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Abstract

In forensic voice comparison, formant measurements are a “traditional” way of com-
paring speaker identities. Deep learning may offer a new way of estimating formant
values; therefore, it is essential to compare its performance in a forensic way of use. In
this study, four formant estimation methods are compared: three based on LPC and
one on deep learning. Several aspects of formant modeling in forensic voice comparison
were investigated: comparisons according to utterance lengths, speaking styles, and
samples corrupted with various types of noise: reverberation and white noise. Results
are reported according to Cllr, AUC, and EER metrics. It was found that the length
of recordings used as suspect samples influences performance to a large extent. Ad-
ditionally, formant tracking based on deep learning lags behind the other methods in
all metrics. Same and different speaking styles also have a measurable effect on per-
formance. Samples corrupted with reverberation do not deteriorate results but white
noise does. There are no exact results on which method is better and which is to be
used in studies and works. Cllr values show that the three LPC-based methods per-
form similarly. They all make large mistakes when samples are corrupted with white
noise. Although the deep learning-based formant extractor performs slightly worse
than the other approaches used in this study, it seems to have more resilience to white
noise.

1. Introduction

The paradigm shift in forensic sciences and practice (; Saks & Koehler,

2005; Morrison, 2009a, 2011b) enabled the automatic and semi-automatic eval-

uation of evidence using various modalities and kinds of measurements (such as

DNA, fingerprint) (Bazen & Veldhuis, 2004; Matz & Nielsen, 2005). This new

paradigm, called the likelihood-ratio (LR) framework, is feasible for processing
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by computers. Such is the case in voice processing, where speaker recognition

techniques are adapted to the requirements of the framework, namely to pro-

duce a probability ratio of same and different speaker for evidence (Mandasari

et al., 2011; Morrison, 2011a; Kelly et al., 2019).

There are numerous ‘traditional’ acoustic features used in forensic voice com-

parison systems, such as fundamental frequency, mel-frequency cepstral coeffi-

cients, and intonation-based features (Chaudhary et al., 2017).

Formants, local maxima of the speech spectrum caused by resonance frequen-

cies of the vocal tract, are also traditional features of forensic voice comparison

(Titze & Martin, 1998). Although speech sounds, especially vowels, are charac-

terized by their first two formants, formants are also speaker-dependent. Due

to the possible overlap of the first formant and higher fundamental frequency,

second and third formants are more frequently used in research works (Gar-

gouri et al., 2006; Guillemin & Watson, 2008) although higher formants may

also have problematic calculations (attenuation, superimposed noise, exposure

to GSM coding).

There are numerous formant tracking applications and methods that are fea-

sible for calculating formant trajectories of voice samples for forensic purposes.

Commonly used methods (Kameny et al., 1974; Snell & Milinazzo, 1993) are

based on LPC coefficients and direct spectrum envelope estimation, but novel

techniques are also emerging that use deep learning for the same purpose (Zhang

et al., 2013; Dissen et al., 2019). Although, it is an open question whether deep

learning techniques have superficial performance in forensic speaker verifica-

tion and also in general formant extraction compared to traditional LPC-based

methods. Due to the data-driven basis of deep learning, it may be more robust

against different noises speech signals are corrupted with (such as reverberation

or white noise) if the training data is prepared to contain these corruptions

for each target class. Otherwise, it may be fooled by background noise (Ribeiro

et al., 2016). Deepformants applies a standard feedforward network architecture

to learn LPC parameters, thus, in theory, removing potentially highly inaccu-

rate and redundant estimates (Dissen & Keshet, 2021). The goal of the present
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paper is to examine the features derived from these formant extraction methods

in realistic forensic scenarios by applying a dataset that is created by forensic

protocol requirements. Therefore, the used dataset must meet certain criteria.

From an engineering point of view, various modeling techniques can be

adapted to the LR framework. State-of-the-art speaker verification techniques

(i-vector, x-vector) (Dehak et al., 2010; Mandasari et al., 2011; Snyder et al.,

2018; Kelly et al., 2019) produce speaker embeddings based on the spectrum of

the voice and require large amounts of training samples. On the other hand,

datasets developed directly for forensic purposes commonly contain limited sam-

ples. These corpora must meet certain special requirements (Morrison et al.,

2012), such as multiple recordings of individuals separated in time, and multiple

speaking styles from each speaker. Due to these highly controlled scenarios, a

limited number of speakers can be recorded. Therefore, more simple modeling

techniques are commonly used, among these are the multivariate kernel density

estimation (MVKD) and Gaussian mixture models (GMM) that are favorably

utilized in forensic voice comparison (Becker et al., 2008; Rose & Winter, 2010;

Morrison, 2011a; Wang & Zhang, 2015; Hughes, 2017; Tsuge & Ishihara, 2018),

These probability-based methods are easily fitted into the LR framework. Fol-

lowing the common practice of forensic voice comparison, we use the MVKD and

GMM modeling techniques to compare formants estimated by the investigated

formant trackers.

In this paper, we aim to investigate multiple matters on a Hungarian corpus

specially created for forensic voice comparison. First, we introduce the Hungar-

ian Database for Forensic Voice Comparison and evaluate the performance of

MVKD and GMM on the corpus using formants as a first result obtained on the

dataset. We would like to extend the existing works measuring the performance

of these methods by applying them to a corpus created for forensic purposes.

Coy and his colleagues (2021) compared deepformants to formants calculated

by Snack and found controversial results. Formants extracted by deepformants

were not found to be superior in all investigated scenarios. However, the ap-
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plied corpus did not fulfill the requirements of forensic practices: recordings

from multiple sessions from each speaker, and varying speaking styles.

Speaking styles in speaker verification were examined in some studies be-

fore, but they used artificial speaking style modifications for their experiments

(Afshan et al., 2020) or the speakers were forced to change vocal efforts and

speaking styles (Shriberg et al., 2008). Also, deep learning-based formant track-

ing was tested against noises added to the speech signal (Gowda et al., 2021).

