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Abstract

Ultrasound Tongue Imaging (UTI) is a technique suitable for the acquisition of artic-
ulatory data, showing the motion of the tongue. When the subject is speaking, the
ultrasound transducer is placed below the chin, resulting in mid-sagittal images of the
tongue movement. The typical result of 2D ultrasound recordings is a series of gray-
scale images in which the tongue surface contour has a greater brightness than the
surrounding tissue and air. UTI has been used for many years in phonetic research
on speech production. However, these studies are mostly based on manually anno-
tated articulatory data, and reliable extraction of high-level features from ultrasound
data remains a challenge. In this paper, we propose a method to generate realistic
ultrasound images from a database of midsagittal images of the tongue. First, we
explain the principle of Generative Adversarial Networks (GAN), which is a subset
of generative models, where deep neural networks are applied. Then, we detail our
method, starting with the properties of the dataset, to the conception of the convolu-
tional neural network model. The model consists of a generator and a discriminator
network, which are trained against each other in the task of realistic image generation:
the generator tries to fool the discriminator. The experiments demonstrate the effi-
ciency of the GAN in creating realistic images when the training is run long enough,
in order that the generator network can learn the properties of ultrasound images.
The GAN-generated images were tested with a subjective test, and it supported our
hypothesis that the synthesized ultrasound tongue images are of high quality and are
difficult to distinguish from real images of the tongue. The results can be exploited
for data augmentation, for predicting the next frame in a UTI sequence or for motion
detection of tongue contours within images.

1. Introduction

Ultrasound tongue imaging (UTI) is a technique suitable for the acquisition

of articulatory data. Stone (2005) summarized the typical methodology of in-

vestigating speech production using ultrasound. Usually, when the subject is
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speaking, the ultrasound transducer is placed below the chin, resulting in mid-

sagittal images of the tongue movement. The typical result of 2D ultrasound

recordings is a series of gray-scale images in which the tongue surface contour

has a greater brightness than the surrounding tissue and air (for a sample, see

Figure 1). Although a large number of linguistic studies are applying 2D ultra-

sound (Stone, 2005), there are not many freely available databases with a large

number of images. Eshky et al. (2018) introduced a database that is related

to the Ultrax2020 project (http://www.ultrax-speech.org/ultrasuite), but

it contains ultrasound images of children only. This UltraSuite repository cur-

rently contains tongue ultrasound data from 5–12 year old children who are

typically developing or have a speech sound disorder. Another UTI dataset is

related to Silent Speech Interfaces (Ji et al., 2018), but it contains processed

ultrasound images and not the original raw data.

Ultrasound imaging of the tongue has been used for many years in research

on speech production (Stone, 2005). For some relevant experiments of the MTA-

ELTE „Lendület” Lingual Articulation Research Group, see Markó et al. (2017,

2018, 2019a) and Markó et al. (2019b). However, these studies are based on

manually annotated articulatory data, and reliable extraction of high-level fea-

tures from ultrasound data (e.g. automatic tongue contour tracking) remains a

challenge (Csapó & Lulich, 2015; Csapó & Csopor, 2015; Xu et al., 2017b). The

topic of the current study, i.e. the realistic synthesis of ultrasound images can

be a starting point for exploiting the higher-level representation of the tongue

in a variety of applications in speech research.

Ever since computers were developed, scientists and engineers thought of

artificially intelligent systems that work and react like humans. In the past

decades, the increase of generally available computational power provided a

helping hand for developing fast learning machines. Meanwhile, the internet

supplied an enormous amount of data for training. These two developments

boosted the research on smart self-learning systems, with neural networks among

the most promising techniques.
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Recently, deep neural networks have produced high accuracy scores in speech

and ultrasound-related tasks, such as articulatory-to-acoustic mapping (Csapó

et al., 2017b), articulation-to-text mapping (Xu et al., 2017a; Tóth et al., 2018),

articulation-to-F0 prediction (Grósz et al., 2018; Csapó et al., 2019), acoustic-

to-articulatory inversion (Porras et al., 2019) and also edge (contour) detec-

tion (Csapó & Csopor, 2015; Xu et al., 2017b). For these problems, usually,

regression models are used, which can be trained for mapping from the input

to the target feature. Typical networks are fully-connected feed-forward deep

neural networks, convolutional neural networks, and recurrent neural networks.

1.1. Generative models

A branch of deep learning methods deals with generative models, i.e. how

to generate new data that is similar to the properties of the training data. In

general, the goal of the generative models is to estimate or to learn the data

distribution of the training data and generate new data points with some vari-

ations by modeling a distribution, which is as much as possible close to the real

data distribution. Most of the generative models use the maximum likelihood

method to define a model that estimates the parametrized probability distribu-

Figure 1: Ultrasound image of the tongue. Top: raw scanline data. Bottom: ’wedge’ format

(the tongue root is on the left, while the tongue tip on the right).
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tion (Goodfellow, 2017). Those models differ mainly in the approximation of

maximum likelihood. There are two main types: 1) models that aim to repre-

sent the probability distribution over the space where the data lies explicitly,

and 2) models that interact implicitly with the probability distribution and try

to generate samples from it. Since the introduction of Generative Adversarial

Networks (GANs) by Goodfellow et al. (2014), they have proven a vast potential

to automatically learn the natural features of a particular dataset, to mimic any

data distribution and generate data like it. Typical examples include generated

digits, flowers, realistic human faces (Karras et al., 2018), or speech data for

emotion recognition (Chatziagapi et al., 2019).

