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J. W. Gibbs 1875–1878 között megjelent főművének nem ismert a magyar fordítása. Ezt persze 
nem csodálom, mert e 300 oldalas cikk szabatos fordítására én sem mernék vállalkozni, még ak-
kor se, ha esetleg lenne rá időm. Egyszerűen azért nem, mert még ma sem értek belőle mindent, 
az pedig félrefordításhoz vezetne. Mivel azonban ez ma is a kohászat, az anyagtudomány, a fizikai 
kémia és általában a természettudományok egyik alapműve (amelyre többen hivatkoznak, mint 
ahányan olvassák is), ezért fontosnak tartom, hogy legalább kivonatosan közreadjam a magyar 
„fordítását” koncentrálva azokra a részletekre, amelyeket egyrészt érteni vélek, másrészt vélemé-
nyem szerint ma is fontos és helytálló felismerések.
Kulcsszavak: Gibbs alapműve, kivonatok
The Hungarian translation of J. W. Gibbs' main work, published between 1875–1878, is unknown. 
Of course, I am not surprised by this, because I would not dare to undertake a precise translation 
of this 300-page article, even if I had the time. Simply because I do not understand everything in it 
even today, and that would lead to mistranslation. However, since this is still one of the basic works 
of metallurgy, materials science, physical chemistry and the natural sciences in general (which is 
referred to by more people than read), I consider it important to publish at least an excerpt of the 
Hungarian "translation", focusing on those details that I believe I understand, on the one hand, 
and on the other hand, which in my opinion are still important and relevant insights today.
Keywords: Gibbs' seminal work, extracts

Bevezetés

Legjobb tudomásom szerint Gibbs főműve [1] soha 
nem jelent meg magyar fordításban. Mivel e folyó-
iratban éppen egy cikksorozatot írok a témában, úgy 
gondolom, hogy ideje tényszerűen – ha csak kivona-
tosan is – összefoglalni, hogy mit is írt 1875–1878 
között Gibbs. Ehhez az 1928-ban kiadott „Gibbs ös�-
szes” I. kötetét használom fel [2], amelyben a mű a III. 
sorszám alatt, az 55–353. oldalak között jelent meg, 
298 oldalon. Ugyanebben a kötetben a IV. sorszámú, 
1878-ban megjelent cikkben Gibbs röviden össze-
foglalja a témát [3], amely a kötet 354–371. oldalai 
között található 16 oldalon, az eredeti mű 5,4%-ában. 
Vonzó lehetőség lenne nem a teljes mű kivonatát, ha-
nem csak annak összefoglalóját közreadni magyarul. 
Azért nem ezt az utat választom, mert a [3] összefog-

laló cikkben Gibbs több olyan részletet elhagy, amely 
szerintem fontos az [1, 2] főműben. Ez utóbbit pedig 
két elv szerint kivonatolom ebben a cikkben: csak ar-
ról írok, amit érteni vélek, és ami ma is fontos.

Ezt a kivonatot a mai jelölésekkel és a mai szóhasz-
nálattal írom azért, hogy könnyebb legyen megérteni. 
A cikk végén azonban megadok egy jelölésjegyzéket 
(1. táblázat) és egy szószedetet (2. táblázat), amelyek 
kapcsolatot teremtenek a Gibbs által használt jelek és 
szóhasználat, illetve azok modern változatai között, 
az utóbbit angol és magyar nyelveken is. Ezzel az a 
célom, hogy ha valaki a kezébe veszi Gibbs eredeti 
művét, könnyebben igazodjon el benne, mint anno én. 
Gibbs sajnos egyáltalán nem használt mértékegysége-
ket (mint általában a természettudósok), de az 1. táb-
lázatban én megadom a mai SI mértékegységeket is.
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Ebben a kivonatban megadom azt az oldalszámot, 
ahol az adott állítás [2] hivatkozásban található, és azt 
az egyenletsorszámot, amely ott szerepel. Gibbs azon-
ban a számozott 700 egyenleten túl további számozat-
lan egyenleteket is felírt. Ezek közül a fontosakat pl. a 
(123+) jellel jelölöm, ha az egyenlet Gibbs (123) sor-
számmal jelölt egyenletét követő első, szerintem fon-
tos egyenlet. Ebben a cikkben nagy lyukak lesznek az 
egyenletek sorszámai között, mivel az összes egyenlet 
megadására egyrészt nincs elég hely, másrészt ennek 
nem is látom értelmét. Lesz (123K) sorszámtípusú 
egyenlet is, amelyet Gibbs ugyan nem írt fel, de nyil-
vánvalóan következik az általa írtakból, és én felsorol-
tam ezt is a (123) egyenlet után.

Ebben a kivonatban használok fejezetcímeket, de 
azok nem egyeznek meg Gibbs fejezetcímeivel. Az 
itt megadott fejezetcímek a tisztelt Olvasót segítik a 
Gibbs által alkotott új tudás értelmezésében és rend-
szerezésében, és nem a szó szerinti történelmi hűsé-
get szolgálják. Vannak dupla sorszámú egyenletek is, 
ezeket Gibbs duplán írta fel és duplán is számozta. 
Innen is látszik, hogy Gibbs nem pedagógiai céllal 
írta főművét, ezért nem nagyon foglalkozott azzal, 
hogy a logikailag összetartozó egyenletek egymás 
közelébe kerüljenek; Gibbs minden egyenletet akkor 
írt fel, amikor az eszébe jutott. Én az érthetőség ked-
véért az összetartozó egyenleteket egymás közelébe 
szerkesztem, de egyebekben próbálok Gibbs eredeti 
művében oldalról oldalra és egyenletről egyenletre 
haladni.

Érdemes egy bekezdésben összefoglalni, hogy 
mi Gibbs főművének célja, lényege és tárgya. Gibbs 
célja a kémiai termodinamika megalkotása volt. Az 
ő idejében már létezett a mechanikai termodinami-
ka és ettől teljesen függetlenül létezett a kémia is, de 
Gibbs volt az, aki a mechanikai termodinamika alap-
elveit kiterjesztette a kémiára. A Gibbs által tárgyalt 
fejezetek ma a fizikai kémia, a fázisegyensúlyok, az 
elektrokémia, a kolloidkémia és a kémiai reakciók 
egyensúlya fejezetek első tudományos tárgyalásának 
tekinthetőek. Ugyanezek a fejezetek teszik ezt a tudást 
értékessé a kohászatban és az anyagtudományban is.

1. Clausius öröksége és az egyensúly két általános 
feltétele (55–56., 63. oldal)

Clausius volt az, aki 1850–1865 között teljessé tette 
a mechanikai termodinamikát azzal, hogy bevezette 
az entrópia fogalmát. Ez volt az a pont, amely felkel-
tette Gibbs érdeklődését, mivel úgy érezte, hogy ez 
már egy kellőképpen teljes tudás ahhoz, hogy érdemes 
legyen azt a kémiai (anyagi) átalakulásokkal kapcso-
latos folyamatokra is kiterjeszteni, amit ő meg is tett. 
Nem véletlen ezért, hogy Gibbs angol nyelvű főmű-
vének mottóját szó szerint Clausiustól vette át német 
nyelven, amelyet én itt most magyarul adok közre: 

„A világ belső energiája konstans, de a világ entrópiá-
ja maximumra törekszik”.

Gibbs főműve elején tett egy anyagtudományi 
szempontból fontos felvezető kijelentést: minden 
anyagi rendszer egyben termodinamikai rendszer is, 
amelynek az egyensúlyát belső energiájának és ent-
rópiájának változása határozza meg, utóbbit az ∫ d Q/T 
kifejezéssel definiálta Clausius után, ahol Q (J) a hő, 
T (K) az abszolút hőmérséklet. Majd kifejtette, hogy 
a külső hatásoktól mentes anyagi rendszerek egyensú-
lyának feltételei:
a)	 egy izolált anyagi rendszer egyensúlyának az a 

szükséges és elégséges feltétele, hogy a rendszer 
állapotaiban bekövetkező bármilyen olyan válto-
zást, ami nem jár a belső energia megváltozásával, 
vagy nulla, vagy negatív entrópiaváltozás kísérje: 

	 (δS)U ≤ 0,	 (1)

ahol S az entrópia (J/K), U a belső energia (J). 
Ha az utóbbit a végtelen kis entrópiaváltozás (δS) 
alsó indexében használjuk, az azt jelenti, hogy ez 
az entrópiaváltozás konstans belső energiaérték 
mellett valósul meg. Manapság az (1) egyenlet 
fordítottját szoktuk a termodinamika II. főtörvé-
nyének nevezni: minden, konstans belső energia 
mellett lejátszódó természetes folyamatot entró-
pianövekedés kíséri. Pont azért van a rendszer 
egyensúlyban, mert (1) szerint nincs olyan belső 
folyamat, amit pozitív entrópiaváltozás kísérne.

b)	 egy izolált anyagi rendszer egyensúlyának az a 
szükséges és elégséges feltétele, hogy a rendszer ál-
lapotaiban bekövetkező bármilyen olyan változást, 
ami nem jár az entrópia megváltozásával, vagy nul-
la, vagy pozitív belső energia változás kísérje:

	 (δU)S ≥ 0 .	 (2)
Ma a (2) egyenletnek is a fordítottját szoktuk hasz-
nálni: konstans entrópia mellett lejátszódó minden 
természetes folyamatot a belső energia csökkené-
se kíséri. Pont azért van a rendszer egyensúlyban, 
mert (2) szerint nincs olyan belső folyamat, ame-
lyet negatív belső energiaváltozás kísérne.

Gibbs ezt követően azt is bemutatta, hogy az (1) és 
(2) egyenlet ekvivalens, és a továbbiakban főleg a (2) 
egyenletet használta. Kimutatta azt is, hogy az (1) és 
(2) egyenletben elegendő az egyenlőségjel használata. 
Azt is megfogalmazta, hogy egy homogén, egyfázisú 
rendszeren belül, amelynek minden pontjában azonos 
az összetétel és a szerkezet, továbbá ahol ráadásul a 
komponensek minősége és mennyisége is konstans, a 
belső energia, az entrópia és a térfogat változásait a 
következő egyenlőség köti össze:
	 d U = T ∙ d S – p ∙dV,	 (11)
ahol p (Pa) a nyomás és V (m3) a térfogat. A (11) 
egyenletben T ∙ d S (J) a rendszer által kapott hő (lásd 
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Clausius definícióját: d Q ≡ T ∙ d S), míg a p ∙ dV (J) 
kifejezés a rendszer által végzett térfogati munka. 
Mindkettő a rendszer állapotváltozása során lép fel 
(ha egy rendszeren belül nincs állapotváltozás, akkor 
d U = d S = dV = 0).