Our goal in this paper is not to examine these effects separately, but to mea-

sure the formant trackers’ performance in a realistic forensic setup that our

applied corpus enables. Utterance length is also an essential factor in forensic

speaker comparison. There are studies that deal with these phenomena (such

as Honglin & Jiangping, 2012), but deep learning-based formant trackers were

not yet investigated.

Also, there are gaps in such works in Hungarian corpora, the filling of which

would prove very useful. We investigate the effect of recording length on perfor-

mance. Also, we would like to measure the performance of such methods when

different speaking styles are available for offender (sample of evidence from crime

scene) and suspect (test sample with speaker identity in question) voice sam-

ples. Finally, we examine the effect of noise on the applied formant calculation

methods by adding reverberation effects and white noises of two signal-to-noise

levels to the clean samples.

In the following chapters, we introduce the corpus, the formant tracker meth-

ods, modeling techniques, and evaluation metrics applied. Next, the experimen-

tal setup is described, followed by the achieved results. In the end, a detailed

discussion is given with the conclusion of the work.

2. Methods

2.1. Hungarian Database for Forensic Voice Comparison

We introduce for the first time the FORVOICE audio database for Forensic

Voice Comparison in the Hungarian language. To this day, this database con-
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tains samples of 80 speakers, 39 females and 41 males (between the ages of 18 and

35). Net total speaking time (without silences and pauses) is 24.74 hours. Four

speaking styles are recorded: free dialogue, controlled information exchange,

monologue, and prescripted answers to questions (simulation of refused answers

at interrogation). Two recordings were made per speaker, separated by a period

of at least two weeks. These are marked as sessions 1 and 2 in the rest of the

paper. The average duration of speaking durations per speaker and session is

266.66, 153.71, 124.39, and 12 seconds for each speaking style in respective order

as mentioned before. Prior to recording, subjects expressed written consent to

record their voice for the given research purposes. Head-mounted microphones

were used to ensure the best possible recording quality (format: PCM, 44kHz,

16-bit). Manual transcriptions and phoneme and word level segmentations are

available for all recordings.

2.2. Formant trackers and features

Four formant tracking methods were compared, three LPC based and one

deep learning based:

• Praat (Boersma & Weenink, 2021) with ‘Burg’ method,

• Snack Sound Toolkit (Kåre, 2021),

• Voicebox (Brookes, 2021) (a Matlab based toolbox), and

• Deepformants (Dissen & Keshet, 2021 trained on the training set of VTR-

TIMIT (Dissen et al., 2019). Based on the formant space examination in

Van Heuven, 2016, it may not be a problem that the model is trained on

a different language than it is used on.

25 ms as the window size and 10 ms as the time step were applied. Phoneme

level segmentation (generated by Hidden Markov Model Toolkit (HTK) [Young

& Young, 1993] using forced alignment based on the manual transcriptions) was

available for the whole corpus. Formants (F) were measured for vowels /i/, /u/,
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and /a:/, the ones with the farthest in the F1 and F2 space (nodes of a trian-

gle) in Hungarian. For each vowel, the mean, the standard deviation, and the

first three discrete cosine transform (DCT) coefficients (the 0th coefficient was

skipped) of the first three formants were calculated, resulting in a 15-dimension

feature vector for each vowel.

Figure 1 shows the formant space (in the space of F1 and F2 derived from

/i/, /u/, and /a:/ vowels) measured in samples without noise abruption (clean

samples). The formant space was modeled by GMM probability density func-

tions. The figure is not derived from the extracted features but it is only a

sample of the deviation between the formant tracking methods. As the figure

clearly shows, neither calculation framework gives the same (or completely ac-

curate) formant space even in the case of clean samples. With added noise,

even larger differences are found. Figures 2 and 3 show the formant space of

clean and white noise with 10 dB SNR in the case of Praat and deepformants.

The method deepformants seems to have calculated formants more robustly, but

even in this case, a large deviation can be observed between the two acoustic

scenarios. This may affect speaker verification results.
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Figure 1: Formant space (F1-F2 triangle derived from /i/, /u/, and /a:/ vowels) measured

at clean samples.

Figure 2: Formant space measured at clean (top) and white noise with 10 dB SNR (bottom)

samples with Praat. The GMM-modeled PDFs are shown.

13



Figure 3: Formant space measured at clean (top) and white noise with 10 dB SNR (bottom)

samples with deepformants. The GMM-modeled PDFs are shown.

2.3. LR framework

In a speaker verification method, we have to investigate two hypotheses: (1)

”What is the possibility that the sample in question originates from the suspect?”

and (2) ”What is the possibility that the sample in question originates from a

randomly selected speaker of a background population?” The ratio of these

expressions expresses the strength of the evidence (Eq. 1). LR is the likelihood

ratio, E is the evidence, Hso is the hypothesis of same-origin speakers, and Hdo

is the hypothesis of different-origin speakers.

LR =
p(E|Hso)

p(E|Hso)
(1)

There exist several procedures to calculate LR value from univariate and mul-

tivariate continuous data. In this study, we use multivariate kernel density

(MVKD) (Aitken & Lucy, 2004) and Gaussian mixture models (GMM) to esti-

mate the density functions of features described in Section 2.2.

2.3.1. Multivariate Kernel Density

Kernel density estimation is a nonparametric technique for density estima-

tion. It can be viewed as a generalization of histogram density estimation with

improved statistical properties. In MVKD, the density function of the samples

is estimated by using kernels centered at each data point. The estimated density
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function is obtained by summing these kernels. This eliminates the problem of

choosing the correct bins for histograms.

MVKD uses the summation of a set of equally-weighted kernels with one

kernel per group centered on the mean vector of the measurements from that

group for modeling between-group distribution. In forensic voice comparison,

the speaker is such a group. The Gaussian kernel is used with a scaled covari-

ance matrix of the pooled within-group covariance matrix. The degree of kernel

smoothing (scaling) is determined by a function of the number of background

database groups (Morrison, 2011a). The procedure is described in detail in

Aitken & Lucy, 2004 and Morrison, 2011a. For detailed information and equa-

tions about calculating the LR score of MVKD, see Morrison, 2011a.