In this paper, we aim to synthesize realistic ultrasound tongue images using

Generative Adversarial Networks, that belong to the second type of the above

generative models. The GAN-generated ultrasound images can be useful for

data augmentation, which might be necessary for scenarios with limited data,

e.g. for motion detection of tongue contours within images (Xu et al., 2017b) or

articulatory-to-acoustic mapping (Csapó et al., 2017b).

2. Methods

2.1. GAN framework

The purpose of GANs is to create samples, which are able to deceive humans

and even computers. Thus, the main idea of GAN is to set up a game between

two players: the generator and the discriminator (Goodfellow et al., 2014; Good-

fellow, 2017). The generator is the player that creates samples. Those samples

are intended to come from the same distribution as the training data. The dis-

criminator is the second player that examines samples to decide whether they

are real or fake. The discriminator usually learns using traditional supervised

learning techniques to divide inputs into two classes (real or fake). Figure 2

shows the block diagram of a GAN with sample real and generated ultrasound

tongue images. Each of our players has its own differentiable function with

respect to its parameters and its inputs. The discriminator has a function D
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Figure 2: Block diagram of a GAN with discriminator and generator networks, used for the

ultrasound tongue image synthesis task.

that takes x as input and uses θD as parameters. The generator is defined by a

function G that takes z as input and uses θG as parameters. Both players have

cost functions that are defined in terms of both players’ parameters. This cost

function is defined by the following equation:

minθGmaxθD (Exlog(DθD (x) + Ezlog(1−DθD (GθG(z)))

Now let us explain this relation. We have a real image x that will be ex-

amined by the discriminator D. For this image, it will give a value close to

zero. Hence, for a fake image, it will give a higher value close to one. For the

generator G, he will take a randomly generated vector from a very simple and

well-known distribution and produce an image that will also be used to train

the discriminator. The latter will be alternatively shown real and fake images.

The generator’s role is to minimize the output of D by providing more realistic

images, while D tries to maximize the same thing. Each player’s cost depends

on the other player’s parameter, but they can only control their own parameter.

This scenario is most straightforward to describe as a ’minimax’ game where

the solution is a Nash equilibrium (Goodfellow et al., 2014; Goodfellow, 2017).
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2.2. Dataset

Before building the required neural network, we chose the dataset from

which we are aiming to generate similar samples. This dataset contains tongue-

ultrasound images. For training the GAN, we used ultrasound tongue images

from a previously collected database (Csapó et al., 2017a), which applied the

”Micro” ultrasound system (Articulate Instruments Ltd., UK). The database

contains raw midsagittal ultrasound images of the scanline data (see Fig. 1 left)

recorded at 82 fps from several speakers, of which we chose one Hungarian female

speaker for our experiments and used 209 sentences altogether. Each pixel is

stored as a 1-byte unsigned integer, which is actually a grayscale pixel intensity.

Using the extracted raw ultrasound images, we can convert and visualize them

as ultrasound frames in the ’wedge’ format (see Fig. 1 right). Those frames can

be used to produce a video illustrating the movement of the tongue.

In our case, we are interested in using the raw ultrasound images, as they

contain the information before any image processing. Therefore, after success-

fully extracting those images, we built a data set of 27 925 raw images having

the dimension of 64× 842 pixels. We split the image set into two groups. The

first group is made of 2/3 of images, which is used for training, and the second

one made of 1/3 of the dataset used for testing. Figure 1 illustrates a sample of

raw ultrasound images and ultrasound frames as well.

2.3. Proposed method for ultrasound tongue image generation

As we have mentioned, the principle of Generative Adversarial Networks is

managing a game between the two networks (i.e. the generator and the discrim-

inator). We implemented this in Python using a DC-GAN implementation as

a starting point (https://github.com/carpedm20/DCGAN-tensorflow/). For

our project, we chose to use a deep convolutional neural network for both the

generator and the discriminator. In our model, we fixed the number of hid-

den layers to nine for both discriminator and generator. As hyperparameter,

we fixed 64 as batch size and 25 for the number of epochs. After every 100

iterations, we generated 64 images.
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Figure 3: The architecture of the Generator (top) and Discriminator (bottom) networks

within the GAN.

Figure 4: Pseudo code of GAN training.
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Figure 3 illustrates the GAN network architecture. The discriminator (Fig. 3

bottom) is a downsampling network using strided convolutional layers. Its role

is to check real images and save variables in order to use them in fake image

checking. The discriminator has a last convolutional layer before applying the

cross-entropy. On the other hand, the generator (Fig. 3 top) is an upsampling

neural network that takes as input a vector z randomly generated from a known

distribution. After linearly transforming z, it will be fed through the layers in

order to get as a result an image with the same size as our original image. The

generated image will be the input of the discriminator, and according to its

result, the networks will improve their performance. There is one discriminator

update per each generator update. The process can be summarized with the

following pseudo-code shown in Figure 4.

