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A cikkben a forgó mágneses térrel (RMF) való keveréssel és keverés nélkül kristályosított eutek­
tikus alumínium–szilícium (Al–12,6 tömeg% Si) ötvözet próbáinak a részletes vizsgálatát mutat­
juk be. A kristályosítási kísérletek, amelyeket a MICAST Hungary projekt keretében végeztük, a 
Nemzetközi Űrállomáson (ISS) a Solidification and Quench Furnace (SQF) berendezésben vég­
zett kristályosításnak a tükörkísérletei voltak.
    A földi minták az ISS-en végzett kísérletekkel azonos kristályosítási paraméterek mellett ké­
szültek.
    A vizsgálat során elemeztük a minták mezoszerkezetét és az eutektikus mikroszerkezetet mind 
a mágneses keve-résnek kitett, mind a keverés nélküli (RMF-mentes) minták esetében. Különös 
figyelmet fordítottunk a mágneses keverés hatásának az olyan kulcsfontosságú mikroszerkezeti 
jellemzőkre, mint az eutektikuslemez-távolság, a lemezek hossza, valamint a lemezek térbeli 
orientációja.
    E paraméterek mérése és elemzése átfogó képet ad az eutektikumok mikroszerkezetéről. A kí­
sérletben alkalmazott 10 mT-val való RMF keverés kimutatható hatást gyakorol az eutektikus 
szerkezet kialakulására: az alumíniumdendritek a kevert minta mindkét szélén koncentrálódnak, 
arányuk pedig a minta vége felé csökken. Ezzel szemben a keverés nélküli mintában hosszú, el­
nyúlt Al-dendritek kristályosodnak a hőelvonás irányával párhuzamosan, és ezek aránya, vala­
mint mérete a minta mentén fokozatosan növekszik. A vizsgálat lehetséges összefüggést tárt fel az 
eutektikus lemezhossz csökkenése és a lemezek átlagos távolsága között.

Kulcsszavak: eutektikum, forgó mágneses tér, kristályosodás, olvadékáramlás

1. Bevezetés

Kristályosodás során az olvadékáramlás befolyásolja 
a  kialakuló szerkezetet. A koncentráció- és hőmér-
séklet-különbségek eltérő sűrűségeket eredményez-
nek, ami áramlást idéz elő az olvadékban földi kö
rülmények között. Az áramlás mesterségesen is elő
idézhető, például forgó mágneses tér (RMF) alkal-
mazásával kristályosodás során [1].

Mikrogravitációs körülmények között számos 
kísérletet végeztek az olvadékáramlás kikapcsolásá-

val az olvadékáramlás jobb megértése érdekében, az 
eredmények csak a földi kísérletek eredményeivel 
összehasonlítva adnak reális képet az olvadék áramlás 
hatásáról, ezért fontos a földi körülmények a között 
kristályosított mikroszerkezetek tanulmányozása [2, 
3]. Ezen túlmenően érdemes létrehozni egy egységes 
osztályozási rendszert az irreguláris, lemezes eutekti-
kumokra.

A múltban számos kísérlet történt az eutektikus 
morfológiák rendszerezésére, azonban ezek korláto-
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zott sikerrel jártak, mivel az adott eutektikum mor
fológiáját jelentősen befolyásolja az összetétel és a 
hűlési sebesség. Croker és munkatársai [4] kimutat-
ták, hogy binér ötvözetek esetében bizonyos szabá-
lyok alkalmazásával az eutektikus növekedés teljes 
mértékben leírható.

A legtöbb kutató az eutektikus szerkezet osztályo-
zását a kialakult morfológia alapján végezte, amely 
lehet rudas (rod-like) vagy lemezes (lamella-like), 
más szempontból reguláris vagy irreguláris, melyet a 
fázisok aránya határoz meg [5–8]. Mindazonáltal az 
irreguláris eutektikumok esetében nem létezik egysé-
ges mérési módszer és megfelelő irodalom az eredmé-
nyek kiértékelésére.

