési készsé-
geket, és erdsiti az algoritmikus gondolkodast. Ugyanakkor a tanulasi folyamat kezdeti szakasza nagyobb
kognitiv terhelést jelent, mivel a hallgatéknak minden mechanizmust a nyelv és a bongész6 nativ eszkozein
keresztiil kell megérteniiik, kiilsé keretrendszerek vagy konyvtarak nélkiil.

Ezek a megfigyelések 6sszhangban vannak azzal a feltételezéssel, hogy a keretrendszerek nélkiili, nativ
JavaScript oktatas hosszua tavon stabilabb alapot biztosit a hallgatoknak, mivel a megszerzett tudasra ké-
s6bb barmilyen magasabb szintii fejlesztési kdrnyezet biztonsagosan épithetd.

A webfejlesztésben a felhasznaléi feliilet (UI) manipuldcidja két alapvetd paradigma mentén torténhet:
kozvetlen DOM-manipulacié (Vanilla JS) és reaktiv, komponens-alapu architektura (példaul Angular).

VANILLA JAVASCRIPT-PARADIGMA

A hagyomanyos JavaScript-megkézelitésben a fejleszt6 kozvetleniil a DOM objektumait moédositja. Ez im-
perativ jellegli paradigma, azaz a fejleszt6 pontosan meghatdrozza a DOM-frissités 1épéseit. Az dllapot- és
eseménykezelés manualisan torténik, ami kis projektek esetén egyszertien kévethetd, ugyanakkor bonyo-
lultabb alkalmazasoknal a kod olvashatdsaga és karbantarthatosaga csokkenhet.

ANGULAR PARADIGMA

Az Angular reaktiv, komponensalapu modellt alkalmaz, ahol a DOM-frissités kozvetetten torténik az
adatmodellek és sablonok kozotti binding mechanizmus altal. A valtozasészlelés automatikusan szinkroni-
zalja a felhasznaloi feliiletet az alkalmazas allapotaval. Ez a deklarativ megkozelités lehet6vé teszi komplex
interakciok egyszertibb kezelését, magasabb szintii absztrakciot biztositva, mikdzben csokkenti a hibale-
hetdségeket.

Dunakayics - 2026/ 01 13



Hadaricsné Dudas Nora Erzsébet

2.tdbldzat. Osszehasonlité megfigyelés

Szempont Vanilla JS Angular
Kaéd atlathatosaga Magas: minden 1épés latszik E::;ig:: absztrakei6 mogstta DOM
Tanulasi gorbe Alacsony-moderalt Magas: CLI, TypeScript, modulok
Gyors prototipus Konnyt kis projekteknél Lassabb setup miatt kezdetben
Skalazhatosag Kis projektekhez idealis Nagy alkalmazasokhoz optimalizalt
Kéd- és DOM-kapcsolat Kozvetlen, vizudlisan lathato Absztrakt, Angular kezeli

A tablazat alapjan a Vanilla JS magas atlathatosagot biztosit, mivel minden kodlépés kozvetleniil latha-
t6, és a DOM-manipulacié explicit médon torténik. Angular esetében a DOM kezelése absztrakcié mogé
van rejtve, ami csokkenti a kozvetlen lathatdsagot, ugyanakkor strukturaltabb és modularis felépitést biz-
tosit. A tanuldsi gorbe szempontjabdl a Vanilla JS alacsony-moderalt, kezdé vagy kisebb projektek esetén
gyorsan alkalmazhatd, mig Angular komplexitasa (CLI, TypeScript, modularis architektira) kezdetben
meredekebb tanulast igényel, hosszt tavon azonban elényos a nagyobb, skalazhato alkalmazasok fejlesz-
téséhez.

A prototipus-készités soran a Vanilla JS gyors implementaciot tesz lehet6vé kis projektekben, mig An-
gularban a kezdeti setup lassithatja a fejlesztést. Skalazhatosag tekintetében a Vanilla JS kis projektekhez
idedlis, Angular viszont nagy alkalmazasoknal nyujt optimalizalt és strukturdlt megoldast. A kéd és a
DOM kozotti kapcsolat is eltérd: Vanilla JS-ben a valtoztatdsok kozvetlentl, vizualisan kévethet6k, Angu-
larban a DOM frissitése absztrakt mdodon torténik, a keretrendszer automatikus frissitései altal.