2. A mechanikai rendszer kiterjesztése kémiai 
rendszerré (63–64. oldal)

Ebben a fejezetben Gibbs előrelátóan leszögezte, 
hogy az itt vizsgált anyagi rendszer mentes a gravi-
táció, az elektromosság, a mechanikai feszültség és 
a határfelületek hatásától. Ezeket a hatásokat később 
külön fejezetekben vizsgálta. A fent felírt (11) egyen-
let még azonosan vonatkozhatott mechanikai vagy 
anyagi rendszerekre. Kémiai termodinamika ebből 
attól lett, hogy Gibbs felismerte: az állapotváltozások 
során a különböző i komponensek tömegei (mi, kg) 
is megváltozhatnak, és ezért a (11) egyenletet egy új 
taggal egészítette ki:

	 d U = T ∙ d S – p ∙ dV + ∑i  μi∙ d mi ,	 (12 = 86)

ahol μi (J/kg-komponens) az i komponens parciális 
fajlagos kémiai potenciálja a rendszerben, amelyet 
Gibbs csak „potenciálnak” nevezett. Itt fontos, hogy 
minden komponens tömegváltozásának (d mi) függet-
lennek kell lennie a többi komponens tömegváltozá-
sától, illetve fontos az is, hogy a komponens tömegek 
kismértékű változása nem vezethet a nagyméretű fázi-
sok összetételének vagy szerkezetének változásához. 
A (12) egyenlet harmadik tagja az, amelytől a termo-
dinamika kémiaivá vált, és Gibbs főművének ez az 
első nagy találmánya. Ma a (12) egyenletet nevezzük 
Gibbs egyik alapvető (fundamentális) egyenletének.

3. A (12) egyenlet változatai

A (12) egyenlet a belső energia differenciál alakja. 
Ha a (12) egyenletet integráljuk – feltételezve, hogy 
a rendszer állapota változatlan –, akkor a belső ener-
gia integrális alakjához jutunk (lásd a 77. oldalon és 
később is):

	 U = T ∙S – p ∙V + ∑i  μi∙ mi .	 (55 = 93)

A (12) egyenlet egyszerre vonatkozik az egyfázisú 
rendszerre és arra a bizonyos egyetlen fázisra is, de ezt 
Gibbs csak később ismerte fel:

	 dUΦ = T ∙ d SΦ – p ∙dVΦ + ∑i  μi (Φ)∙ d mi (Φ) ,	(58)

ahol UΦ (J) a Φ fázis integrális belső energiája, SΦ 
(J/K) a Φ fázis integrális entrópiája, VΦ (m3) a Φ fázis 
integrális térfogata,  μi (Φ) (J/kg-komponens-a-fázis-
ban) a Φ fázisban oldott i komponens fajlagos kémiai 
potenciálja és mi (Φ) (kg-komponens-a-fázisban) a Φ 
fázisban oldott i komponens tömege. Gibbs az (58) 
egyenletet ugyan felírta, de annak integrális alakját 

nem. Ez azonban analóg a (12)–(55) egyenletpárossal, 
ezért felírom én:

	 UΦ = T ∙ SΦ – p ∙VΦ + ∑i μi (Φ)∙ mi (Φ) . 	 (58K)

Később Gibbs kapcsolatot teremtett a rendszerre 
és annak fázisaira vonatkozó mennyiségek között:

	 S = ∑Φ SΦ ,  V = ∑Φ VΦ ,  mi = ∑Φ mi (Φ) .	(134)

Engedtessék meg nekem, hogy kiterjesszem a 
(134) egyenletet a belső energiára is: 

	 U = ∑Φ UΦ .	 (134K)

4. A heterogén rendszerek egyensúlyának feltételei 
(64–65. oldal)

Gibbs ezt követően az egyfázisú homogén rendsze-
rekről áttért a többfázisú, heterogén rendszerek vizs-
gálatára. Ha a rendszerben több fázis van, azokat az 
általános Φ jel helyett én különböző görög betűkkel 
különböztetem meg egymástól (α, β, γ stb.  ), de Gibbs 
erre a felső indexben egy vagy több vesszőt használt. 
Egy többfázisú rendszerben a fázisok belső energiái 
összeadódnak, ezért ezek egyensúlyának általános fel-
tétele a (2), (58) egyenletekből:

	 ∑Φ  δUΦ ≥ 0.	 (14)

A (14) egyenlet a (2) egyenlet értelmében csak 
akkor érvényes, ha az (58) egyenletben szereplő azo-
nos típusú változások fázisonként kreált összegei ki-
egyenlítődnek:

	 ∑Φ  δSΦ = 0,	 (16)

	 ∑Φ  δVΦ = 0,	 (17)

	 ∑Φ  δmi (Φ) = 0,	 (18)

ahol a (18) egyenletből komponensenként kell felír-
ni egyet-egyet. Gibbs szerint egy heterogén rendszer 
termikus, mechanikai és kémiai egyensúlyának felté-
telei:

	 T = Tα = Tβ = Tγ = stb. ,	 (19)

	 p = pα = pβ = pγ = stb. ,	 (20)

	 μi  = μi (α) = μi (β) = μi (γ) = stb. ,	 (21)

ahol mindhárom egyenlet első tagja a teljes rendszerre 
vonatkozik (ezeket csak én tettem hozzá az egyenle-
tekhez), míg a többi tag az egyes fázisokra vonatko-
zik. Például Tα (K) az α fázison belüli hőmérséklet, 
pα (Pa) az α fázison belüli nyomás, μi (α) (J/kg) az α 
fázisban oldott i komponens fajlagos kémiai poten
ciálja és a (21) egyenlőségeknek minden i kompo-
nensre külön-külön teljesülniük kell. A (19) egyenlő-
ségek a rendszer termikus egyensúlyát garantálják, a 
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(20) egyenlőségek a rendszer mechanikai egyensúlyát 
garantálják, míg a (21) egyenlőségek a rendszer kémi-
ai egyensúlyát garantálják. Tehát a (19)–(21) egyen-
lőségek jelentése: egy rendszer akkor van termikus, 
mechanikai és kémiai egyensúlyban, ha a rendszer 
minden fázisában és annak minden pontjában azo-
nos a hőmérséklet, a nyomás és a kémiai potenciál, 
az utóbbinak igaznak kell lennie minden komponens-
re külön-külön is. Innen az is következik, hogy min-
den komponens jellemezhető a saját, teljes rendszer-
re vonatkozó μi fajlagos kémiai potenciáljával (lásd 
(12) egyenlet), amely persze egyensúlyban a (21) 
egyenletben jelzett összes többi értékkel is egyenlő 
(pl. μi = μi(α) ). A (19)–(21) egyenletek mint a hetero-
gén rendszerek egyensúlyának feltételei, Gibbs máig 
érvényes alapvető eredménye.

A (16)–(21) egyenletek összesen NP (NC + 2) füg-
getlen egyenletet tartalmaznak, ahol NC a komponen-
sek száma, NP pedig a fázisok száma. Ez egyrészt azért 
van, mert a (19)–(21) egyenletekben minden egyes 
egyenlethalmazban eggyel kevesebb matematikailag 
független egyenlet van, mint ahány fázis. Ha ugyanis 
fázispáronként nézzük az egyes egyenleteket, akkor 
pl. a (19) egyenlet három fázisára csak két független 
egyenlet jut (a Tα = Tβ és a Tα = Tγ egyenletek), mivel 
a harmadik lehetséges egyenlet a Tβ = Tγ, ami viszont 
az előző kettő matematikai következménye. Másrészt 
ez azért van, mert minden komponens kémiai poten-
ciáljára érvényesnek kell lennie a (21) típusú egyen-
lőségeknek, és a hasonló (19), (20) egyenlőségeknek 
ezen túl még +2 mennyiségre is érvényesnek kell 
lennie (a hőmérsékletre és a nyomásra). Harmadrészt 
azért van így, mert a (16), (17) egyenletek 2 újabb 
egyenletet adnak, míg a (18) egyenletek még további 
NC egyenletet adnak. Ugyanakkor a (19)–(21) egyen-
letekben használt, egymástól független ismeretlenek 
száma is NP (NC + 2), mivel minden fázisnak van is-
meretlen hőmérséklete, nyomása és bennük minden 
komponensnek van ismeretlen kémiai potenciálja. 
Persze az ebben a bekezdésben elkövetett magyarázó 
mondatokat csak én írom, mivel Gibbs nem volt egy 
szájbarágós fajta, ő inkább kinyilatkoztatott. Minden-
esetre innen az következik, hogy az ismeretlenek és 
az egyenletek számai megegyeznek egymással, tehát 
ennyi egyenletből valóban meghatározható ennyi is-
meretlen, azaz Gibbs saját maga elé állított feladata 
megoldható.

Más kérdés, hogy Gibbs a hőmérsékletet, a nyo-
mást és a fajlagos kémiai potenciálok értékeit tekin-
tette ismeretleneknek, de nem világos, hogy mire 
jó, ha ismerjük a komponensek egyensúlyi fajlagos 
kémiai potenciáljait. A kohómérnökök számára lé-
nyeges ismeretlenek szerintem a fázisok egyensú-
lyi móltörtjei és egyensúlyi moláris fázisarányai, 
míg az ezek kiszámításra alkalmas egyenletek az 

egyes komponensekre felírt (21) típusú egyenletek 
és a Gibbs által fel nem írt anyagmérleg-egyenletek, 
ahonnan persze ha kell, ki tudnánk számolni a ké
miai potenciálokat is (lásd [4]). A jó hír az, hogy eb-
ből nekem is az jött ki, hogy az ismeretlenek száma 
megegyeik az egyenletek számával [4] (1. számú 
„véletlen” egybeesés).

5. A kémiai reakciók egyensúlyának alapegyenlete 
(67–69. oldal)

Tegyük fel, hogy egy rendszerben az a∙A + b∙B = 
c∙C + d∙D kémiai reakció játszódik le az A-B-C-D 
komponensek között, ahol a-b-c-d (kg) a kémiai re-
akcióba lépő vagy az abból keletkező komponensek 
tömegeit jelentik, és persze a tömegmegmaradás tör-
vénye szerint (a + b = c + d). Ekkor Gibbs szerint a 
kémiai egyensúly feltétele:

	 a ∙μA + b ∙μB = c ∙μC + d ∙μD ,	 (33 = 312)

ahol mindegyik fajlagos kémiai potenciál J/kg-kom
ponens mértékegységű. A (33) egyenlet a kémiai re-
akciók egyensúlyának alapegyenlete. Megjegyzem, 
hogy Gibbs már ismerte Cannizaro relatív atomtö-
megeit és a víz sztöchiometriáját is, mert a víz = hid-
rogén + oxigén reakciót a következőképpen írta fel a 
94. oldalon: 9 ∙H2O = 1∙ H + 8 ∙ O, ahol a számok a 
fentiek szerint tömegeket jelentenek és egy értékes 
jegy pontossággal megegyeznek a ma ismert tömeg-
arányokkal. Mi ma ugyanezt mólokkal szoktuk felírni, 
mivel ismerjük a hidrogén 1 g/mol és az oxigén 16 g/
mol moláris atomtömegeit. Mivel preferáljuk az egész 
számokat és a stabil molekulákat, ehelyett ma inkább 
ezt írjuk: 2∙H2O = 2∙H2 + O2, de ez ekvivalens Gibbs 
tömegekben megadott fenti reakcióegyenletével. Ezt 
a bekezdést csak egy példának szántam annak illuszt-
rálására, hogy hogyan kell érteni Gibbs a-b-c-d (kg) 
tömegeit.