A Jackson–Hunt-modell az egyik legismertebb 
elméleti modell az eutektikum kristályosodásának 
megértéséhez [9]. Számos kutatás vizsgálta a leme-
zek közötti távolságot (λ) különböző kristályosítási 
paraméterek – például túlhűlés (ΔT) és hőmérséklet-
gradiens (G) – változtatásával. Ezek a tanulmányok 
azonban nem feltétlenül kristályosodott szerkezeteket 
elemeztek, hanem elméleti összefoglalókat nyújtottak 
az eutektikus növekedésről [10–13].

A Clapham és Smith által végzett kutatás áll a 
legközelebb az irreguláris eutektikumok numerikus 
méréséhez: ők a lemezek közötti távolságot egy vonal 
mentén, az eutektikus lemezekkel való metszéspontok 
alapján határozták meg [14].

Bizonyos esetekben, amikor a primer fázis (leg
gyakrabban szilárdoldat-dendrit) kristályosodása  vé- 
gén visszamaradó olvadékfázis térfogata olyan  kicsi, 
hogy annak kiterjedése összemérhető az eutektikus 
lemeztávolsággal, elfajult eutektikum alakul ki, amely
ben a két fázis egymástól függetlenül növekszik. Ilyen 
esetben az eutektikum második fázisa egy réteget 
képez a primer fázis körül [15].

Az olvadékáramlás hatást gyakorol az ötvözet 
mezo- és mikroszerkezetére. Az áramlásnak két tí-
pusát különböztetjük meg: a természetes (felhajtó
erő-alapú) és a kényszer áramlást. A természetes 
áramlást az olvadékban kialakuló koncentráció- és a 
hőmérséklet-különbség okozta sűrűségkülönbség, fe-
lületifeszültség-különbség (Marangoni-áramlás) vagy 
a megszilárdult részek zsugorodása idézheti elő. A 
kényszeráramlás előidézésének egyik módja a forgó 
mágneses tér (RMF) alkalmazása, amely befolyásolja 
a hő- és anyagtranszportot a szilárd–olvadék határ
felület előtti régióban, ezáltal jelentős változásokat 
idézve elő a végső szerkezet kialakulásában [1]. Ko-
rábbi kutatások azt is kimutatták, hogy a kényszer-
olvadékáramlás a szerkezet finomodásához vezethet 
[16, 17].

Mivel az ötvözetek mikroszerkezete alapvetően 
meghatározza azok mechanikai tulajdonságait, ezért 
a mikroszerkezet befolyásolásával célzott anyagtulaj-
donságok érhetők el. Számos módszer áll rendelke-

zésre e tulajdonságok javítására, például az eutektikus 
front sebességének szabályozása [9, 18–20], illetve az 
olvadékáramlás létrehozása forgó vagy haladó mág-
neses térrel (RMF, TMF).

Az Al–Si ötvözetek napjainkban is kiemelt jelen-
tőségűek az iparban. Alkalmazásuk különösen elter-
jedt az autóiparban, a repülőgépiparban és az űripar-
ban, valamint fontos öntészeti ötvözetként is szerepet 
kapnak. Ennek eredményeként számos kutatás irányul 
e rendszer tanulmányozására [21–30].

2. Kísérletek

2.1. Kristályosítási Kísérlet

A kísérletekhez Al–12,6 tömeg% Si eutektikus össze-
tételű ötvözetet használtunk, amelyeket a Hydro Alu-
minium Rolled Products GmbH készített. Az alkal-
mazott alumínium és szilícium alapanyagok tisztasá-
ga 99,95 tömeg% volt.

A kristályosítási kísérleteket egy függőleges el
rendezésű, négy fűtési zónával rendelkező Bridg-
man-típusú csőkemencében végeztük, amelynek váz-
latos felépítését az 1. ábra szemlélteti. A berendezés 
kilenc fő egységből áll, működését az egyenirányú 
hőelvonás jellemzi [31]. A minta mozgatás sebessége 
minden esetben 0,1 mm/s volt.

A kristályosodási folyamat kezdeti szakaszában 
a minták egy része nem olvadt meg teljes mértékben, 
így az eutektikus kristályosodási front a minta alsó vé-
gétől 18 mm távolságban helyezkedett el. A minták 
mentén kialakuló hőmérséklet-eloszlást 13 darab K 
típusú termoelemmel mértük.