2.3.2. GMM-UBM

Gaussian mixture models (Reynolds & Rose, 1995; Hansen & Hasan, 2015) is

a combination of Gaussian probability density functions (PDFs) that are com-

monly used to model multivariate data. It does not only cluster data in an

unsupervised way, but also gives its PDF. Applying GMM to speaker model-

ing provides the speaker-specific PDF, from which a probability score can be

obtained. Thus, by testing a sample with an unknown label, based on the

probability scores of the speaker GMMs, a decision can be made.

A GMM is a mixture of Gaussian PDFs parameterized by a number of mean

vectors, covariance matrices, and weights (Eq. 2). πg, µg, and Σg indicate the

weight, mean vector, and covariance matrix of the gth mixture component. For a

sequence of acoustic features (X = xn|n ∈ 1 · · ·T ), the probability of observing

these features is computed as Eq. 3.

f(xn|λ) =
M∑
g=1

πgN(xn|µg,Σg) (2)

p(X|λ) =
T∏

n=1

p(xn|λ) (3)

For the speaker verification scheme, a slightly different approach was developed

in (Hansen & Hasan, 2015). Besides the claimed speaker’s model, an alternate

15



model is necessary, which represents an ’opposing’ model. This alternate model

is called the universal background model (GMM-UBM). The GMM-UBM rep-

resents a background speaker population and it is trained on a large number of

speaker samples. This is used to answer the question if the given test sample is

more likely to be sampled from a target speaker or not and helps to calculate

the LR score. It was first used in Reynolds et al. (2000). Later, UBM was

used as an initial model for the speaker models: rather than training GMMs on

speaker data directly, the specific speaker models were created by adapting a

prior UBM (Gauvain & Lee, 1994). In the GMM-UBM scheme, Hso and Hdo

are represented by speaker-dependent GMM and the GMM-UBM, respectively.

2.3.3. Fusing calibration

Because formants were measured at multiple vowels, it is necessary to use

the information obtained from them jointly. The evaluated final results are

generated by fusing scores of individual vowel LR scores. Logistic regression

(Hastie et al., 2009) is a probabilistic classification method, offering a common

score-to-likelihood-ratio transformation, and it is feasible to calibrate a single

set of scores and fuse multiple sets of scores (Brummer et al., 2007). It takes

the same and different speaker labels as target labels and the extracted fea-

tures as input, then it fits a logistic curve to the data, which can be interpreted

as the probability of each class (same and different speaker identities). The

logistic regression-based calibration and fusion need multiple scores of compar-

isons from same and different speaker sample pairs combined into training data.

Tokens of the three applied vowels are used as acoustic-phonetic comparisons

as parallel comparisons on the same speech sample required by the algorithm.

Calibration is an affine transformation to a set of scores optimizing a cost func-

tion. In forensic voice comparison, this cost function to be minimized is the

log-likelihood-ratio cost (Cllr) (Van Leeuwen & Br"ummer, 2007) (Eq. 4),

Cllr =
1

2

 1

Nso

Nso∑
i=1

log2

(
1 +

1

LRsoi

)
+

1

Ndo

Ndo∑
j=1

log2
(
1 + LRdoj

) , (4)
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where Nso and Ndo are the number of same-origin and different-origin compar-

isons and LRso and LRdo are the likelihood ratios derived from same-origin

and different-origin comparisons. Cllr is a function measuring the balance of

LR scores of same and different speaker comparisons. Ideal same-origin and

different-origin comparison have log(LRso) > 0 and log(LRdo) < 0, respec-

tively. Incorrect (not as ideal as the mentioned inequalities) produce a higher

Cllr. The better the performance of a forensic comparison system, the more cor-

rect LR values are produced, the lower Cllr is achieved, supplying the evidence

magnitude. Thus, calibrated Cllr on known same-origin and different-origin

sample pairs provides a metric of system validity. Calibration in this study

followed Morrison (2011a) and was based on the UBM set. Same and different

speaker pairs were built from all speaker pairs, skipping mirrored pairs due to

symmetrical LR values (this is not exactly precise, but they are similar enough

to be skipped). Throughout the paper, fused Cllr is the base of all evaluation

metrics. Cllr is commonly drawn as tippet plots, showing LR components in a

clean way (Morrison, 2009b).

2.4. The experimental setup

Two speaking styles were used in the study:

• free dialogue (fd): completely free dialogue with a talking partner with-

out restrictions (∼ 10 minutes). Due to individual head-mounted micro-

phones, crosstalk volume was minimal between speakers;

• monologue (m): speakers should tell the events of their previous day

objectively (∼ 3 minutes per speaker).

The original clean recordings were also augmented with two types of dis-

tortions: reverberation and white noise. Reverb effects were applied by Matlab

(Dattorro, 1997) with the following Matlab function arguments: density of re-

verb tail – 0.5 (scale: 0–1), decay factor of reverb tail – 0.5 (scale: 0–1), ratio

of reverberated to original signal – 0.3 (scale: 0–1). The values were chosen by

Matlab recommendations. White noise was added to clean recordings to achieve

17



two mean signal-to-noise levels: 10 dB and 15 dB. SNR was calculated as the

sound intensity level ratio measured between the original clean recording and

the added noise. This augmentation resulted in four final sets: clean, reverb,

white noise with 10 dB SNR (‘wnoise10’ ) and white noise with 15 dB SNR

(‘wnoise15’ ).