6. A féligáteresztő hártyák hatása (83. oldal)

Ha két, azonos komponenseket tartalmazó, de kü-
lönböző összetételű fázist féligáteresztő hártyával 
választunk el egymástól úgy, hogy az mindkét irány-
ban átengedi az A komponenst, de egyik irányba se 
engedi át a B komponenst, akkor a heterogén egyen-
súly (19)–(21) feltételei közül érvényes marad a (19) 
egyenlet és a (21) egyenlet az A komponensre, de 
nem lesz érvényes a (20) egyenlet és a (21) egyenlet 
a B komponensre. A hártyának nyilván azon az ol-
dalán lesz nagyobb a nyomás is és a B komponens 
kémiai potenciálja is, ahol nagyobb a kiindulási B 
koncentráció, ami a hártyán nem tud átjutni, emiatt a 
hártya körüli két fázis a B komponens szempontjából 
nem tud egyensúlyi állapotba kerülni.
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7. A standard állapot előérzete (85. oldal)

Gibbs helyesen mutatott rá arra, hogy a belső ener
giának csak a különbségei mérhetőek és az entró
piának a hőváltozásokból szintén csak a különbségei 
származtathatóak. Következésképpen mind az ener-
gia, mind az entrópia abszolút értékei tetszőlegesek. 
Ezért minden egyszerű anyagnak ki kell választanunk 
azt az állapotát, amelyben az anyagnak mind a belső 
energiája, mind az entrópiája zérus. Ezt követően, eh-
hez az alaphoz mérve ugyanezen anyag minden egyéb 
állapotát jellemző belsőenergia- és entrópiaérték meg-
határozható. Gibbs ezzel lényegében azt látta előre, 
hogy a praktikus számításokat megelőzően szükség 
lesz egy olyan „standard” állapot definiálására (Gibbs 
a „standard” kifejezést nem használta), amely mellett 
a belső energia és az entrópia értékei a nulla alapérté-
ken lesznek. Gibbs ezt az igényt ugyan előre látta, de 
nem definiálta ezt az állapotot.

A kémiai termodinamika későbbi fejlődése a rész-
letekben korrigálta Gibbs elképzeléseit. Ma ugyanis 
nullának tekintjük az elemek tökéletes kristályainak 
entrópiáját 0 K hőmérsékleten Nernst 3. főtörvénye 
alapján, és általában nullának tekintjük az elemek 
stabil fázisainak entalpiáját standard állapotban, azaz 
298,15 K hőmérsékleten és 1 bar nyomáson.

8. A fajlagos mennyiségek használata (86. oldal)

Ugyan Gibbs szinte minden egyenlete abszolút belső 
energiáról szól, de van egy bekezdés a 86. oldalon, 
ahol kifejti, hogy mennyivel racionálisabb lenne faj
lagos mennyiségeket használni, amikor a belső ener-
gia osztva van a tömeggel (vagy a térfogattal). Gibbs 
ezt az ötletet ugyan leírta, de lényegében nem hasz-
nálta semmire. De pontosan ezért van az, hogy a mo-
dern egyenletek többsége moláris mennyiségeket tar-
talmaz, amikor a belső energia az anyagmennyiséggel 
van osztva, amely arányos a tömeggel.

9. Egyéb állapotfüggvények és fundamentális 
egyenletek (87. oldal)

Gibbs az (55) egyenlettel meghatározott belső ener
gián túl a további állapotfüggvényeket definiálta:

  A ≡ U – T∙S = –p ∙V + ∑i  μi∙ mi = G – p ∙V ,	 (87 = 94)

  H ≡ U + p ∙V = T∙S + ∑i  μi∙ mi = G + T∙S ,	 (89 = 95)

  G ≡ U + p ∙V – T∙S = H – T∙S = ∑i  μi∙ mi ,	 (91 = 96)
ahol mai megnevezéssel A (J) a Helmholtz-energia, H 
(J) az entalpia, G (J) a Gibbs-energia. A (91) egyenlet 
jelentése: a rendszer teljes Gibbs-energiája (J) egyen-
lő a komponensek fajlagos kémiai potenciáljai (J/kg) 
tömegekkel (kg) szorzott összegével ugyanúgy, ahogy 

általában minden egész (azaz a rendszer) mindig a ré-
szeinek (azaz a komponenseinek) összegéből áll. Most 
vessünk egy pillantást a varázsfüggöny mögé: vajon 
miért éppen a fenti három új mennyiséget definiálta 
Gibbs? Azért, mert az (55) egyenlet szerint a bal olda-
lon a belső energia van (U), míg a fenti három definí-
cióban az (55) egyenlet jobb oldalának első két tagját 
vitte át a bal oldalra: a (87) egyenletben az első tagot 
(T·S), a (89) egyenletben a második tagot (–p ·V), míg 
a (91) egyenletben mindkét tagot (T·S – p ·V).

Most vegyük a (87), (89), (91) egyenletek első 
feleinek teljes differenciáljait, és helyettesítsük be az 
így adódó d U helyére a (12) egyenletet. Az így ki-
alakított egyenletek egyszerűsítései után megkapjuk a 
(12) fundamentális egyenletet kiegészítő másik három 
fundamentális egyenletet (ez a négy fundamentális 
egyenlet ekvivalens egymással):

	 d A = –S ∙ d T – p ∙dV + ∑ i  μi∙ d mi ,	 (88)

	 d H = T ∙ d S + V ∙d p + ∑ i  μi∙ d mi ,	 (90)

	 d G = V ∙d p – S ∙ dT + ∑ i  μi∙ d mi .	 (92)

Gibbs ezeket az egyenleteket ugyan nem írta fel, 
de érdemes legalább a (91), (92) egyenleteket a fá-
zisokra is felírni, kiegészítve ezekkel az (58), (58K) 
egyenleteket:

GΦ ≡ UΦ + p ∙VΦ – T∙SΦ = HΦ – T∙SΦ

	 = ∑ i μi(Φ) ∙ mi(Φ),	
(91K)

	 dGΦ = VΦ ∙d p – SΦ∙dT + ∑ i μi(Φ) ∙ mi(Φ) .	 (92K)

Engedtessék meg nekem, hogy kiterjesszem a 
(134K) egyenletet is:

	 G = ∑ΦGΦ .	 (134KK)

Ezen túl szerintem érdemes a fenti (1), (2) feltéte-
leket kiegészíteni (sőt, lecserélni) egy olyannal, ame-
lyet a (91), (92) egyenletekkel definiált Gibbs-ener-
gián keresztül fogalmazok meg: „egy izolált anyagi 
rendszer egyensúlyának az a szükséges és elégséges 
feltétele, hogy a rendszer állapotaiban bekövetkező 
bármilyen olyan változást, ami nem jár a hőmérséklet, 
a nyomás és az egyes komponenstömegek megvál
tozásával, vagy nulla, vagy pozitív Gibbs energia vál-
tozás kísérje”, azaz:

	 (δG)p, T, mi ≥ 0 .	 (2K)

Számomra a (2K) egyenlet a kémiai termodina-
mika igazi főtörvénye, amelyet persze rajtam kívül 
senki nem tekint annak. Lényege az, hogy konstans 
hőmérsékleten, nyomáson és komponenstömegek 
mellett egy rendszer akkor van egyensúlyban, ha 
Gibbs-energiája minimális. Pont azért van a rend-
szer egyensúlyban, mert a (2K) egyenlet szerint nincs 
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olyan belső folyamat, amelyet negatív Gibbs-energia-
változás kísérne.

10. A Gibbs–Duhem-egyenlet (88. oldal)

Ha vesszük az (55) egyenlet teljes differenciálját, 
akkor annak bal oldala azonos lesz a (12) egyenlet 
bal oldalával, ezért ezen egyenletek jobb oldalai is 
azonosak kell, hogy legyenek. Innen jutunk el a ma 
Gibbs-Duhem egyenletnek nevezett egyenlethez, amit 
ezek szerint szintén Gibbs írt fel először:

	 S ∙ dT – V ∙ d p + ∑ i mi ∙ d μi = 0 .	 (97)

Gibbs általában (sajnos) nem tett különbséget a 
fázisok integrális mennyiségei és a rendszerre vonat-
kozó mennyiségek között, ezért a teljes rendszerre 
vonatkozó (97) egyenletet írta fel az egyes fázisokra 
érvényes egyenletek helyett (pedig csak az utóbbiakat 
kellett volna felírnia). Később azonban a 97. oldalon 
pótolta ezt a hiányt is:

	 SΦ∙d T – VΦ∙d p + ∑ i mi (Φ)∙ d μi(Φ) = 0 .	 (124)

Érdemes megjegyezni, hogy egy NP fázist tartal
mazó rendszerben NP számú, (124) típusú egyenlet 
érvényes (ez a 13. fejezetben lesz fontos). Azt a fen-
ti eljárást, amiből a (97) egyenlet adódott, nemcsak 
a belső energiával, hanem a (87)–(92), (94)–(96) 
egyenletek felhasználásával az entalpiával, a Helm-
holtz-energiával és a Gibbs-energiával is végig lehet 
vinni, de érdekes módon minden alkalommal a (97) 
egyenlethez jutunk, amely tehát egy általános érvényű 
egyenlet.

A (124) egyenlet azt fejezi ki, hogy egy fázisban 
a különböző komponensek kémiai potenciáljainak 
változásai között kapcsolat van. Ha például egy két-
komponensű fázisban lemérjük az egyik komponens 
kémiai potenciáljának koncentrációfüggését konstans 
hőmérsékleten és nyomáson, akkor a (124) egyenlet-
tel kiszámítható a másik komponens kémiai poten
ciáljának koncentrációfüggése ugyanazon a konstans 
hőmérsékleten és nyomáson. Ez ma hasznos módszer 
még akkor is, ha Gibbs ezt még nem használta sem-
mire.