1. ábra. A kristályosító berendezés vázlata [31]. 1: minta, 
2: alumínium-oxid-kapszula, 3: kvarccső, 4: réz hűtőtönk, 
5: kemence négy fűtési zónával, 6: stepmotor, 7: RMF in­

duktor, 8: vízhűtő tank, 9: alaplap
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2.2. Az eutektikus frontsebesség és a hőmérséklet-
gradiens meghatározása

Az eutektikus front sebességét és a hőmérséklet-
gradienst az eutektikus front előtt a hűlési görbék 
kiértékelésével határoztuk meg. A kísérlet során a 
minta hőmérsékletét a kerámia kapszula felületén 
13  pozícióban mértük, amelyek alapján meghatá
rozható volt az az időpillanat, amikor az adott a próba 

adott helyén a hőmérséklet elérte az eutektikus érté-
ket (577 °C).

Az így kapott időpontokat a hely függvényében 
ábrázoltuk (távolság–idő függvény), majd az adatokra 
polinomot illesztettünk, és a kapott függvény idő sze-
rinti deriválásával – meghatározhatóvá vált az eutek-
tikus front sebessége a frontpozíció mentén (2. ábra).

Az így meghatározott értékeket a mérési pontokon 
ellenőriztük, és ezek jó egyezést mutattak a kísérlet 
során rögzített adatokkal.

Az eutektikus frontsebesség mindkét vizsgált 
minta esetében közel azonos értékeket mutatott 
(4.  ábra). A folyamat kezdeti szakaszában a front
sebesség a keverés nélküli mintában (0 mT) 0,02 
mm/s, míg a mágneses keveréssel (10 mT) előállított 
mintában 0,04 mm/s érték volt. Ezt követően a se-
besség rövid idő alatt 0,1 mm/s-ra növekedett, ami 
a minta mintegy 40 mm-es szakaszánál volt meg
figyelhető.

A 40 mm és 120 mm közötti tartományban a front-
sebesség fokozatos növekedést mutatott, elérve a 0,12 
mm/s értéket, majd a minta 140 mm-es pozíciójánál 
0,14 mm/s maximális érték volt jellemző.

A hőmérséklet-gradiens meghatározása során elő-
ször egy adott termoelem távolságnál meghatároz-
tuk az eutektikus hőmérséklethez tartozó időpontot. 
Ennél az időpontnál leolvastuk az előző és a követ-
kező termoelem távolsághoz tartozó hőmérsékletet. 
A két hőmérséklet különbségét elosztva az előző és 
következő termoelemek távolságának különbségével 
kaptuk az adott termoelem távolságnál a hőmérsék-
let-gradienst. Az így meghatározott hőmérséklet-
gradienseket a távolság függvényében ábrázolva, a 
számított értékekre polinomot illesztve kiszámítottuk 
a hőmérséklet-gradienst a próba távolságának függ-
vényében (4. ábra).

A meghatározott hőmérséklet-gradiens a keve-
rés nélküli, illetve a mágneses keveréssel (RMF) 
előállított minták esetében közel azonosnak bizo-
nyult: 2,2 ± 0,2 K/mm a 20 mm és 120 mm közötti 
tartományban (4. ábra). A minta vége felé (120–140 
mm közötti szakaszon) a gradiens értéke először hir-
telen 1,5 K/‌mm-re csökkent, majd ezt követően ismét 
2,5 K/mm-re növekedett.

2.3. Mérési módszerek

2.3.1. Minta-előkészítés a vizsgálathoz

A kristályosodást követően a mintákat a tengelyükre 
merőlegesen két, közel azonos méretű részre vágtuk a 
könnyebb kezelhetőség érdekében. A minták műgyan-
tába történő beágyazását követően a hengeres próba-
testeket hosszirányban a tengely mentén kettévágtuk 
annak érdekében, hogy a hosszmetszet vizsgálhatóvá 
váljon. Ez a metszet megfelelő alapot biztosított a 
mezo- és mikroszerkezeti jellemzők elemzéséhez.