Multiple scenarios were considered to be evaluated: same speaking style and

cross-speaking style experiments were carried out. In the same speaking style

setup, suspect and offender (evidence from crime scene) samples are both taken

from the free dialogue and monologue tasks and are evaluated. In the cross-

speaking style setup, suspect and offender samples were taken from different

tasks. In the last case, all speaking styles were used. From the 80 speakers, 60

were used to train the universal background model, the remaining 20 speakers

were selected for suspect and offender sets. Sex distribution of the UBM matches

the suspect-offender speakers. From the 20 speakers’ samples, session 1 was

used as the offender, while session 2 was applied as the suspect. Background

models were trained on both speaking styles and sessions of the selected 60

speakers. The resulting scenarios for evaluation are summarized in Table 1.

Formant measurements for UBM and offender models were always taken from

the total sample duration. As suspect data, various durations were considered

and evaluated. Sample chunks with lengths of 20, 40, 60, · · · , 300 seconds were

applied (15 possible chunk durations). Figure 4 shows the number of vowel

tokens in the function of sample chunk durations. It shows how the median

and standard deviation of token numbers of speakers change as the function of

sample duration increases. We would expect that the more tokens we have to

extract features from, the more robust the speaker verification is. For the sake

of data uniformity, if the total duration of a given sample was exceeded by the

chunk length, the vowel tokens were selected from the total sample leaving the

original chunk length as notation. For example, for a 120 seconds long speech

sample, the 160 seconds long chunk length used the total speech sample but was

still marked as ‘160’. Through initial experiments, the mixture number of the
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Table 1: Summary of evaluation scenarios according to speaking styles

test case UBM #speakers session speaking style

offender 60 1 and 2 free dialogue and monologue

1. suspect 20 1 free dialogue

suspect 20 2 free dialogue

UBM 60 1 and 2 free dialogue and monologue

2. offender 20 1 monologue

suspect 20 2 monologue

UBM 60 1 and 2 free dialogue and monologue

3. offender 20 1 free dialogue

suspect 20 2 monologue

UBM 60 1 and 2 free dialogue and monologue

4. offender 20 1 monologue

suspect 20 2 free dialogue

Figure 4: Number of vowel tokens according to chunk durations.
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GMM model was selected as 11 and all features were selected to be included in

the final feature vector.

2.5. Evaluation metrics

Multiple evaluation metrics are used to assess the performance of the test

scenarios:

• Post-calibration fused Cllr value as described earlier (lower score means

better performance).

• Equal error rate (EER). EER is the level where the false acceptance rate

and the false rejection rate are equal, commonly used in biometric security

systems. Lower EER means better performance.

• Receiver operating characteristics (ROC) curve. ROC can measure the

performance of a binary classifier system as its discrimination threshold is

varied. In our case, by discrimination threshold, we mean the level of LR

score of accepting a speaker pair as same. The area under the ROC curve

(AUC) value, when using normalized units, is equal to the probability that

a classifier will rank a randomly chosen same speaker pair higher than a

randomly chosen different origin speaker pair. A higher AUC value means

better performance.

One-way ANOVA tests were used for checking mean value equivalence for inves-

tigated groups. To measure speaking style difference significance, generalized

linear mixed models were applied (Hedeker, 2005).

3. Results

3.1. Chunk lengths

The effect of chunk lengths on performance was evaluated. Line plots are

used for visualization to emphasize the possible trends of performance values.

Figure 5 shows the Cllr values measured at clean samples as a function of chunk

lengths. The mean performance of each formant calculation method is shown
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separately. Due to the four experimental setups, a standard deviation range

can also be depicted. Starting from 20 s, a continuously decreasing trend can

be observed when applying both GMM and MVKD modeling techniques. Al-

though MVKD resulted in a lower Cllr value at the beginning, GMM seems to

outperform when enough tokens are available from all vowels. The EER and

AUC values develop in the same way (Figures 6 and 7) as one would expect

looking at the Cllr values. EERs fall (and AUC values rise) sharply until the

100 s chunk length and continue to decrease (AUC: increase) in a slighter way

afterwards. Considering the various formant calculation methods, praat and

snack had the lowest Cllr. The single method based on deep learning seems to

lag behind the others, having an increased Cllr throughout the chunk lengths.

ANOVA tests show no significant differences (p-values are 0.622 and 0.113 for

GMM and MVKD, respectively) at 20 s chunk lengths between formant mea-

surement methods. In the case of 300 s, there is a significant difference in mean

values of Cllr in the case of GMM (p-values of ANOVA tests are 0.026 and 0.066

for GMM and MVKD, respectively).

3.2. Same and different speaking styles

Speaking style can have a significant effect on voice comparison by an LR

framework (Drygajlo et al., 2015). Among the four experimental setups, two

used the same speaking style for suspect and offender data (#1 and #2), and

likewise, two used different ones (#3 and #4). For the experiments, the total

lengths of the samples are used. All results obtained in these experimental se-

tups are included in Table 2. By depicting the single Cllr values of the same and

different speaking styles as a scatter plot (Figure 8), it is clear that by applying

the same speaking style as enrollment and target samples, lower Cllr can be

achieved. Same and different speaking style Cllr measurements are noted by

‘+’ and ‘x’, respectively. The Cllr values depicted are single values for a single

experiment scenario. The same effect of noise corruption can also be observed:

better and indistinguishable results of clean and reverberated samples, and al-

most identically worse results for white noise added. Generalized linear mixed
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Figure 5: Cllr values according to split lengths using clean samples (top: GMM, bottom:

MVKD).

Figure 6: AUC values according to split lengths using clean samples (top: GMM, bottom:

MVKD).
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Figure 7: Equal error rates according to split lengths using clean samples (top: GMM,

bottom: MVKD).

models were fitted to the data with Cllr as the target variable and speaking style

(same or different), noise, and method as fixed variables. In the case of both

GMM and MVKD, speaking style and noise were significant factors (p < 0.05)

and the method was not (p > 0.05).

By calculating the difference of the mean of the Cllr values for same and

different speaker styles (Figure 9), only positive values are present, showing

that different speaking styles always deteriorate performance.