11. A kémiai potenciálok lehetséges definíciói 
(89–93. oldal)

A (12), (88), (90) és (92) egyenletekből négyfélekép-
pen is definiálható a kémiai potenciál:
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A kémiai potenciál (104) egyenletekkel megadott 
matematikai definícióihoz Gibbs szöveges definíciót 

is fűzött (lásd 93. oldal), pl. az első definícióhoz: „ha 
egy véges méretű homogén fázishoz egy i komponens 
végtelen kis tömegét adagoljuk úgy, hogy a fázis ho-
mogén és az eredetivel azonos állapotú marad, illetve 
ha eközben a fázisnak se az entrópiája, se a térfogata 
nem változik meg, akkor az adagolt komponens fajla-
gos kémiai potenciálja a belsőenergia-változás és az 
adagolt komponenstömeg-változás hányadosa lesz”. 
Hasonló definíció írható a (104) egyenlet többi ma-
tematikai definíciójához is, pl. az utolsóhoz: „ha egy 
véges méretű homogén fázishoz egy i komponens 
végtelen kis tömegét adagoljuk úgy, hogy a fázis ho-
mogén és az eredetivel azonos állapotú marad, illetve, 
ha eközben se a nyomás, se a hőmérséklet nem válto-
zik meg, akkor az adagolt komponens fajlagos kémiai 
potenciálja a Gibbs-energia-változás és az adagolt 
komponenstömeg-változás hányadosa lesz. Itt meg-
jegyzem, hogy az első definíció nem túl hiteles, mert 
ha változik a fázis belső energiája a komponens ada-
golása miatt, akkor hogyan maradhat konstans értékű 
az entrópiája és a térfogata. Ehhez képest a második 
definíció már sokkal hihetőbb, hiszen ha egy fázisba 
komponenst adagolunk, akkor miért ne tarthatnánk 
ettől függetlenül a fázis hőmérsékletét és a felette 
lévő gáznyomást is konstans értékeken. Ez az egyik 
oka, hogy én az anyagegyensúlyi számításokban a 
Gibbs-energiát és nem a belső energiát használom.

Ezek a szöveges definíciók persze megint lebuk-
tatják Gibbst, hiszen ezek szerint a (104) egyenleteket 
nem a rendszerre, hanem az egyes fázisokra kellett 
volna felírnia:
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(104K)

A (104), (104K) egyenletben megadott négy defi-
níció közül matematikailag mindegyik ekvivalens 
egymással, így elvileg mindegyik használható mér-
nöki számításokra is. Elvileg ez ugyan tényleg így 
van, de a gyakorlati használhatóság szempontjából a 
belső energia, a Helmholtz-energia, az entalpia és a 
Gibbs-energia erősen különböznek egymástól. A (12), 
(90) egyenletek szerint pl. a belső energia vagy az 
entalpia kontrollálásához az entrópiát is kontrollálni 
kellene, de az entrópiát nemhogy kontrollálni, még 
függetlenül mérni se tudjuk, ezért a belső energia és 
az entalpia hiába állapotfüggvények, segítségükkel az 
anyagegyensúlyok számítása rémálom lenne.

Sokkal jobb a helyzet a Helmholtz-energia és 
a Gibbs-energia mennyiségekkel, mert a (88), (92) 
egyenletek szerint ezek kontrollálásához a hőmér-
sékletet és ezen túl vagy a térfogatot vagy a nyomást 
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kell kontrollálni. A hőmérséklet ugyebár könnyen 
kontrollálható hűtő- és fűtőgépekkel, így mind az A, 
mind a G függvények praktikusnak tűnnek. A Helm-
holtz-energiát főleg a kémikusok használják, akik ál
talában folyékony és gőzfázisokkal dolgoznak, és ezek 
összes térfogata könnyen beállítható az edény belső 
térfogatán keresztül, de a gáznyomás kontrollálása eb-
ben a zárt térben már problémás (pont ezért helyeznek 
el biztonsági szelepeket a zárt kémiai tartályok tete-
jén, hogy ha a belső gáznyomás kontrollálatlanul nőni 
kezd egy váratlan folyamat beindulása miatt, akkor a 
felesleges gáz szabadon eltávozhasson, és ne okoz-
zon robbanást). Ezzel szemben az anyagtudomány-
ban és a  kohászatban praktikusabb a Gibbs-energia 
használata, hiszen mi általában szilárd és folyékony 
anyagokkal dolgozunk; a szilárd és folyékony fázisok 
feletti gáznyomás ugyan könnyen kontrollálható, de 
e fázisok térfogatainak szinte lehetetlen az adott érté-
ken tartása (lásd a spontán hőtágulás jelenségét).

Így végeredményben a kohászatban és az anyag
tudományban eljutottunk a praktikusan használható 
Gibbs-energiáig, ami helyett nem kell feltétlenül azt 
a belső energiát használnunk, amelyet a mechani-
kai termodinamikától örököltünk. Azt csak sajnálni 
tudom, hogy Gibbs a közel 300 oldalas főművében 
végig a belső energiát tekintette alapmennyiségnek, 
míg a Gibbs-energia szinte csak lábjegyzetnek szá-
mított nála. Ennek ellenére igaz, hogy a (91), (92), 
(96) egyenletekkel definiált Gibbs-energiát is Gibbs
nek köszönhetjük, aki persze nem így hívta ezt a 
mennyiséget, illetve nem is hívta sehogy se ezt, se 
az entalpiát, se a Helmholtz-energiát. Talán szűzi-
esen arra számított, hogy e három mennyiség közül 
majd az egyiket a hálás utókor róla nevezi el, és ez a 
várakozása (ha volt ilyen), be is jött. Gibbs ezt nyil-
vánvalóan kiérdemelte, és én örülök, hogy pont az 
általam preferált mennyiséget nevezték el elődeim 
Gibbs-energiának, és nem irigylem kémikus barátai-
mat az ő Helmholtz-energiájukért.

12. A fázis definíciója (96.oldal)

Gibbs egészen eddig a „fázis” helyett főleg a „rész” 
(angolul a „part”) kifejezést használta, de mielőtt 
megalkotta a fázisszabályt, áttért a fázis kifejezésre, 
viszont ezt követően se javította ki az előzetesen írt 
„rész” szavakat (na ja, kézzel írt, nem volt szöveg-
szerkesztője). Ekkor 9,5 sorban megadta a fázis de
finícióját, amely ma is érvényes. Ezek szerint azokat 
a testeket, melyek egymástól összetételükben és/vagy 
szerkezetükben különböznek, fázisoknak nevezzük. 
Azok a testek azonban, melyek összetételükben és 
szerkezetükben ugyan azonosak, és csak tömegükben, 
térfogatukban, bármelyik méretükben vagy alakjuk-
ban különböznek egymástól, ugyanazon fázis külön-
böző darabjainak vagy diszpergált részeinek nevez-

zük. Azok a fázisok, melyek egy rendszerben egymás 
mellett léteznek úgy, hogy azokat sík határfelületek 
választják el egymástól (melyek nem jelentenek ki
netikai gátat a komponensek fázisok közötti mozgásá-
val szemben), „egymással együtt létező” vagy „társ
létező”1 (angolul „coexistent”) fázisoknak nevezzük. 
Ezek szerint, amikor Gibbs homogén rendszerről írt, 
akkor egyfázisú rendszerre gondolt, és amikor hetero-
gén rendszerről írt, akkor két- vagy többfázisú rend-
szerre gondolt.

13. A szabadságfok és a fázisszabály (96. oldal)

Gibbs újabb 10,5 sorban eljutott a szabadságfok defi-
níciójáig is, amit ő „varianciának” nevezett. A 96. ol-
dalon kijelentette, hogy egy NP egyensúlyi fázisból 
álló rendszerben, mely fázisok mindegyikében meg
található ugyanaz az NC számú komponens, melyek 
tömegét e fázisokban semmi sem korlátozza, a fázisok 
varianciája NC + 2 – NP. Magyarázatként hozzáfűzte, 
hogy ez azért van, mert az egyes egyensúlyi fázisok-
ban megegyeznek a nyomás, a hőmérséklet és a ké
miai potenciálok értékei a (19)–(21) egyenletek szerint 
(ezek száma NC + 2), de ezen mennyiségek varian
ciáját NP számú (124) típusú Gibbs–Duhem-egyenlet 
korlátozza. A modern kémiai termodinamikában ezt 
a  mennyiséget „szabadságfoknak” nevezzük, amely 
tehát Gibbs szerint:

	 NF = NC + 2 – NP .	 (123+)

Megjegyzem, hogy Gibbs nemcsak a szabadság-
fok fogalmát nem használta, hanem az NF (vagy akár 
F) jelölést sem, és persze a (123+) egyenletet is csak 
a szövegbe rejtette el, és nem számozta be. A fentiek-
ből az következik, hogy Gibbs szerint a szabadásfok 
alatt a nyomást, a hőmérsékletet és a komponensek 
kémiai potenciáljait kell érteni. Ma a kémiai potenciál 
helyett valamilyen koncentrációt használunk, de vita 
folyik arról, hogy melyik koncentrációt kell használ-
ni: a rendszer átlagos koncentrációját vagy a fázisok 
egyensúlyi koncentrációit [5]? A 96. oldal utolsó 10 
sorában Gibbs megvizsgálta azt az esetet is, amikor 
a variancia minimális értékű (NF = 0) és felismerte, 
hogy behelyettesítve ezt az értéket a (123+) egyenlet-
be, a maximális, egy rendszerben társlétező fázisok 
számát kapja meg:

	 NP – max = NC + 2 ,	 (123++)

ahol Gibbs persze az NP – max jelölést se használta, il-
letve a (123++) egyenletét is csak a szövegben rejtette 
el, és nem számozta be azt; valójában pedig csak azt 
írta fel, hogy ha NP = NC + 2, akkor variancia nem le-
hetséges. Ha például NC = 1, akkor a (123++) egyenlet 
szerint NP – max = 3, azaz egy egykomponensű rend-
1	 Szabó Renáta nyelvújítása.
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szerben három fázis (általában szilárd, folyadék és 
gőz) csak a természettörvények által meghatározott 
speciális nyomás- és hőmérséklet-értékeken tart-
hatnak egymással egyensúlyt, és ebben semmilyen 
variancia, azaz a kohómérnökök által elkövethető 
változtatás nem megengedett anélkül, hogy e három 
fázis egyensúlya meg ne szűnne. Gibbs ezzel meg-
teremtette a fázisszabály lényegét, amelyet azóta is 
elterjedten használ a kohászat, az anyagtudomány és 
a kémia. Más kérdés, hogy én ugyanezen egyenletek 
általánosított formáját teljesen máshogyan vezettem 
le [5], ami azért is előnyös, mert a fenti levezetés-
ben mintha lenne egy csúsztatás: a (21) egyenletek a 
kémiai potenciálok abszolút értékei között teremte-
nek kapcsolatot, míg a (124) egyenlet csak a kémiai 
potenciálok változásai között, így ezt nevezhetjük a 
2. számú „véletlen” egybeesésnek.