2. ábra. Lehűlési görbék a próba különböző helyein és az 
eutektikus hőmérséklet

3. ábra. Eutektikus frontsebesség a minta hossza mentén

4. ábra. Hőmérséklet-gradiens a minta hossza mentén
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A minták előkészítése során csiszolás, gyémánt-
pasztával történő polírozás, valamint 2%-os HF-vizes 
oldattal végzett maratás történt. A mezo- és mikro
szerkezetet optikai mikroszkóppal (Zeiss AXIO 
Imager M1M) készült felvételeken vizsgáltuk. A 
minták teljes felületét lefedő mozaikképek 50-szeres 
nagyításban kerültek rögzítésre, amelyek a mezo
szerkezeti elemzésekhez szolgáltak alapul.

Ezen túlmenően a minták jellegzetes területeiről 
500-szoros nagyításban is készültek felvételek a mik-
roszerkezeti részletek elemzéséhez. Mind a keverés 
nélküli, mind a mágneses keveréssel (RMF) előállított 
minták esetében 5-6 darab képmátrix készült, egyen-
ként 10 × 20 képből összeállítva. Ezek a felvételek az 
eutektikus mikroszerkezet részletes vizsgálatára is 
alkalmasnak bizonyultak. A mikroszkópos felvételek 
kiértékelése az ImageJ képelemző szoftverrel (ver-
zió: 1.54f) történt. A kiértékelés során kapott adatok 
statisztikai feldolgozásra kerültek. Mindkét minta
típus esetében négy, a szerkezet szempontjából legjel-
lemzőbb paramétert határoztuk meg. Ezek:

�� az eutektikus fázis aránya,
�� a szilíciumlemezek hossza,
�� az átlagos Si-lemeztávolság,
�� a Si-lemezek orientációja.

2.3.2. Eutektikumarány

A mikroszkópos felvételek ebben az esetben alacsony 
felbontásban készültek, így az eutektikus mikro
szerkezet részletes megfigyelésére nem nyílt lehető-
ség. A felvételeken a minta különböző fázisai szürke-
árnyalatos formában jelentek meg, ami lehetővé tette 
a képelemző szoftver számára a fázisok elkülönítését 
a szürkeárnyalat-intenzitás alapján. Ennek segítségé-
vel a primer alumínium fázis és az eutektikus régiók 
megbízhatóan azonosíthatók voltak, és a szoftver se-
gítségével meghatározhatóvá vált az eutektikus fázis 
térfogataránya is.

2.3.3. Eutektikus lemezek hosszeloszlása (ELLD)

Minden mikroszkópos felvételen meghatároztuk 
az összes eutektikus lemez maximális Feret-átmérő-
je. A kiértékelés során kizárólag azokat az eutektikus 
Si-lemezeket vettük figyelembe, amelyek területe 
meghaladta a 0,05 μm² értéket, ezzel minimalizálva 
a  felületi karcolásokból és egyéb minta preparálási 
hibákból származó torzításokat. A képek szélein el
helyezkedő lemezeket az elemzésből kizártuk.

Az adott képmátrixokon mért eutektikus Si-leme-
zek hosszértékeiből a gyakorisági eloszlást határoztuk 
meg. Tekintettel arra, hogy a lemezek mintegy 90%-a 
40 μm-nél kisebb méretű volt, az értékelés ebben a 
tartományban 1 μm-es lépésközökkel történt.

2.3.4. Átlagos lemeztávolság (ALD)

Az Al–Si eutektikum szabálytalan szerkezeti jellege 
miatt a lemezek közötti távolság közvetlen módon 
nem határozható meg egyértelműen. Ennek követ-
keztében az elemzés során az átlagos, származtatott 
lemeztávolságot határoztuk meg.

A vizsgálatok során az alábbi paraméterek voltak 
mérhetők: az eutektikus lemezek hossza és száma, a 
vizsgált kép területe, valamint a Si-lemezek teljes te-
rülethez viszonyított aránya.

Az átlagos lemeztávolság kiszámításához az aláb-
bi összefüggés alkalmazható, amely a lemezhossz-
eloszlási paraméterrel együttesen numerikus úton 
meghatározza az eutektikus szerkezet finomsági mu-
tatóját [32]:

	 λa = 2 [Ap (1 – Af )] / (N P0) ,	 (1)

ahol
P0 – �a vizsgált képen szereplő Si-lemezek átlagos ke-

rülete [μm];
N   – az eutektikus lemezek száma;
Ap – a mikroszkópos felvétel területe (μm2);
Af   – �az eutektikus lemezek terület aránya a szerkezet-

ben.