3.3. Noise types

Noises applied to the clean samples have different effects. Reverberation did

not decrease the performance of the LR framework. On the contrary, there are

multiple cases when the reverb effect did lower the Cllr value. Figure 10 shows

mean and standard deviations (as error bars) of Cllr for every formant calcu-

lation method and sample quality. Only the results of 300 s long chunks are

depicted because all chunk durations showed the same behavior in evaluation.
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Table 2: Results aggregated according to different or same speaking styles in suspect and

offender samples.

method noise speaking style
AUC minCllr eer

GMM MVKD GMM MVKD GMM MVKD

de
ep

fo
rm

an
ts

clean
different 0.930 0.885 0.385 0.505 0.153 0.164

same 0.940 0.911 0.371 0.422 0.132 0.139

reverb
different 0.888 0.899 0.475 0.492 0.188 0.179

same 0.949 0.926 0.310 0.378 0.125 0.140

wnoise10
different 0.871 0.871 0.550 0.544 0.236 0.224

same 0.908 0.950 0.449 0.316 0.157 0.108

wnoise15
different 0.911 0.885 0.459 0.523 0.205 0.214

same 0.909 0.951 0.458 0.324 0.165 0.141

pr
aa

t

clean
different 0.938 0.929 0.332 0.384 0.153 0.132

same 0.959 0.956 0.288 0.316 0.136 0.111

reverb
different 0.929 0.948 0.361 0.341 0.159 0.132

same 0.959 0.964 0.273 0.282 0.139 0.135

wnoise10
different 0.835 0.820 0.622 0.647 0.238 0.237

same 0.859 0.911 0.550 0.447 0.191 0.164

wnoise15
different 0.844 0.849 0.604 0.590 0.252 0.209

same 0.909 0.916 0.451 0.441 0.154 0.179

sn
ac

k

clean
different 0.944 0.915 0.325 0.434 0.135 0.164

same 0.959 0.945 0.282 0.340 0.125 0.132

reverb
different 0.924 0.930 0.400 0.397 0.135 0.180

same 0.955 0.950 0.284 0.328 0.108 0.109

wnoise10
different 0.846 0.873 0.583 0.540 0.208 0.203

same 0.883 0.937 0.527 0.378 0.211 0.160

wnoise15
different 0.850 0.888 0.595 0.500 0.213 0.193

same 0.914 0.940 0.418 0.368 0.188 0.138

vo
ic

eb
ox

clean
different 0.933 0.925 0.394 0.394 0.153 0.135

same 0.942 0.946 0.346 0.330 0.139 0.110

reverb
different 0.938 0.934 0.357 0.377 0.147 0.142

same 0.946 0.957 0.342 0.296 0.112 0.110

wnoise10
different 0.833 0.826 0.610 0.657 0.231 0.249

same 0.850 0.899 0.602 0.464 0.224 0.179

wnoise15
different 0.830 0.811 0.604 0.679 0.256 0.274

same 0.900 0.886 0.492 0.515 0.181 0.210
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Figure 8: Scatter plot of Cllr values according to speaking styles (top: MVKD, bottom:

GMM).

Figure 9: Difference of Cllr values according to speaking styles (Cllr
diff −Cllr

diff ). Positive

values mean lower Cllr scores in same speaking style cases (top: MVKD, bottom: GMM).
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However, various observations can be made by observing the measured values.

As expected, white noise added to the samples has a higher impact on perfor-

mance. LPC-based calculation methods exhibit a high degree of deterioration

in all evaluation metrics. The method deepformants, however, seems to have a

more robust resistance to white noise. In the case of MVKD, the Cllr did not

decrease at all, and in the case of GMM, deepformants had the lowest mean

values across white noise corrupted samples. There are no differences between

the 10 dB and 15 dB SNR samples. The p-values of one-way ANOVA tests are

shown in Table 3 marking if there are any significant differences between sam-

ple qualities and formant calculation methods. Besides deepformants, all other

methods show significant differences across noise types. On the other hand, if

we consider noise types, neither case reaches a significance level to show that

the methods would differ for the given noise type.

Figure 10: Cllr values according to formant calculation methods and noises (chunk size:

300s). Top: MVKD, bottom: GMM.
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Table 3: The p-values of one-way ANOVA tests in case of 300 ms chunk lengths for noises

across methods and methods across noises. Values < 0.05 are marked with ’*’.

GMM MVKD

m
et

h
od

praat 0.0001* 0.0054*
snack 0.0042* 0.3079
voicebox 0.0025* 0.0021*
deepformants 0.0720 0.9501

n
oi

se
clean 0.0257 0.0656
reverb 0.6741 0.1329
wnoise15 0.5985 0.1053
wnoise10 0.2848 0.3498

4. Discussion

In this study, four formant trackers were systematically evaluated for foren-

sic voice comparison. We analyzed the performance of various formant trackers

in a forensic voice comparison setup depending on speaking style, length of sus-

pended recording, and noises. Based on our results, the deep learning approach

(deepformants) showed significant differences. However, the other methods, al-

though all are based on LPC, also did not produce the same results (see Figure

1 for initial formant measurement example). On the contrary, significant differ-

ences could be observed. The method deepformants shows a narrower F1–F2

space than the other methods, explained by the real ‘tracking’ nature of its

algorithm. While the LPC-based ones are estimating formants in each frame

independently, deepformants takes neighboring frames into consideration when

estimating formants in a given frame. This results in a narrower F1–F2 space

but its advantage is its more robust nature. As Figure 8 shows, there are fewer

differences between samples with different noise corruption in its case (although

it performs basically worse also in the case of clean samples).

Our results confirm that the longer speech segments are used (more formant

tokens are involved), the better the performance can be measured. Below 120−

140 seconds, there is a rapid decline in Cllr. If we look at EERs, a value of
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around 0.15 can be achieved from 60 − 80 seconds long chunks. This implies

that formant estimates are rather unreliable if they are based on short segments.