A (123+) és (123++) egyenletek összehasonlítá-
sából egyértelműen származtatható a szabadságfok 
definíciója is, bár Gibbs ezt az egyenletet még a szö-
vegben sem rejtette el:

	 NF ≡ NP – max – NP .	 (123K)

14. A Clausius–Clapeyron-egyenlet levezetése 
(98. oldal)

Gibbs a 98. oldalon az NP = NC + 1 = NP – max – 1 esetet 
vizsgálva eljutott a ma „Clausius–Clapeyron”-egyen-
letnek nevezett egyenlet levezetéséig. Gibbs ehhez 
két, egykomponensű fázis (α és β) egyensúlyát vizs-
gálta, és kétszer újra írta a (124) egyenletet, egyszer az 
α, másodszor a β fázisra. Először mindkét egyenletből 
kifejezte ∑ i mi(Φ) ∙ d μi(Φ) értékét, melyek egyensúlyban 
azonosak, ezért a két egyenlet jobb oldalai (és ezért a 
bal oldalai is) megegyeznek, ahonnan már következik 
a Clausius-Clapeyron egyenlet:

	 d p/dT = (Sβ – Sα) /(Vβ – Vα) .	 (131)

A (131) egyenlet lényegében az (α + β) egykom-
ponensű, kétfázisú egyensúlyhoz tartozó egyensúlyi 
nyomás hőmérsékletfüggését adja meg. Az anyag
tudományban gyakran használjuk a (131) egyenletet 
reciprokát, amikor például egy egykomponensű szi-
lárd fázis egyensúlyi olvadáspontjának a nyomásfüg-
gését keressük. Vegyük észre, hogy ebben az esetben 
NC = 1 és NP = 2, azaz a (123+), (123K) egyenletekből 
NP – max = 3 és NF = 1. Tehát a két lehetséges állapot
változó – a nyomás és a hőmérséklet – közül csak az 
egyiket változtathatjuk meg szabadon, de a másiknak 
követnie kell a (131) egyenlettel felírt természet
törvényt ahhoz, hogy a rendszer változatlanul ugyan-
abban a kétfázisú egyensúlyban maradjon. Ez a fázis
szabály lényege egy példán bemutatva.

15. Az azeotropos minimum- vagy maximumpont 
létezésének megsejtése (99–100. oldal)

Gibbs egy olyan kétkomponensű rendszert vizsgált, 
amelyben két fázis van egyensúlyban, melyeknek 
azonos az összetételük (ami ritkán fordul elő). Gibbs 
erre az esetre megmutatta, hogy konstans nyomáson 
ehhez a ponthoz minimális vagy maximális egyen
súlyi hőmérséklet tartozik, illetve konstans hőmér-
sékleten minimális vagy maximális egyensúlyi nyo-
más, amelyet ma azeotropos pontnak nevezünk. Gibbs 
ugyan nem szerkesztett ilyen fázisdiagramokat, de 
kijelentései érvényesek az általunk ma ismertekre. 
Gibbs ugyanezt kiterjesztette a háromkomponensű 
és  háromfázisú esetre is, amikor a harmadik fázis 
összetétele az első két fázis kombinációjából adódik.

16. Egy fázis stabilitásának határa 
(100–115. oldal)

Gibbs egy α fázissal kapcsolatban azt vizsgálta, hogy 
mi a feltétele annak, hogy abból ne tudjon egy másik 
(β) fázis képződni ugyanazokkal a komponensekkel, 
ebben az esetben ugyanis az α fázis stabil marad. Gibbs 
arra jutott, hogy egy α fázis akkor stabil, ha az abból 
elvileg képződni képes összes, vele azonos tömegű β 
fázisnak pozitívabb a Gibbs-energiája. Ha az α → β 
fázisátalakulást vizsgáljuk, amelyet a ∆G ≡ Gβ – Gα 
Gibbs-energia-változás kísér zéró tömegváltozás 
mellett, akkor az eredeti α fázis akkor marad stabil, 
ha ∆G > 0. Ma ugyanezt a feltételt két másik alak-
ban is szoktuk használni: a természetben spontán csak 
olyan átalakulások mehetnek végbe, melyeket negatív 
Gibbs-energia-változás kísér (∆G < 0), és csak olyan 
állapotok lehetnek egymással egyensúlyban, melyek 
egymásba alakulását zérus Gibbs-energia-változás 
kíséri (∆G = 0). Ugyanezek a következtetések egyéb-
ként már a (2K) egyenlettel felírt egyensúlyi feltétel-
ből is következnek.

Gibbs ezen túl levezette egy fázis stabilitásának 
határát is:
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	 (182 = 200)

A (182) egyenletet persze megint inkább egy fá-
zisra kellett volna felírnia, mint az egész rendszerre, 
hiszen az egy fázis és nem a teljes rendszer stabilitá-
sára vonatkozik, azaz:
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A (182K) egyenletet talán nem ismerjük fel elsőre, 
de ismerősebbé válik, ha μi (Φ) helyére a (104K) egyen-
letet helyettesítjük:
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A (182KK) egyenletet ma úgy használjuk, hogy 
ha a (182KK) kifejezés bal oldala pozitív, akkor a fá-
zis stabil, ha pedig negatív, akkor a fázis instabil, azaz 
spontán két fázisra esik szét. Látjuk, hogy a (182KK) 
egyenlet a fázisstabilitás határfeltételét adja meg.

17. A kritikus állapot (129–131. oldal)

Gibbs idejében már kísérletileg ismert volt a kritikus 
jelenség, amely azt jelentette, hogy két állapot egyen-
súlyi létezésének a változók egyik irányában lehet egy 
határa, amely felett ez az egyensúly már nem létezik 
tovább – ezt nevezi Gibbs kritikus állapotnak. Érde-
kes, hogy ez az első indok, amely miatt a 129. oldalon 
Gibbs valakinek az előző munkájára hivatkozik egy 
lábjegyzetben, leszámítva a Clausiustól átvett mottót. 
Gibbs először szintén a (182) egyenletet vezette le 
mint a kritikus állapot feltételét, de azt ezúttal a (200) 
sorszámmal látta el. Azután továbbment, és úgy talál-
ta, hogy a kritikus állapotra a következő feltételnek is 
teljesülnie kell:
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	 (201)

18. A gravitáció hatása a heterogén egyensúlyra 
(144. oldal)

Gibbs (219), (220) egyenletei szerint ahhoz, hogy fi-
gyelembe vegyük a gravitáció hatását az anyagegyen-
súlyokban, a belső energiát a Newton-féle potenciális 
energiával kell megnövelni: g ∙h∙m, ahol g (m/s2) a gra-
vitációs gyorsulás, h (m) egy tetszőleges alapszinttől 
mért magasság a gravitációs erőtérben, m (kg) pedig a 
tömeg, így e kifejezés mértékegysége energia (J). Be-
helyettesítve például a (92) egyenletbe ezt a mennyisé-
get, egyensúlyban (azaz a dG = 0 érték mellett), kons-
tans hőmérsékleten a következő kifejezéshez jutunk:

	 d p = –ρ ∙ g ∙ d h ,	 (233)

ahol ρ (kg/m3) a fázis sűrűsége. Ebből az egyenletből 
az következik, hogy a gáznyomás fokozatosan csök-
ken a magasság növelésével, ami a Föld gravitációs- 
és légterében bizonyított tény. Az anyagegyensúlyok 
feltételei pedig a következőképpen módosulnak:

	 μi + g ∙h = const. ,	 (234)

ahol minden komponensre teljesülnie kell külön-kü-
lön a (234) egyenletnek. A (234) egyenlet szerint a 
komponensek egyensúlyi fajlagos kémiai potenciáljai 
gravitációs erőtérben nem konstans értékűek (mint 
ahogy az a (21) egyenletekből következne), hanem 
magasságfüggőek.

19. Az ideális gázok és gázelegyek alapegyenletei 
(150–184. oldal)

A 150. oldal első nem számozott egyenletében Gibbs 
az ideális gáztörvényt írta fel, bár annak nem teljes 
alakjában:

	 p ∙V = a ∙T ,	 (254+)

ahol a-t konstansnak nevezi. Azt nem csodálom, hogy 
1875–1878-ban még nem ismerte a gázállandót, de 
azt igen, hogy Avogadro után három nemzedékkel 
nem szerepelteti a tömeget a (254+) egyenlet jobb ol-
dalán. Aztán persze eljött ennek is az ideje, de csak 17 
oldallal később, amikor a gázelegyekre a következő 
egyenletet írta fel:

	 p ∙V = T ∙∑ i ai ∙ mi  .	 (308)

Ezt az egyenletet redukálva egy komponensre 
kapjuk:

	 p ∙V = T ∙ ai ∙ mi  .	 (308K)

A (308K) egyenlet azért nem a gázállandót tar-
talmazza, mert ezt nem az anyagmennyiség, hanem 
a tömeg függvényében írta fel, így az ai konstans az 
univerzális gázállandó és a komponensfüggő moláris 
tömeg hányadosa. Gibbs később feljegyezte a (308K) 
egyenletet is, de sajnos általános formában, ami sze-
rintem hibás (lásd fent):

	 p ∙V = a ∙ m ∙T .	 (350)

20. A Dalton-szabály kiterjesztése (158. oldal)

Gibbs megismételte, bebizonyította és kiterjesztette 
Dalton empirikus törvényét, miszerint a kémiai re-
akcióktól mentes ideális gázokban a teljes nyomás 
egyenlő a komponensek parciális nyomásainak ös�-
szegével (p = ∑  pi). Gibbs szerint hasonló egyenletek 
érvényesek több mennyiségre is:

      p = ∑ pi ,  S = ∑ Si ,  U = ∑ Ui ,	
      H = ∑ Hi ,  A = ∑ Ai ,  G = ∑ Gi	

(282–283)

A (282–283) egyenletek szerint egy gázelegyben 
az egyes gázkomponensek úgy viselkednek, mintha 
nem vennének tudomást a többi gázkomponensről, 
azaz mintha egyedül lennének a gázelegyben. Ez per-
sze csak a kisnyomású, ún. ideális gázokban igaz, ahol 
a gázatomok – gázmolekulák messze vannak egymás-
tól és csak nagyon ritkán ütköznek.