2.3.5. Eutektikus lemezorientáció (ELO)

A maximális Feret-átmérő meghatározása mellett az 
eutektikus Si-lemezek hőelvonásának az irányával 
bezárt szögét is mértük. Ez lehetővé tette annak vizs-
gálatát, hogy egy adott irányban növekvő lemez át-
lagosan milyen hosszúságra nő. A szögmérés 10°‑os 
intervallumokban történt, ahol a hőelvonással párhu-
zamos lemez 0°-os szöget zár be.

Az ImageJ szoftver (verzió: 1.54f) elkülönítette 
azokat a lemezeket, amelyek 0°–90° közötti szöget 
zártak be a hőelvonás irányával (az olvadék felé nö-
vekvők), illetve azokat, amelyek 90°–180° közötti 
szöget zártak (az ellenkező irányba növekvők). Az 
azonos szögértékű lemezeket összevontuk, függet-
lenül attól, hogy a hőelvonás irányával megegyező 
vagy ellentétes orientációban helyezkedtek el; például 
a 0–10° és 170–180° közötti lemezek egy csoportba 
kerültek.

3. Eredmények

3.1. Mezostruktúra: alumínium-szilárdoldat 
és eutektikus fázisarány

A nem kevert minta mezostruktúrája az 5a–b. ábrán, 
míg a kevert minta mezostruktúrája a 6a–b. ábrán 
látható. Tekintettel arra, hogy a minták hosszanti ten-
gelye mentén közel középpontos szimmetriát mutat-
nak, a képeken kizárólag a minta egyik felét mutat
juk be.
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A mikroszkópos felvételek elemzése alapján a ke-
vert mintában a rövid alumínium dendritek koncent
rációja a minta szélén a legmagasabb. A minta végé-
hez közeledve a dendritek aránya csökken, miközben 
az eutektikus fázis aránya növekszik. Ezzel szemben 
a keverés nélküli mintában a hosszú, elnyúlt Al-dend-
ritek a hőelvonás irányával párhuzamosan kristályo-
sodnak.

Ha az olvadék a kristályosodás során nem áram-
lik, az eutektikum Si- és Al-szilárdoldat fázisa közül 
elsőként az Si kristályosodik   (Si-csíra keletkezik 

először), ez az ún. vezető fázis, majd ezt követi az Al-
szilárdoldat kristályosodása. Az RMF-keverés hatá-
sára az olvadék áramlásának következtében a vezető 
fázis az alumínium-szilárdoldat lesz [33, 34]. Amikor 
az Al-fázis kristályosodik elsőként, a kristályosodás 
során a rácsból kiszoruló szilíciumatomok a keverés 
hatására eltávolodnak az eutektikus kristályosodási 
fronttól. Ennek következtében a helyi Si-koncent-
ráció nem éri el azt a szintet, amely az összetételi 
túlhűlés révén az eutektikus Si-fázis kialakulásához 
szükséges. Ennek eredményeként az alumíniumfázis 

5. ábra. A nem kevert minta hosszanti metszete 50-szeres nagyítással, valamint az egyes helyeken na­
gyobb nagyítású képek a szerkezet változásáról. A minta első fele (a), a minta második fele, 0 mT RMF (b)

6. ábra. A nem kevert minta hosszanti metszete 50-szeres nagyítással, valamint az egyes helyeken nagyobb 
nagyítású képek a szerkezet változásáról. A minta első fele (a), a minta második fele, 10 mT RMF (b)
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primer dendritekként tovább növekszik, miközben 
az eutektikum nem alakul ki, és a Si-koncentráció 
az olvadékban folyamatosan növekszik [31]. A jelen-
ség mértéke az olvadék áramlási sebességétől és a 
Si-koncentrációtól függ, miközben a kristályosítási 
paraméterek állandóak maradnak. A kevert olvadék 
áramlási sebessége a minta tengelye mentén nulla, és 
a hengeres minta széle felé haladva nő. A dendritek 
növekedésének mértékével és sűrűségével azonban 
az olvadékáramlás sebessége csökken. Közvetlenül a 
keverés bekapcsolása után a Si-koncentráció eutekti-
kus, a primer Al-dendritek mind a minta szélén, mind 
a belső régiókban növekednek. A dendritek növeke-
désével az eutektikus frontnál az olvadékáramlás 
lassul, ami a dendritek közötti térben a helyi Si-kon-
centráció növekedéséhez és így az eutektikum kiala-
kulásához vezet. A kristályosodás előrehaladtával az 
olvadék Si-koncentrációja tovább emelkedik, ami a 
primer Al-dendritek képződésének csökkenéséhez 
vezet; ezek főként a minta szélén helyezkednek el, 
ahol az áramlási sebesség nagyobb. A keverés és a 
primer Al-dendritek megszilárdulása következtében 
a kevert minta elején, a középső régióban mintegy 
1 mm-es szakaszon Si-dúsulás jött létre, amely pri-
mer Si-fázis megjelenéséhez vezetett.