Speaking style had a significant effect on performance measurements. When

the offender and suspect speech samples originated from the same speaking style

(free dialog and monologue in this study), lower Cllr, EER and higher AUC

could be calculated compared to cases when the offender and suspect samples

contained different speaking styles. Figure 10 shows that when the mean of the

Cllr of different speaking style test trials was subtracted from same speaking

style mean values, no negative values could be calculated. This implies that

when comparing formants in a forensic voice comparison situation, speaking

style matters a lot. It is always advised to compare the speech material of

suspects with evidence of the same style.

Reverberation didn’t seem to influence formant estimation in a bad way. In

some cases, even lower Cllr and EER could be calculated compared to clean

samples. White noise, however, mostly deteriorated the performance to a large

extent. Besides deepformants, which seemed to be robust against white noise,

but performed worse even with clean samples, only snack was robust against

white noise with 15 dB SNR. White noise with 10 dB SNR always deteriorated

performance, only deepformants was resistant to it using MVKD modeling.

There are no exact results on which method is better and which is to be

used in studies and works. Cllr values of Figure 8 shows that the three LPC

based methods perform similarly. They all make large mistakes when samples

are corrupted with white noise. Although the method deepformants performs

slightly worse than the others used in this study, it seems to have more resilience

to white noise. This may be due to its real formant tracking approach, as

mentioned before. This implies that it cannot be stated that the DNN approach

outperforms the LPC-based ones.
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5. Conclusion

In this study, several aspects of formant modeling in forensic voice compari-

son were investigated. A corpus containing 80 speakers with multiple speaking

styles is used to estimate first and second formant values by four different for-

mant estimation methods (three based on LPC, one on deep learning). Formants

were modeled by multivariate kernel density estimation and Gaussian mixture

models. It was found that the length of recording used as suspect samples in-

fluences performance to a large extent. Additionally, formant tracking based

on deep learning lags behind the other methods in all metrics. Same and dif-

ferent speaking styles also have a measurable effect on performance. Samples

corrupted with reverberation do not deteriorate results but white noise does.

The continuation of the work will be to investigate these effects also by fully

automatic voice comparison systems, such as x-vector and i-vectors.

Acknowledgements

The work was funded by project no. FK128615, which has been imple-

mented with the support provided from the National Research, Development,

and Innovation Fund of Hungary, financed under the FK_18 funding scheme.

References

Afshan, A., Guo, J., Park, S. J., Ravi, V., McCree, A., & Alwan, A. (2020).

Variable frame rate-based data augmentation to handle speaking-style vari-

ability for automatic speaker verification. arXiv (Cs, Eess). doi:https:

//doi.org/10.48550/arXiv.2008.03616. arXiv:2008.03616.

Aitken, C. G., & Lucy, D. (2004). Evaluation of trace evidence in the

form of multivariate data. Journal of the Royal Statistical Society: Series

C (Applied Statistics), 53 , 109–122. doi:https://doi.org/10.1046/j.0035-

9254.2003.05271.x.

29

http://dx.doi.org/https://doi.org/10.48550/arXiv.2008.03616
http://dx.doi.org/https://doi.org/10.48550/arXiv.2008.03616
http://arxiv.org/abs/2008.03616
http://dx.doi.org/https://doi.org/10.1046/j.0035-9254.2003.05271.x
http://dx.doi.org/https://doi.org/10.1046/j.0035-9254.2003.05271.x


Bazen, A. M., & Veldhuis, R. N. (2004). Likelihood-ratio-based biometric veri-

fication. IEEE Transactions on Circuits and Systems for Video Technology ,

14 , 86–94. doi:https://doi.org/10.1109/TCSVT.2003.818356.

Becker, T., Jessen, M., & Grigoras, C. (2008). Forensic speaker verification using

formant features and Gaussian mixture models. In Ninth Annual Conference

of the International Speech Communication Association.

Boersma, P., & Weenink, D. (2021). Praat: Doing phonetics by computer .

[Computer program] (Version 6.1.42). Retrieved 15 April 2021. URL: http:

//www.praat.org/.

Brookes, M. (2021). Voicebox . URL: http://www.ee.ic.ac.uk/hp/staff/dmb/

voicebox/voicebox.html.

Brummer, N., Burget, L., Cernocky, J., Glembek, O., Grezl, F., Karafiat, M.,

Van Leeuwen, D. A., Matejka, P., Schwarz, P., & Strasheim, A. (2007).

Fusion of heterogeneous speaker recognition systems in the stbu submis-

sion for the nist speaker recognition evaluation 2006. IEEE Transactions

on Audio, Speech, and Language Processing , 15 , 2072–2084. doi:https:

//doi.org/10.1109/TASL.2007.902870.

Chaudhary, G., Srivastava, S., & Bhardwaj, S. (2017). Feature extraction meth-

ods for speaker recognition: A review. International Journal of Pattern

Recognition and Artificial Intelligence, 31 , 1750041. doi:https://doi.org/

10.1142/S0218001417500410.

Coy, T., Hughes, V., Harrison, P., & Gully, A. J. (2021). A comparison of

the accuracy of dissen and keshet’s (2016) deepformants and traditional lpc

methods for semi-automatic speaker recognition. Interspeech 2021 , (pp. 406–

410). doi:https://doi.org/10.21437/Interspeech.2021-1487.

Dattorro, J. (1997). Effect design, part 1: Reverberator and other filters. Jour-

nal of the Audio Engineering Society , 45 , 660–684.

30

http://dx.doi.org/https://doi.org/10.1109/TCSVT.2003.818356
http://www.praat.org/
http://www.praat.org/
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://dx.doi.org/https://doi.org/10.1109/TASL.2007.902870
http://dx.doi.org/https://doi.org/10.1109/TASL.2007.902870
http://dx.doi.org/https://doi.org/10.1142/S0218001417500410
http://dx.doi.org/https://doi.org/10.1142/S0218001417500410
http://dx.doi.org/https://doi.org/10.21437/Interspeech.2021-1487


Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P., & Ouellet, P. (2010). Front-

end factor analysis for speaker verification. IEEE Transactions on Audio,

Speech, and Language Processing , 19 , 788–798.