Obviously, the quality of the GAN-generated images was low in early epochs

and continuously improved during the training until the final epochs, because

as we have written, during the training, the generator improves its performance.

3. Experiments and results

As we have previously mentioned, after every 100 iterations during the GAN

training, we generated 64 ultrasound images. The raw images were converted to

the ’wedge’ format for visualization. In order to assess the quality of our images,

we created an internet-based test (http://leszped.tmit.bme.hu/gan2018/). In

this test, we used 100 hand-selected samples, including 20 real and 80 generated

images, chosen by visual inspection to ensure that there are different images in

the experiment. The latter is made of 20 ’early’ samples created after the early

iterations of the training, and 60 ’late’ ones generated from the last iterations.

The task of the participants was to assess the quality and reality of the images

on a scale between 0–100, without knowing whether they are real or gener-

ated. Thus, as a result, we will have numbers associated to images describing

their quality. Figures 5–7 show several examples from the subjective evaluation

process, while Figure 8 presents a sample image with the question provided.

14

http://leszped.tmit.bme.hu/gan2018/


original

Figure 5: Original Ultrasound Tongue Images.

generated / early

Figure 6: Generated Ultrasound Tongue Images from early epochs.

generated / late

Figure 7: Generated Ultrasound Tongue Images from late epochs.
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Figure 8: A sample generated image from the subjective test.

In Fig. 6, the ’early’ generated images can be mostly distinguished from

the ’late’ images of Fig. 7, as in the early epochs, the generator within the

GAN was not able to produce realistic images. On the other hand, the ’late’

generated images (Fig. 7) are visually close to the original ultrasound images of

the tongue (Fig. 5). In the figures, the shapes of the tongues are different (as they

are isolated examples of real or synthetic images), and would produce different

sounds. This means that while the model generates realistic looking ultrasound

images, they are not constrained linguistically, which could be addressed in

future work.

A total of 8 subjects, blinded to the approaches, participated in the subjec-

tive test, three of them being speech researchers and the remaining five being

university students. The test took, on average, 13 minutes to complete. The test

results are summarized in Table 1. Analyzing the results, we can see that the

images generated from the ’early’ epochs were evaluated with low scores (around

29%). In contrast, the tongue images from the ’late’ epochs reached 59%, which
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Table 1: Mean and standard deviation result of the subjective test for the ’reality /

naturalness’ question. Higher scores are better.

early images late images real images

No. of images 20 60 20

Average result (experts) 17.57 (14.63) 63.28 (23.54) 68.77 (25.09)

Average result (non-experts) 35.65 (29.69) 56.79 (22.13) 68.06 (19.29)

Average result (all) 28.87 (26.61) 59.23 (22.89) 68.33 (21.66)

is close to the quality of the real ultrasound images (being 68%). The three

experts were more strict: they evaluated the ’early’ images with lower scores,

and the ’late’ images with higher scores than the non-experts. Therefore, we

can say that the GANs are efficient in ultrasound tongue image generation and

deceive humans, as the results showed how hard it is to differentiate between

real and generated images.

4. Discussion

Generative Adversarial Networks, being a subfield of generative models within

machine learning, are suitable to synthesize new images which are similar to the

training data. Typical example uses of GANs include generated digits, flowers,

or human faces (Karras et al., 2018). In this study, we presented a pioneering

work in ultrasound tongue image synthesis using GANs.

According to the experiments, the Generative Adversarial Networks are able

to generate realistic tongue ultrasound images. Therefore, the results can be

useful for data augmentation. This might be important for scenarios with lim-

ited data, e.g. for motion detection of tongue contours within images (Xu et al.,

2017b) or articulatory-to-acoustic mapping (Csapó et al., 2017b). One potential

issue is that errors in synthetic data can propagate into future models trained

on this data, something we need to be careful about not just in medical appli-

cations but in general. Besides, a conditional GAN with a similar architecture
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could be used for predicting the next frame in a UTI sequence (Wu et al., 2018),

or can be useful for acoustic-to-articulatory inversion (Porras et al., 2019).

5. Conclusion and future work

In this paper, we have shown in detail our method aiming to synthesize

realistic ultrasound images. First, we have explained the principle of Generative

Adversarial Networks. Then, we have detailed our method, starting with the

creation of the dataset, to the conception of the network model, and finally, the

investigation of the obtained results.

The performance shown by the GANs in generating realistic tongue ultra-

sound images encourages us to improve the used model by taking into consider-

ation the time dimension, to be able to predict the next input for the generator

(e.g. as a form of a recurrent neural network) which may enhance the perfor-

mance and get better and accurate results. In the future, we plan to train

generative networks conditioned on the linguistic content, and test the GAN-

based methods on other types of articulatory data (e.g. vocal tract MRI and lip

images).
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