3.2. Eutektikumarány

Az eutektikum aránya a 7. ábrán látható. A minták 
mért pontjain az eutektikum mennyisége eltérő. Lát-
ható, hogy a nem kevert mintában az eutektikum 
mennyisége kezdetben magas, majd enyhén csök-
ken, mivel a hosszú Al-dendritek szinte párhuza-
mosan nőttek a hőelvonás irányával. Ezzel szemben 
a kevert mintában az eutektikum aránya kezdetben 
alacsonyabb, majd élesen nő a 3.1. bekezdésben leírt 
Al-dendritek miatt. A keverés hatására a minta végén 
majdnem tisztán eutektikum kristályosodott.

3.3. Eutektikus lemezek hosszeloszlásának analízise

A gyakoriságeloszlás exponenciális függvényt mutat 
(8a. ábra). Ebből az eredményből lineáris függvény 
is nyerhető, ha a gyakorisági adatokat logaritmikusan 
ábrázoljuk. A lineáris függvény meredeksége (ELLD) 
(abszolút értékben megadva) meghatározza, hogy 
milyen hosszúra nőhetnek az eutektikus lemezek, ami 
a szerkezet finomsági indexének egyik összetevője. 
Minél nagyobb az ELLD, annál finomabb és egyen
letesebb a szerkezet (8a, b. ábra).

7. ábra. Az eutektikum aránya a minta hosszának függvé­
nyében

8. ábra. (a) Az eutektikus Si-lemez hosszának gyakorisága, 
(b) ELLD lineáris meredekségértékkel

9. ábra. Eutektikus Si-lemezek hosszparamétere a minta 
hosszának függvényében
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Ahogy a 9. ábra is mutatja, a hosszparaméter mind 
a kevert, mind a nem kevert mintákban jelentősen nő 
~40 mm-ig. A nem kevert mintánál 40 mm és 120 
mm között enyhén növekszik, ezzel szemben a kevert 
mintánál csökken, amit az ELLD paraméter a front
sebesség függvényében mutat. A nem kevert minta 
első adatpontja 31,59, míg a kevert mintáé 40,15, 
mert a frontsebesség 0,01, illetve 0,04 mm/s. Látható, 
hogy ~40 mm-ig a frontsebesség növekedése mind-
két mintánál erősen befolyásolja a hosszparamétert; a 
keverés hatása ebben a tartományban nem észlelhető. 
Ezután a kevert mintánál a hosszparaméter csökkent, 
miközben a frontsebesség enyhén nőtt, ami azt jelenti, 
hogy a keverés megzavarta a koncentrációeloszlást a 
növekvő eutektikus Si-lemezek előtt, így ezek a leme-
zek hosszabbra nőttek.

Összehasonlításképpen a 10. ábra az átlagos eu-
tektikus Si-lemezhosszt a minta hossza függvényé-
ben mutatja. A frontsebesség hatása gyakorlatilag 
megegyezik a hosszparaméter esetével, de nincs jel-
legzetes különbség a nem kevert és a kevert minták 
között. Következésképpen az ELLD paraméter segít-
ségével többet tudhatunk meg a keverés hatásáról. A 
diagramok azt is mutatják, hogy az ELLD nemcsak 
egy átlagértéket ad, hanem teljes mért adatkészletet 
lefed, így használata nem torzítja a méréseink ered-
ményét.