Dissen, S., & Keshet, J. (2021). DeepFormants. URL: https://github.com/

MLSpeech/DeepFormants.

Dissen, Y., Goldberger, J., & Keshet, J. (2019). Formant estimation and track-

ing: A deep learning approach. The Journal of the Acoustical Society of

America, 145 , 642–653. doi:https://doi.org/10.1121/1.5088048.

Drygajlo, A., Jessen, M., Gfroerer, S., Wagner, I., Vermeulen, J., & Niemi, T.

(2015). Methodological guidelines for best practice in forensic semiautomatic

and automatic speaker recognition. Verlag f"ur Polizeiwissenschaft.

Gargouri, D., Kammoun, M. A., & Hamida, A. B. (2006). A comparative

study of formant frequencies estimation techniques. In Proceedings of the 5th

WSEAS International Conference on Signal Processing, Istanbul, Turkey (pp.

15–19).

Gauvain, J.-L., & Lee, C.-H. (1994). Maximum a posteriori estimation for mul-

tivariate gaussian mixture observations of markov chains. IEEE Transactions

on Speech and Audio Processing , 2 , 291–298. doi:https://doi.org/10.1109/

89.279278.

Gowda, D. N., Bollepalli, B., Kadiri, S. R., & Alku, P. (2021). Formant

tracking using quasi-closed phase forward-backward linear prediction anal-

ysis and deep neural networks. IEEE Access, 9 , 151631–151640. doi:https:

//doi.org/10.1109/ACCESS.2021.3126280.

Guillemin, B. J., & Watson, C. (2008). Impact of the gsm mobile phone

network on the speech signal: Some preliminary findings. International

Journal of Speech, Language & the Law , 15 . doi:https://doi.org/10.1558/

IJSLL.V15I2.193.

31

https://github.com/MLSpeech/DeepFormants
https://github.com/MLSpeech/DeepFormants
http://dx.doi.org/https://doi.org/10.1121/1.5088048
http://dx.doi.org/https://doi.org/10.1109/89.279278
http://dx.doi.org/https://doi.org/10.1109/89.279278
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3126280
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3126280
http://dx.doi.org/https://doi.org/10.1558/IJSLL.V15I2.193
http://dx.doi.org/https://doi.org/10.1558/IJSLL.V15I2.193


Hansen, J. H., & Hasan, T. (2015). Speaker recognition by machines and

humans: A tutorial review. IEEE Signal Processing Magazine, 32 , 74–99.

doi:https://doi.org/10.1109/MSP.2015.2462851.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical

learning: Data mining, inference, and prediction. Springer Science & Business

Media.

Hedeker, D. (2005). Generalized linear mixed models. Encyclopedia of Statistics

in Behavioral Science.

Honglin, C., & Jiangping, K. (2012). Speech length threshold in forensic

speaker comparison by using long-term cumulative formant (ltcf) analy-

sis. In 2012 Second International Conference on Instrumentation, Measure-

ment, Computer, Communication and Control (pp. 418–421). doi:https:

//doi.org/10.1109/IMCCC.2012.103.

Hughes, V. (2017). Sample size and the multivariate kernel density likelihood

ratio: How many speakers are enough? Speech Communication, 94 , 15–29.

doi:https://doi.org/10.1016/j.specom.2017.08.005.

Kameny, I., Brackenridge, W. A., & Gillmann, R. (1974). Automatic formant

tracking. The Journal of the Acoustical Society of America, 56 , S28–S28.

doi:https://doi.org/10.1121/1.1914097.

Kåre, S. (2021). Snack Sound Toolkit . URL: http://www.speech.kth.se/snack.

Kelly, F., Forth, O., Kent, S., Gerlach, L., & Alexander, A. (2019). Deep

neural network based forensic automatic speaker recognition in vocalise using

x-vectors. In Audio Engineering Society Conference: 2019 AES International

Conference on Audio Forensics.

Mandasari, M. I., McLaren, M. L., & van Leeuwen, D. A. (2011). Evaluation of

i-vector speaker recognition systems for forensic application. Florence, Italy.

32

http://dx.doi.org/https://doi.org/10.1109/MSP.2015.2462851
http://dx.doi.org/https://doi.org/10.1109/IMCCC.2012.103
http://dx.doi.org/https://doi.org/10.1109/IMCCC.2012.103
http://dx.doi.org/https://doi.org/10.1016/j.specom.2017.08.005
http://dx.doi.org/https://doi.org/10.1121/1.1914097
http://www.speech.kth.se/snack


Matz, M. V., & Nielsen, R. (2005). A likelihood ratio test for species membership

based on dna sequence data. Philosophical Transactions of the Royal Soci-

ety B: Biological Sciences, 360 , 1969–1974. doi:https://doi.org/10.1098/

rstb.2005.1728.

Morrison, G. S. (2009a). Forensic voice comparison and the paradigm

shift. Science & Justice, 49 , 298–308. doi:https://doi.org/10.1016/

j.scijus.2009.09.002.

Morrison, G. S. (2009b). Likelihood-ratio forensic voice comparison using

parametric representations of the formant trajectories of diphthongs. The

Journal of the Acoustical Society of America, 125 , 2387–2397. doi:https:

//doi.org/doi.org/10.1121/1.3081384.

Morrison, G. S. (2011a). A comparison of procedures for the calculation of

forensic likelihood ratios from acoustic–phonetic data: Multivariate kernel

density (mvkd) versus gaussian mixture model–universal background model

(gmm–ubm). Speech Communication, 53 , 242–256. doi:https://doi.org/

10.1016/j.specom.2010.09.005.

Morrison, G. S. (2011b). Measuring the validity and reliability of forensic

likelihood-ratio systems. Science & Justice, 51 , 91–98. doi:https://doi.org/

10.1016/j.scijus.2011.03.002.