21. Gázkomponensek összekeveréséből származó 
entrópianövekmény (165–168. oldal)

Gibbs a (282–283) egyenletekben még nem vette fi-
gyelembe a konfigurációs entrópiát, amely az ő korá-
ban még nem volt ismert. Azonban először egy példán 
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keresztül levezette a (297) egyenletet, amelyet aztán a 
(298) egyenlettel általánosított is, amely a (282–283) 
egyenletekhez képest fellépő entrópianövekményt 
adja meg. Némi átalakítással Gibbs (297–298) egyen-
leteiből következik az i komponens parciális konfigu
rációs entrópianövekménye (∆Si , J/K, bár ezt a jelet 
Gibbs nem használta):

	 ln ,
 

∆ = − ⋅  
 Σ

i
i

i i

VS k
V

	 (298K)

ahol k (J/K) a Boltzmann-állandó (amelyet Gibbs 
1875–1878-ban még nem ismert, és persze nem is így 
jelölt), Vi (m3), pedig az i gázkomponens különálló 
térfogata az összekeverés előtt, azonos hőmérsékleten 
és nyomáson. Vegyük észre, hogy a logaritmus alatt 
az i komponens térfogathányada = móltörtje szerepel 
a gázelegyben, de Gibbs sajnos koncentrációkkal nem 
foglalkozott. A (298K) egyenlet tudtommal a kon
figurációs entrópia első levezetése. A (298K) egyenlet 
értelmében a konfigurációs entrópia mindig pozitív ér-
tékű, hiszen az 1-nél kisebb számok logaritmusa nega-
tív. Emiatt persze a (87), (91) egyenletek értelmében 
valamennyire csökkeni fog a Helmholtz-energia is 
és a Gibbs-energia is akkor, amikor egykomponensű 
gázokat keverünk össze egymással. Behelyettesítve 
a (298K) egyenletet a (91) definícióegyenletbe és fi-
gyelembe véve, hogy az ideális gázelegyek képződése 
nem jár entalpiaváltozással, a gázelegy kialakulásával 
járó parciális Gibbs-energia-változás képlete:
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Tehát a (282–283) egyenletek közül csak a p, 
U és H értékekre felírtak igazak, a többit korrigálni 
kell. Gibbs elsőként értette meg, hogy az S, A és G 
esetében a (282–283) egyenletek nem tökéletesek, és 
elsőként jutott el a konfigurációs entrópia képletéig 
gázelegyekben. Innen már csak egy lépés ugyanezt a 
képletet kiterjeszteni folyékony és szilárd oldatokra is.

22. A mechanikai feszültség hatása a szilárd 
fázisok egyensúlyára (184 – 218. oldal)

Gibbs szerint az anyagok egyensúlya szempontjából 
is meg kell különböztetni a mechanikai feszültség 
alatt álló, azaz képlékenyen alakított (deformált) szi-
lárd fázisokat azoktól, amelyek nem állnak mecha-
nikai feszültség hatása alatt és ezért nem deformál-
tak. Gibbs a tökéletes (nem deformált) szilárd testek 
„pontjait” (kerülve az „atom” kifejezést) (x´ – y´ – z´) 
koordinátákban helyezte el, és különbséget tett ugyan-
ezen valós (deformált) pontok (x – y – z) koordinátái 
között. E koordinátákból származtatott dx /dx´ típusú 
mennyiségek a relatív deformáció mértékét fejezik ki. 
Gibbs a következő egyenletet írta fel a szilárd test de-
formációja okán fellépő belsőenergia-növekményre:

	 ,δ δ= ⋅ ⋅ ∑
′

dxU V X
dx

	 (355)

ahol X (Pa = J/m3) egy Gibbs által közelebbről nem 
definiált anyagjellemző (lényegében egy rugalmassá-
gi állandó). A (355) egyenlet jobb oldali tagja adja a 
deformáció hatására bekövetkező Gibbs-energia-nö-
vekményt is. Gibbs ebben a fejezetben is (mint mind-
egyikben) helyesen érezte a lényeget, de ezt az egyen-
letet később még tovább kellett fejleszteni ahhoz, 
hogy alkalmassá váljon konkrét számításokra is.

23. Gibbs fundamentális egyenletei határfelületet 
tartalmazó rendszerekre (219–228. oldal)

Gibbs a határfelületet az azt két oldalról körülvevő 
két szomszédos fázissal értelmezte. Majd a határfe-
lület két oldalán, azzal párhuzamosan, a két homo-
gén fázison át húzott egy-egy párhuzamos síkot, és 
az így kapott hasábot tekintette rendszernek, amely-
nek a közepén van a határfelület és annak a bal és a 
jobb oldalán a két homogén fázis. Mivel a hasáb vas-
tagsága konstans, ezért annak térfogata is konstans, 
így a (12) egyenletből hiányozni fog a térfogati tag. 
A heterogén rendszerek egyensúlyára előzőleg talált 
(19), (21) feltételek most is érvényesek, azaz a ha-
tárfelületet magában foglaló rendszerben is azonos a 
hőmérséklet és a kémiai potenciál a rendszer bármely 
pontjában, beleértve a határfelületet is, és ez utóbbi 
érvényes minden egyes komponensre külön-külön 
is. A két fázis tulajdonságait a továbbiakban is α és 
β alsó indexekkel jelölöm, míg a teljes rendszernek 
nem lesz indexe. Ez a rendszer azonban tartalmaz 
egy határfelületet is, aminek alsó indexe „s”. Innen 
a határfelület tulajdonsága egyenlő a teljes rendszer 
tulajdonságával mínusz a két fázis tulajdonságainak 
összegével:

	 Us = U – Uα – Uβ ,    Ss = S – Sα – Sβ ,   	  
	 mi (s) = mi – mi (α) – mi (β)    	 (490–491)

ahol Us (J) a felületi réteg többlet-belsőenergiája, Ss 
(J/K) a felületi réteg többletentrópiája és mi (s) (kg) 
az i komponens többlet tömege a felületi rétegben. A 
fentiek szerint redukált (12) egyenlet a határfelületi 
többlet mennyiségek között is érvényes lesz:

	 dUs = T ∙ dSs + σ ∙ d A + ∑ i  μi ∙ d mi (s) ,	 (501)

ahol σ (J/m2) a határfelület energia, A (m2) a 
határfelület (egyik oldalának) alapterülete. Az 
(501) egyenlet legnagyobb újítása a (12) egyen-
lethez képest az, hogy tartalmazza a határfelü-
leti tagot is (σ ∙ d A). Gibbs kijelentette [3], hogy 
σ értékének mindig pozitívnak kell lennie, és 
adott körülmények között (azaz a határfelületet 
körbevevő fázisok mibenléte, azok összetétele, 
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a hőmérséklet és a nyomás fix értékei mellett) 
olyan összetételű és szerkezetű határfelület lesz 
stabil, amelynek a határfelületi energiája mini-
mális, azaz:
	 0 < σ → min.	 (497K)

Ezt követően Gibbs integrálta az (501) egyenletet: 

	 Us = T ∙ Ss + σ ∙ A + ∑ i  μi ∙  mi (s) .	 (502)

Gibbs sajnos a határfelületet is tartalmazó rend-
szerek teljes belső energiájára nem írt fel egyenletet, 
de mi ezt megtehetjük, ha az eredeti (55 = 93) egyen-
letekhez hozzáadjuk az (502) egyenlet új tagját, és ha 
a (12) egyenlethez hozzáadjuk az (501) egyenlet új 
tagját:

    dU = T ∙ dS – p ∙dV+ σ ∙ d A + ∑ i  μi ∙ d mi ,	 (501K)

	 U = T ∙ S – p ∙V+ σ ∙  A + ∑ i   μi ∙  mi .	 (502K)

A (12) egyenlet helyett az (501K) egyenlet te-
kinthető Gibbs egyik fundamentális egyenletének a 
határfelületeket tartalmazó rendszerekben. A (497), 
(501), (501K) egyenletekben látható σ ∙ d A tag Gibbs 
újabb zseniális felismerése, ami a d A alapterület-
növekményű új határfelület megteremtéséhez szük-
séges munka. Gibbs azonban nem egy, hanem négy 
fundamentális egyenletet vezetett be műve elején 
(lásd a (88), (90), (92) egyenleteket is) és ezek mind-
egyike kiegészíthető a határfelületi taggal. Példaként 
a (91–92) egyenletek is kiegészíthetőek az (501–502) 
egyenletek új tagjaival:

    G ≡ U + p ∙V – T ∙ S + σ ∙  A + ∑ i   μi ∙  mi ,	 (502KK)

    dG = V ∙ d p – S ·dT + σ ∙  d A + ∑ i   μi ∙ d mi .	(501KK)

Az anyagtudományban az (501KK) egyenletet 
tekintjük Gibbs fundamentális egyenletének határ
felületet is tartalmazó rendszerekre. Innen következik 
a határfelületi energia termodinamikai definíciója is:
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	 (501KKK)

ahol a komponenstömegek és a határfelület alapterü-
lete függetlenek egymástól, ami vagy a fázisok alak-
jának megváltoztatásával, vagy azok diszpergálásával 
érhető el. Ez még akkor is így van, ha vannak kutatók, 
akik ezeket a mennyiségeket (szerintem hibásan) egy-
mástól függő mennyiségeknek tekintik [11, 12]. Az 
utóbbi öt egyenletet Gibbs ugyan nem írta fel, de ezek 
egyértelműen következnek Gibbs főművéből, és ezért 
a tudományos világ Gibbs nevéhez kapcsolja eze-
ket. Mint a [6] cikkemben bemutattam, az (501KK) 
egyenletből eredeztethető a kolloidkémia és az anyagi 
rendszerekben érvényes határfelületi jelenségek ös�-
szes egyenlete.

24. A Laplace-egyenlet levezetése 
(228–242. oldal)

A (2) egyenletből az egyensúly feltétele: δU = 0. 
Behelyettesítve ide a (490) egyenletből az U = Us + 
Uα + Uβ egyenlőséget, a határfelületet is tartalmazó 
rendszer egyensúlyára a következő egyenletet kapjuk:

	 δUs + δUα + δUβ = 0 .	 (498)

Helyettesítsük be ide a (58), (497) egyenleteket 
úgy, hogy az összes entrópia- és tömegértéket kons-
tansnak tekintjük! Innen:

	 σ ∙ δA – pα ∙ δVα – pβ ∙ δVβ = 0 .	 (499)

Most csúsztassuk arrébb a határfelületet δN távol
ságra a β fázis irányába, ekkor δVα = A ∙ δN és δVβ = 
–  A ∙ δN. Behelyettesítve ezeket az egyenleteket a 
(499) egyenletbe:
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	 (499K)

A (499K) egyenlet szerint a határfelület két olda-
lán lévő nyomáskülönbség attól függ, hogy a határ
felület eltolásával mennyi lesz δA / δN értéke. Ha a 
határfelület sík, akkor annak eltolása nem változtat 
annak alapterületén, ezért ekkor δA / δN = 0, és ekkor 
a (499K) egyenletből pα – pβ = 0, vagy más szavakkal 
pα = pβ. Ezzel visszakaptuk a heterogén egyensúlyok 
(20) egyenlettel már leírt feltételét, miszerint az egy-
mástól sík határfelülettel elválasztott fázisok egyen-
súlyban azonos nyomással rendelkeznek. Ha azonban 
a határfelület görbült, akkor Gibbs szerint a követke-
ző egyenlethez jutunk:

	 pα – pβ = σ (c1 + c2) ,	 (500)

ahol c1 és c2 (1/m) a határfelület két főgörbületi su-
gara úgy, hogy a görbületek középpontja az α fázis-
ban van, azaz a nyomás mindig a görbülettel bezárt 
(nano-)fázisban lesz nagyobb. Ezzel Gibbs reprodu-
kálta a Laplace-egyenletet, amely egyébként a határ-
felületi energiák kísérleti meghatározásának egyik 
alapegyenlete. Példaként megemlítem, hogy egy r 
sugarú gömbre c1 + c2 = 2/r , és ezért az (500) egyen-
let konkretizálódik:

	 2 σ = r (pα – pβ ) .	 (522 = 550)

Tehát egy gömb alakú, kis méretű, r sugarú α fá-
zis akkor lesz mechanikai egyensúlyban az azt körül
vevő nagy méretű β fázissal, ha teljesül az (522 = 550) 
egyenlet.