3.4. Átlagos lemeztávolság

A nem kevert minta elején a lemezek közötti távolság 
rendkívül nagy, mert a frontsebesség mindössze 0,02 
mm/s. Ezután a távolság a minta első negyedében 
jelentősen csökken (11. ábra). A kevert mintánál a 
lemezek közötti távolság több mint 20%-kal nagyobb, 
mint a nem kevert mintánál. Ennek az az oka, hogy a 
keverés hozzáadódik a diffúzióhoz az eutektikus 
front előtt, így a frontsebesség enyhén nőtt, és a le-
meztávolság ezáltal csökkent. Ezt a kis frontsebes-
ség-növekedést a hűlési görbékkel nem lehet kimu-
tatni.

Az eutektikus Si-lemezek közötti távolság szinte 
tükrözi az ELLD paramétert (9. ábra) és az átlagos 
Si-lemezhosszt (10. ábra).

10. ábra. Átlagos eutektikus Si-lemezhossz a minta hosszá­
nak függvényében

12. ábra. Az eutektikus lemezek hossza és a lemezek szöge 
közötti kapcsolat (a) 0 mT RMF, (b) 10 mT RMF

11. ábra. Az átlagos lemeztávolság a minta hosszának 
függvényében
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3.5. Eutektikus lemez orientáció

Ha az eutektikus lemezek átlagos hosszát szöginter-
vallumok függvényében ábrázoljuk, a minták külön-
böző helyein kétféle diagramot figyelhetünk meg. 
Megállapítottuk, hogy ha a vizsgált terület nagyobb 
mennyiségű elfajult eutektikumot tartalmaz, a leme-
zek átlagos hossza megnő, és a diagramon egy vagy 
két lokális maximum jelenik meg. Ha az elfajulás 
nem jelentős, a lokális maximumok nem léteznek. 
Minél inkább elfajult az eutektikum, annál magasab-
bak a lokális maximumok.

A mintától függetlenül a 0° és 90° közelében nö-
vekvő lemezek a leghosszabbak, vagyis merőlegesen 
a hőelvonás irányára (12a, b. ábra). A kis mennyiség-
ben elfajult eutektikumot tartalmazó részek a nem ke-
vert mintánál a 27,57 mm, 46,00 mm és 111,00 mm 
távolságban mérhetők a minta aljától. Összehasonlí-
tásképpen az elfajult eutektikum mennyisége nagyobb 
a 11,16 mm és 17,30 mm pontoknál. A kevert mintá-
nál csak a 15,22 mm-nél mért adatok mutatnak nagy 
mennyiségű elfajulást.

4. Következtetések

A fent ismertetett négy jellemző paraméter alkalma-
zásával az eutektikus lemezek számszerűen jellemez-
hetők, ami lehetővé teszi annak meghatározását, hogy 
a kristályosodás során milyen minőségű szerkezettel 
alakul ki az eutektikum. A 10 mT-ás RMF-keverés 
kimutathatóan befolyásolja az eutektikus szerkezet 
kialakulását: a kevert minták elején kisebb eutekti
kumarány figyelhető meg a keverés nélküli állapot-
hoz képest. Ennek következtében az átlagos lemez-
hossz a kevert és a nem kevert mintákban közel azo-
nosnak adódott, ugyanakkor az ELLD-értékek alap-
ján a minták végén eltérés mutatkozik.

A mikroszkópos felvételek szerint a rövid alumí-
niumdendritek a kevert minták két szélén koncentrá-
lódnak, és arányuk a minta vége felé csökken. Ezzel 
szemben a keverés nélküli mintákban a hosszú, meg-
nyúlt Al-dendritek a hőelvonás irányával párhuza-
mosan kristályosodnak, és mennyiségük, valamint 
méretük a minta mentén folyamatos növekedést mu-
tat. Továbbá az eutektikus front sebességének növe-
kedésével az eutektikus lemezek hossza csökken, ami 
együtt jár az átlagos lemeztávolság mérséklődésével. 
Bár az átlagos lemeztávolságot leíró görbék végig ha-
sonló lefutást mutatnak, a keverés hatására mintegy 
10%-os méretkülönbség figyelhető meg. Emellett 
összefüggés állapítható meg az eutektikum elfajulása 
és az adott orientációban növekvő eutektikus lemezek 
hossza között. A keverés a görbék alakját is módosí-
totta.
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