Morrison, G. S., Rose, P., & Zhang, C. (2012). Protocol for the collection of

databases of recordings for forensic-voice-comparison research and practice.

Australian Journal of Forensic Sciences, 44 , 155–167. doi:https://doi.org/

10.1080/00450618.2011.630412.

Reynolds, D. A., Quatieri, T. F., & Dunn, R. B. (2000). Speaker verification

using adapted Gaussian mixture models. Digital Signal Processing , 10 , 19–41.

doi:https://doi.org/10.1006/dspr.1999.0361.

33

http://dx.doi.org/https://doi.org/10.1098/rstb.2005.1728
http://dx.doi.org/https://doi.org/10.1098/rstb.2005.1728
http://dx.doi.org/https://doi.org/10.1016/j.scijus.2009.09.002
http://dx.doi.org/https://doi.org/10.1016/j.scijus.2009.09.002
http://dx.doi.org/https://doi.org/doi.org/10.1121/1.3081384
http://dx.doi.org/https://doi.org/doi.org/10.1121/1.3081384
http://dx.doi.org/https://doi.org/10.1016/j.specom.2010.09.005
http://dx.doi.org/https://doi.org/10.1016/j.specom.2010.09.005
http://dx.doi.org/https://doi.org/10.1016/j.scijus.2011.03.002
http://dx.doi.org/https://doi.org/10.1016/j.scijus.2011.03.002
http://dx.doi.org/https://doi.org/10.1080/00450618.2011.630412
http://dx.doi.org/https://doi.org/10.1080/00450618.2011.630412
http://dx.doi.org/https://doi.org/10.1006/dspr.1999.0361


Reynolds, D. A., & Rose, R. C. (1995). Robust text-independent speaker identi-

fication using Gaussian mixture speaker models. IEEE Transactions on Speech

and Audio Processing , 3 , 72–83. doi:https://doi.org/10.1109/89.365379.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ”Why Should I Trust

You?”: Explaining the Predictions of Any Classifier . arXiv. URL: http:

//arxiv.org/abs/1602.04938. arXiv:1602.04938.

Rose, P., & Winter, E. (2010). Traditional forensic voice comparison with female

formants: Gaussian mixture model and multivariate likelihood ratio analyses.

SST , (pp. 42–45).

Saks, M. J., & Koehler, J. J. (2005). The coming paradigm shift in forensic

identification science. Science, 309 , 892–895. doi:https://doi.org/10.1126/

science.1111565.

Shriberg, E., Graciarena, M., Bratt, H., Kathol, A., Kajarekar, S. S., Jameel,

H., Richey, C., & Goodman, F. (2008). Effects of vocal effort and speaking

style on text-independent speaker verification. In Ninth Annual Conference

of the International Speech Communication Association. 22–26 September

2008, Brisbane, Australia.

Snell, R. C., & Milinazzo, F. (1993). Formant location from lpc analysis data.

IEEE Transactions on Speech and Audio Processing , 1 , 129–134. doi:https:

//doi.org/10.1109/89.222882.

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., & Khudanpur, S. (2018).

X-vectors: Robust dnn embeddings for speaker recognition. In 2018 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP)

(pp. 5329–5333). 15–20 April 2018, Calgary, Alberta, Canada.

Titze, I. R., & Martin, D. W. (1998). Principles of voice production. Acoustical

Society of America.

Tsuge, S., & Ishihara, S. (2018). Text-dependent forensic voice comparison:

Likelihood ratio estimation with the hidden markov model (hmm) and gaus-

34

http://dx.doi.org/https://doi.org/10.1109/89.365379
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
http://dx.doi.org/https://doi.org/10.1126/science.1111565
http://dx.doi.org/https://doi.org/10.1126/science.1111565
http://dx.doi.org/https://doi.org/10.1109/89.222882
http://dx.doi.org/https://doi.org/10.1109/89.222882


sian mixture model. In Proceedings of the Australasian Language Technology

Association Workshop 2018 (pp. 17–25).

Van Heuven, V. J. (2016). An acoustic characterisation of English vowels pro-

duced by american, dutch, chinese and hungarian speakers. Hungarian Jour-

nal of Applied Linguistics, 16 , 1–20.

Van Leeuwen, D. A., & Br"ummer, N. (2007). An introduction to application-

independent evaluation of speaker recognition systems. In Speaker classifica-

tion I (pp. 330–353). Springer. doi:https://doi.org/10.1007/978-3-540-

74200-5_19.

Wang, H., & Zhang, C. (2015). Forensic automatic speaker recognition based

on likelihood ratio using acoustic-phonetic features measured automatically.

Journal of Forensic Science and Medicine, 1 , 119. doi:https://doi.org/

10.4103/2349-5014.169617.

Young, S. J., & Young, S. (1993). The HTK hidden Markov model toolkit:

Design and philosophy . Cambridge University Engineering Department.

Zhang, C., Morrison, G. S., Enzinger, E., & Ochoa, F. (2013). Effects of tele-

phone transmission on the performance of formant-trajectory-based foren-

sic voice comparison–female voices. Speech Communication, 55 , 796–813.

doi:https://doi.org/10.1016/j.specom.2013.01.011.

35

http://dx.doi.org/https://doi.org/10.1007/978-3-540-74200-5_19
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74200-5_19
http://dx.doi.org/https://doi.org/10.4103/2349-5014.169617
http://dx.doi.org/https://doi.org/10.4103/2349-5014.169617
http://dx.doi.org/https://doi.org/10.1016/j.specom.2013.01.011

	Introduction
	Methods
	Hungarian Database for Forensic Voice Comparison
	Formant trackers and features
	LR framework
	Multivariate Kernel Density
	GMM-UBM
	Fusing calibration

	The experimental setup
	Evaluation metrics

	Results
	Chunk lengths
	Same and different speaking styles
	Noise types

	Discussion
	Conclusion