25. A határfelületi Gibbs–Duhem-egyenlet 
levezetése (229–230. oldal)

Ezt követően Gibbs vette az (502) egyenlet teljes 
differenciálját. Ennek baloldala megegyezik az (501) 
egyenlet bal oldalával, így ezek jobb oldalainak is 
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meg kell egyezniük egymással. Némi átalakítás után 
megkapta a felületi Gibbs-Duhem egyenletet:

	 Ss ∙ dT + A ∙ dσ + ∑ i mi (s) ∙ d μi = 0 .	 (503)

Megjegyzem, hogy Végh Ádám és Korózs József 
doktoranduszaimmal ezentúl több felületi Gibbs–
Duhem-egyenletet vezettünk le [7].

26. Gibbs adszorpciós egyenletének levezetése 
(230–237. oldal)

A többlet felületi tömegeket osztva a felülettel kapjuk 
a Γi (kg/m2) mennyiségek definícióját, amelyek az i 
komponens határfelületi többletei:

	 Γi ≡ mi (s) /A .	 (505)

Osszuk el az (503) egyenletet a határfelület alap
területével és helyettesítsük be az így adódó egyenlet-
be az (505) egyenlettel definiált mennyiségeket! Innen 
következik Gibbs adszorpciós egyenlete konstans hő-
mérsékleten:

	 d σ = –∑ i Γi ∙ d μi .	 (508)

Az (508) egyenlet elvileg a határfelületi energia 
kiszámítására alkalmas a térfogati összetétel függvé-
nyében, adott hőmérsékleten. De csak elvileg, mert 
az (508) egyenlet még egy kétkomponensű A–B rend-
szerben is három ismeretlent tartalmaz (σ, ΓA és ΓB) 
még akkor is, ha ismert a kémiai potenciálok függése 
a térfogati összetételtől:

	 d σ = – ΓA ∙ d μA – ΓB ∙ d μB .	 (508K)

Gibbs egy lépéssel közelebb került az (508K) 
egyenlet hasznossá tételéhez azzal, hogy az egyik 
komponens felületi többletét formálisan kinullázta 
(ΓA ≡ 0), és ekkor csak a másik komponens relatív fe-
lületi többlete marad meg az (508) egyenletben, ame-
lyet ΓB(A)-val jelölhetünk. Ekkor egy kétkomponensű 
rendszerben konstans hőmérsékleten:

	 d σ = – ΓB(A) ∙ d μB .	 (514)

Sajnos még az (514) egyenlet sem alkalmas a felü-
leti feszültség és a felületi összetétel együttes model-
lezésére, hiszen az egyetlen (514) egyenlet mindkét 
határfelületi ismeretlent tartalmazza (σ és ΓB(A) ). En-
nek ellenére az (514) egyenletet főleg a kolloidkémi-
ában gyakran használják, hiszen a vizes oldatokban 
gyorsan és könnyedén lehet a térfogati koncentráció 
függvényében felületi feszültséget mérni. Ha ezentúl 
lemérik a kémiai potenciálok függését is a térfogati 
koncentrációk függvényében, akkor az (514) egyen-
letből legalább ΓB(A) értéke kiszámítható, ami fontos 
a kétkomponensű oldatok felületi dúsulásának értel-
mezéséhez.

Ha azonban mindkét ismeretlent (a felületi fe-
szültséget és a felületi koncentrációt is) ismeretlen-

nek tekintjük, és modellezni akarjuk, akkor az (508), 
(514) egyenletek helyett az 1932-ben publikált But-
ler-egyenletet [8], illetve annak kiterjesztését [9] 
érdemes használni. Arról, hogy a Butler-egyenlet is 
Gibbs termodinamikájából eredeztethető, lásd [10].

27. Csíraképződés (252–258. oldal)

Gibbs megvizsgálta egy gömb alakú, r sugarú csíra 
(α fázis) keletkezésének feltételét egy nagy méretű β 
fázisból, annak belsejében. Gibbs W-vel jelölte azt a 
munkát (J), amely ennek a csírának a keletkezéséhez 
szükséges, és amely egy térfogati és egy felületi tagot 
tartalmaz:

    W = –(4/3) π r 3 (pα – pβ) + 4π r 2 σ .	 (554 = 559)

Majd Gibbs kifejezte a csíra sugarát az (522) 
egyenletből, és behelyettesítette ezt a kifejezést az 
(554) egyenletbe, így a csíraképződéshez szükséges 
maximális munkához jutott:
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Az (557) egyenlettel leírt mennyiség a ma „kri-
tikus csírasugár”-ként ismert, csírasugárhoz tartozó 
maximális munka, amit a csíra megteremtéséhez kí-
vülről be kell fektetni: ezt a modern irodalom a csíra-
képződés aktiválási energiájának is nevezi. A csíra nö-
vekedése ezen méretig problematikus és bizonytalan. 
Ha azonban a csíra sugara (véletlenül) ezen kritikus 
érték fölé nő, akkor a csíra spontán növekedésnek 
indul és ennek csak az anyafázis mérete szab határt. 
Érdekes, de egyben gyanús is, hogy ez a kritikus csíra-
méret megegyezik az (522) egyenlettel leírt „mecha-
nikai egyensúlyi” mérettel.

Gibbsnek ezt a levezetését kissé problematikus-
nak érzem. Nem értem, hogy milyen alapon tett ne-
gatív előjelet az (554) egyenlet első tagja elé. Ez a 
tag ugyanis azt a munkát fejezi ki, amely a nagyobb 
nyomású csíra térfogatának létrehozásához kell, de 
hogyan keletkezhet egy nagy nyomású belső rész 
spontán egy kis nyomású fázis belsejében. A meg
oldás talán a belsőenergia-változás (11) egyenleté-
ben rejlik, ahol valóban negatív előjel van p ∙ dV tag 
előtt, de esetünkben nem térfogatnövekedés (dV), 
hanem nyomásnövekedés (d p = pα – pβ ) lép fel. Új-
fent erre jó  a  Gibbs-energia használata, hiszen d G 
a (92) egyenletben a +V ·d p taggal arányos, és ezek 
szerint az (554) egyenlet első tagja elé valóban po-
zitív előjelet kellene írni. Ha viszont így teszünk, 
akkor a Wmax = ∞ eredményre jutunk. A ma is el
fogadott (557) egyenlet csak úgy jön ki, ha megőriz-
zük a negatív előjelet az (554) egyenlet első jobb 
oldali tagja előtt.

Most röviden bemutatom, hogy a mai korban ho-
gyan jutunk el közel ugyanehhez az (557) egyenlethez 
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[6]. Vegyük figyelembe, hogy α csíra azért képződik a 
β fázis közepén, mert az α és β fázisok különböznek 
egymástól. Ezért a csíra keletkezése az anyafázisból 
térfogati Gibbs-energia-változással jár, amelynek a 
jele egységnyi térfogatú csírára: ∆GV (J/m3), ahol ∆GV 
hőmérséklet- és nyomásfüggő, és értéke függ az α 
és β fázisok anyagi minőségétől is. Ekkor a csírakép-
ződéssel kapcsolatos munka, avagy Gibbs-energia-
változás:

	 W = (4/3) π r 3 ∙ ∆GV + 4π r 2 σ .	 (554K)
Mivel ∆GV hőmérséklet- és nyomásfüggő men�-

nyiség, van olyan hőmérséklet és/vagy nyomásinter
vallum, amelyen belül ∆GV ≥ 0, azaz a csíraképződés 
a térfogati tag szerint sem előnyös, és ekkor az (554K) 
egyenlet szerint a csírasugár növelésével W értéke 
monoton módon nő a végtelenig. Általában van azon-
ban olyan hőmérséklet- és/vagy nyomástartomány is, 
amelyen belül a csíraképződés legalább a térfogati 
tag szempontjából előnyös, azaz ∆GV < 0. Ekkor az 
(554K) egyenlet szerint a W = f (r) függvény egy ma-
ximumon megy át, ahol a maximumhoz tartozó kriti-
kus csírasugár (rcr , m) úgy kapható meg, ha az (554K) 
egyenlet r szerinti deriváltját nullával tesszük egyen
lővé, és ekkor:

	 rcr = 2σ /∆GV .	 (522K)

Ha ezt az egyenletet visszahelyettesítjük az (554) 
egyenletbe, akkor:
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Vegyük észre, hogy az (522K), (554K), (557K) 
egyenletek megegyeznek az (522), (554), (557) 
egyenletekkel, ha elkövetjük a ∆GV → (pα – pβ ) át-
alakítást, és nagyvonalúan kezeljük az előjeleket. De 
fontos, hogy az (522K) egyenlet a kritikus és nem az 
egyensúlyi csíraméretre vonatkozik, ami különösen 
a nanoanyagok egyensúlya szempontjából lényeges 
különbség [6, 11]. Ezért fontos, hogy az (522) egyen-
letben csak mechanikai szempontból, de nem a fázis
egyensúly szempontjából értelmezett egyensúlyi mé-
retről írtam, bár Gibbs sajnos ezt a különbséget nem 
tette egyértelművé, így sokan még mindig a fázis gör-
bületéről gondolják, hogy az meghatározza a nano
anyagok fázisegyensúlyát [6, 11].

Mint látjuk, én ugyan nem pontosan értem Gibbs 
fenti logikáját, de Gibbs végeredménye hasonlít a 
maihoz, és ezért joggal állíthatjuk az egész világgal 
egyetértésben, hogy a csíraképződés elmélete is 
Gibbstől származik, és tény, hogy ez az elmélet ma 
is az anyagtudomány fontos fejezete. A feni értetlen-
kedésem miatt pedig nevezhetjük ezt a történetet 3. 
számú „véletlen” egybeesésnek.