A kovetkezd diagram a Vanilla JavaScript és az Angular f6bb jellemz6it hasonlitja 6ssze az oktatds és
fejlesztés szempontjabol. Minden tengely egy-egy kritikus aspektust reprezental a 2. dbra alapjan: kod
atlathatosag, tanulasi gorbe, gyors prototipus-készités, skalazhatdsag és a kod-DOM-kapcsolat, igy vizua-
lisan érzékelteti az er8sségek és korlatok kiilonbségeit.

14 Dunakayics - 2026/ 01.



A Vanilla JavaScript szerepe a programozoi gondolkodas fejlesztésében

2. dbra. Vanilla JS és Angular 0sszehasonlitdsa kulcsfontossdgii szempontok alapjdn

Vanilla JS és Angular 6sszehasonlitasa
fejlesztési szempontok szerint

5
4
3
Ml of W o MR
1

Erésség

Koéd Tanulasi gorbe Gyors Skalazhatésag DOM-kapcsolat
atlathatésag prototipus lathatésaga
Szempontok

m VanillaJS mAngular

Osszességében az 6sszehasonlitds ravildgit arra, hogy a Vanilla JS gyors, kdzvetlen és kénnyen étlathatd,
ezért kiilonosen alkalmas oktatasi kornyezetben torténd kezdeti tanulasra. Az oktatas soran a hallgatok
nem komplex projektek fejlesztésére fokuszalnak, és a tanodrai keretek sziikos ideje nem teszi lehet6vé az
Angular mélyrehato elsajatitasat. Ezért a programozas alapjainak megtanitasanal és a kodoldsi készségek
fejlesztésénél a Vanilla JS hasznalata célszer(, hiszen lehetévé teszi a logikai gondolkodas, a DOM-kezelés
és az eseménykezelés alapjainak hatékony elsajatitasat.

KOVETKEZTETES

A kutatas eredményei azt mutatjak, hogy a Vanilla JavaScript-alapu oktatds jelentdsen hozzdjarul a hallga-
tok programozdéi gondolkodasanak és problémamegoldd képességeinek fejlédéséhez. A tanulmany soran
tapasztalt kezdeti kognitiv terhelés arra utal, hogy a hallgatok szamara kihivast jelent a nyelv és a bongész6
nativ mechanizmusainak elsajatitasa. Ugyanakkor hosszu tavon ez a megkozelités stabil, mélyebb tudasba-
zist biztosit, amelyre késGbb akar keretrendszerek is biztonsagosan épithetdk.

w

Dunakavics - 2026/ 01. 1



Hadaricsné Dudas Nora Erzsébet

A Vanilla JavaScript oktatasanak konkrét elényei a kovetkezok:
- Javuld nyelvi tudatossag és kodtranszparencia.

— Er6s6d6 6nallé problémamegoldd képesség.

— Strukturalt algoritmikus gondolkodas kialakulasa.

- Val6s idejti vizualis visszacsatolds a kdd mikodésérdl.

Osszességében a Vanilla JavaScript-oktatds nem csupdn a technikai készségeket fejleszti, hanem alap-
vetéen tdmogatja a programozdi gondolkodas és a strukturalt problémamegoldas kialakuldsat. Ez a meg-
kozelités hosszua tava el6nyt biztosit a hallgatok szamara a modern webfejlesztési keretrendszerek haszna-
lataban, mivel a nativ szint(i tudas lehet6vé teszi a komplex rendszerek biztonsagos és hatékony kezelését.

A kutatas korlatozasai kozott szerepel, hogy a vizsgalat kizarolag tandrai keretek kozott, kezdé hallga-
tok korében zajlott, és a vizsgalt feladatok kis projektekre korlatozodtak. Emiatt az eredmények altalano-
sithatosaga nagyobb, komplex fejlesztési kornyezetekre korlatozott lehet.

Jovébeli kutatasok soran érdemes vizsgalni a Vanilla JavaScript-alapt oktatas hosszu tava hatasat, illet-
ve Osszehasonlitani a hallgatok teljesitményét kiillonboz6 keretrendszerek (pl. Angular, React, Vue) beveze-
tésével, hogy feltarhato legyen, hogyan befolyasolja az alapok elsajatitdsa a késébbi fejlesztési képességeket.

16 Dunakayvics - 2026/ 01.