28. Egy új sík fázis instabilitásának feltétele két 
fázis határán (258-265. oldal)

Gibbs egy α és egy β fázisok sík határfelületét vizs-
gálta, és arra a kérdésre kereste a választ, hogy mi a 
feltétele annak, hogy ezen a határfelületen ne tudjon 
megjelenni egy sík γ fázis, amely elválasztaná az ere-
deti α és β fázisokat egymástól. Úgy találta, hogy a γ 
sík fázis instabilitásának a feltétele:

	 σα /β < σα /γ + σβ /γ ,	 (560+)

ahol σα /β (J/m2) az α és β fázisokat elválasztó 
határfelület határfelületi energiája, σα /γ (J/m2) az α 
és γ fázisokat elválasztó határfelület határfelületi 
energiája, σβ /γ (J/m2) a β és γ fázisokat elválasztó ha-
tárfelület határfelületi energiája. Gibbs a γ fázist elég 
vastagnak tekintette ahhoz, hogy az utóbbi két men�-
nyiség ne legyen a γ fázis vastagságának függvénye. 
Az (560+) egyenlet, azaz a fenti kérdésre adott válasz 
egyébként már a (497K) egyenletből is következik, 
miszerint egyensúlyban σ → min.

Gibbs azt is helyesen látta, hogy ha az (560+) 
egyenlőtlenség teljesül, akkor az α és β fázisok sík 
határfelületén nem sík, hanem lencse alakú γ fázis 
fog megjelenni. Gibbs bonyolult képletet is leveze-
tett ennek a fázisnak a pontos alakjára, de az ebben a 
kivonatban túl specifikus információ lenne.

29. Az egyensúlyi peremszög Young egyenletének 
levezetése (326. oldal)

Gibbs több, a fentihez hasonló példája közül érdemes 
kiemelni egy speciális fáziskonfigurációt, amikor egy 
kis méretű, nyugvó folyadékcsepp egy sík szilárd 
fázison pihen egy gázfázisban úgy, hogy a gravitáció 
hiányában gömbsüveg alakú folyadékfázis Θ perem
szöget alkot a sík szilárd fázison. Erre az esetre Gibbs 
levezette (reprodukálta) a Young-egyenletet:

	 σl/g ∙ cos Θ = σs/g – σs/l ,	 (672)

ahol σl/g (J/m2) a folyékony fázis felületi feszültsége, 
σs/g (J/m2) a szilárd fázis felületi energiája, σs/l (J/m2) a 
szilárd/folyadék határfelületi energia.

30. Az elektromotoros erő hatása az anyag
egyensúlyra (331–349. oldal)

Gibbs ebben a fejezetben áttért az elektrokémiai 
rendszerek tárgyalására. Az ő idejében az atomok 
létezése sem volt biztos, így töltött atomokról, azaz 
ionokról pláne nehéz volt beszélni. Gibbs minden
esetre túltette magát ezen, és úgy kezelte, hogy az 
elektrolitokban lévő ionok képesek az elektromosság 
(azaz az elektromos töltések) vezetésére, bár arról 
még nem tudhatott, hogy az ion olyan atom, amely 
vagy elveszített vagy nyert egy vagy több elektront, 
mivel ekkor még nem fedezték fel az elektront. Ezen 
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túl két, anyagában azonos fémes elektródát helyezett 
gondolatban az elektrolitba, és azt az elektromos ára-
mot vizsgálta, amely az egyik elektródán keresztül 
belép az elektrolitba, majd a másikon át kilép abból. 
A lényegig végül a cikke utolsó egyenletében jutott 
el, amikor a Gibbs-energia változásának megadja egy 
újabb, az elektromos töltésátvitellel kapcsolatos tagját 
úgy, hogy a kettő közötti arányossági tényező a poten-
ciálkülönbség, avagy „elektromotoros erő” (∆ E, V ):

	 d G = –∆ E∙d q ,	 (700)

ahol q (C) az elektromos töltés. Gibbsnek ebben a cik-
kében ez az utolsó és egyben utolsó zseniális egyen-
lete. Ma a (700) egyenlet az elektrokémiai termodina-
mika alapegyenlete.

Összefoglalás

A fenti kivonatban három alkalommal is „véletlen 
egybeesést” véltem felfedezni Gibbs eredményei és a 
saját gondolataim között. Ez azonban lehet, hogy csak 
azért van, mert Gibbs akkora zseni volt, hogy a még 
nekem illogikusnak tűnő levezetései is helyes ered-
ményre vezettek, avagy én sajnos nem látok át min-
dent, amit Gibbs átlátott.

Mivel Gibbs idejében még nem volt ismert se a 
mol fogalma, se az Avogadro-szám értéke, se a mai ér-
telemben (g/mol mértékegységgel) megadott moláris 
atomtömegek, ezért Gibbs nem dolgozhatott moláris 
mennyiségekkel, illetve anyagmennyiségekkel (mó-
lokkal). Ehelyett tömegekkel dolgozott. A kettő között 
ma ismert kapcsolat: anyagmennyiség (mol) = tömeg 
(g) / moláris tömeg (g/mol). Tehát az anyagmennyi-
ség arányos a tömeggel, az arányossági tényező pedig 
csak a komponens milyenségétől függ, de nem függ 
attól, hogy a komponens milyen fázisban van oldva, 
vagy milyen kémiai vegyületben van lekötve. Így 
Gibbs tömegalapú egyenletei könnyen átalakíthatóak 
anyagmennyiség-alapú egyenletekké.

Ennél sokkal nagyobb probléma volt az, hogy 
Gibbs nem azzal kezdte a cikkét2, hogy a komponen-
sek tömegeiből átlagos komponens-tömeghányadot 
(= a komponens teljes tömege osztva a teljes rend-
szer tömegével), a komponensek egy fázisra vonat-
kozó egyensúlyi tömeghányadát (= a fázisban oldott 
komponens tömege osztva a teljes fázis tömegével) és 
fázis-tömegarányt (= az adott fázis tömege osztva a 
2	� Tóth Levente kohómérnök barátom kedvenc mondását idéz

ve talán az volt itt is a baj, hogy „a sas nem kapkod legyek 
után”, azaz a magasan szárnyaló Gibbsnek a koncentrá
ciókkal való bajlódás szint alattinak tűnt, hiszen ő a NAGY 
kérdések megoldására fókuszált, és ezért Clausistól indította 
a cikkét.

teljes rendszer tömegével) definiált volna. Emiatt per-
sze esélye se volt felírni az anyagmérleg (vagy tömeg-
mérleg) egyenletet, amivel kiegészíthette volna az 
általa feltalált (21) egyenleteket. Emiatt nem láthatta 
át a mérnöki probléma lényegi részét sem. Nevezete-
sen azt, hogy a mérnök által kiválasztott hőmérsék-
let, nyomás és átlagos komponens-tömegtörtek mel-
lett keressük azt, hogy hány fázis van egyensúlyban 
a rendszerben, és melyek ezek, mekkorák ezekben a 
komponensek egyensúlyi tömeghányadai és mennyi 
ezek egyensúlyi fázis-tömegarányai (lásd [4]). Ezért 
van az, hogy a mérnök által kontrollálható koncent-
rációk helyett a mérnök számára ködös „potenciá-
lok”-ról szól Gibbs főműve, és szerintem ezért veszí-
tette el potenciális olvasóinak jelentős részét.

Ennek ellenére Gibbs 150 éve szinte „a semmi-
ből” megalkotta a kémiai termodinamika majdnem 
teljes, de kicsit hiányos csontvázát – köszönjük ezt 
meg neki! A csontvázról azonban hiányzott néhány 
kisebb csont és főleg az izomzat és a hús. Az elmúlt 
150 év részben arról szólt, hogy néhányan újabb kis 
méretű csonttal ékesítettük fel a csontvázat, de főleg 
arról, hogy rengetegen rengeteg munkaórában külön-
böző komponensek kémiai potenciáljait mérték meg 
különböző fázisokban az összetétel, a hőmérséklet, a 
nyomás (stb.) függvényében, illetve határozták meg 
a legkülönböző anyagok egyensúlyi állapotát a leg-
különbözőbb nyomásokon, hőmérsékleteken stb. Az 
1970-es években megjelentek a személyi számító-
gépek, így azóta egyre többen foglalkoznak azzal is, 
hogy Gibbs tanaiból szoftvereket írnak, amivel persze 
csak akkor tudnak akármit is kiszámolni, ha ezeket 
kiegészítik olyan adatbankok is (amelyeket megint 
mások építgetnek), amelyek a rengeteg mérésből 
desztillált modellparamétereket tartalmazza, ame-
lyek segítségével „minden” lehetséges fázisban oldott 
„minden” komponens kémiai potenciálja számolható 
minimum a fázis összetételének, a hőmérsékletnek és 
a nyomásnak a függvényében. A többi már „csak” a 
numerikus módszereken, a számítástechnikán és némi 
gépigényen múlik és mindezt „Calphad” (= Calcula-
tion of Phase Diagrams = Fázisdiagramok Számítása) 
módszernek nevezzük.

Mint minden területen, újabban ezen a területen is 
vannak olyanok is, akik saját természetes intelligen
ciájukban nem bízva az anyagegyensúlyi számításo-
kat is az ún. mesterséges intelligenciára bíznák. Én 
nem tartozom közéjük, szerintem ez az irány zsák
utca. De engem nem is kérdeznek meg erről azok, 
akik ezt a témát művelik, és ráadásul mindezt nem 
átallják „tudománynak” nevezni.
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1. táblázat. Gibbs jelölései (és nevezéktana) összevetve a modern verziókkal 
(ha ezek különböznek egymástól), a szövegben való előfordulás sorrendjében

Mai jelölés Mai elnevezés, 
SI mértékegység

Gibbs jelölése és elnevezése

U belső energia, J ϵ, energia

S entrópia, J/K η, entrópia

T hőmérséklet, K t, hőmérséklet

V térfogat, m3 v, térfogat

NC a komponensek száma, – n, a komponensek száma

NP a fázisok száma, – ν, a fázisok száma

A Helmholtz-energia, J ψ, –

H entalpia, J χ, –

G Gibbs-energia, J ζ, –

A alapterület, m2 s, alapterület

q elektromos töltés, C e, az elektromosság mennyisége

2. táblázat. Gibbs és a modern szóhasználat összevetése

Gibbs kifejezése Ugyanaz ma angolul Ugyanaz ma magyarul

substances materials anyagok

energy inner energy belső energia

part phase fázis

mass mass or system tömeg vagy rendszer

potential chemical potential kémiai potenciál
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