THE SUPRASPECIFIC STRUCTURE OF THE SUBTRIBE BLAPTINA LEACH, 1815 (COLEOPTERA, TENEBRIONIDAE: BLAPTINAE)

Ivan Chigray and Alexander Kirejtshuk

1 Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya Emb., St Petersburg 199034, Russia
E-mails: chigray93@bk.ru https://orcid.org/0000-0002-3830-6860, agk@zin.ru kirejtshuk@gmail.com https://orcid.org/0000-0002-8826-0258

Years of research of the subtribe Blaptina made it possible to clarify relations between some species and propose changes in supraspecific structure of this subtribe. Blaps scabiosa Baudi di Selve, 1874 is designated as a type species of Caraboblaps Bauer, 1921, the new synonymy is proposed: Blaps Fabricius, 1775 = Caraboblaps Bauer, 1921, syn. n. Blaps nitens nitens Laporte, 1840 is designated as a type species of Periblaps Bauer, 1921, Blaps omniosa Ménétřies, 1832 is designated as a type species of Holoblaps Bauer, 1921; type species of Periblaps and Holoblaps are transferred here to genus Lithoblaps, as a result the following new synonymy is proposed: Lithoblaps Motschulsky, 1860 = Periblaps Bauer, 1921, syn. n. = Holoblaps Bauer, 1921, syn. n. The similarity of the structure of the aedeagus of Ablapsis compressipes Reitter, 1887 and some species of the subgenus Prosoblapsia Skopin et Kaszab, 1978 (genus Blaps Fabricius, 1775) gives a base to transfer the taxon Ablapsis Reitter, 1887 into the genus Blaps as a separate subgenus (Ablapsis stat. resurr.). Blaps tentyrioides Seidlitz, 1893 (= Blaps socia Seidlitz, 1893) is designated as a type species of the subgenus Protoblaps Bauer, 1921. As the genera Protoblaps Bauer, 1921 and Genoblaps Bauer, 1921 have one type species and the aedeagal structure of type species of Ablapsis, Protoblaps and Prosoblapsia is similar, the new synonymy is proposed: Ablapsis Reitter, 1887 = Protoblaps Bauer, 1921 syn. n. = Genoblaps Bauer, 1921 syn. n. = Prosoblapsia Skopin et Kaszab, 1978, syn. n. Analysis of imaginal and larval structures of the species here united in the taxon Lithoblaps Motschulsky, 1860 and other members of Blaps showed that differences between these two groups are comparable with those between other genera of the subtribe and, therefore, the former taxon is here regarded as a distinct genus Lithoblaps gen. resurr. Thus, 100 species and subspecies (marked as comb. n. or comb. resurr.) are transferred from Blaps to Lithoblaps. The additional new combination is established: Dila platythorax (Gemminger, 1870), comb. n. (from Blaps). The key to genera and the catalogue of the subtribe Blaptina are given.

Key words: Blaptina, sections of Allard, imaginal and larval characters, new synonymy, new combinations

INTRODUCTION

The subtribe Blaptina Leach, 1815 (Tenebrionidae: Blaptinae) is most numerous within the tribe Blaptini and includes more than 340 species and subspecies (Nabozhenko & Chigray 2020, Kamiński et al. 2021). The range of this subtribe mostly coincides with that of the mentioned tribe (Medveđev 2001)
covering the considerable part of the Palaearctic Region (reaching 60th parallel north in Europe and nearly 56th in Asia), northern areas of the Afrotropical one (partly Sahel, southern Arabian Peninsula and Somalia) and northern part of the Indo-Malayan one (Southern China and Thailand). \textit{Medvedev} (2000, 2001, 2007) reviewed different interpretations of the system of this tribe before beginning of the 21th century. Having analysed its generic structure, he paid a particular attention to the publications of \textit{Reitter} (1887, 1893), \textit{Seidlitz} (1893), \textit{Skopin} (1960) and recognized himself in it eight (\textit{Medvedev} 2000, 2001) or nine genera (\textit{Medvedev} 2007) without taxa \textit{Thaioblaps} Masumoto, 1989 and \textit{Neoblaps} Ren et Li, 2001.

\textit{Bouchard et al.} (2021) added four genera to Blaptina (\textit{Caraboblaps} Bauer, 1921, \textit{Periblaps} Bauer, 1921, \textit{Protoblaps} Bauer, 1921, and \textit{Holoblaps} Bauer, 1921), proposed the name \textit{Medvedevoblaps} Bouchard et Bousquet, 2021 for \textit{Protoblaps} G. S. Medvedev, 1998 (non Bauer, 1921), and also synonymized the names \textit{Prosoblapsia} Skopin et Kaszab, 1978 and \textit{Genoblaps} Bauer, 1921. As a result, the number of genera of Blaptina reached 15. However, a position of some taxa of Blaptina still remain unfixed, thus the generic structure of the subtribe remains under discussion. The present publication aims to solve some taxonomic and nomenclatural problems of the subtribe, and propose a new interpretation of its generic structure.

MATERIAL AND METHODS

The study is based on the examination of adult beetles and larvae from the Zoological Institute of the Russian Academy of Sciences (ZIN, St Petersburg) and the Hungarian Natural History Museum (HNHM, Budapest).

All specimens shown in the figures (except \textit{Thaioblaps punneeae} Masumoto, 1989) are deposited in ZIN, \textit{T. punneeae} is deposited in HNHM.

Selected specimens were dissected to study genitalia and some inner structures. The genitalia after dissection were macerated in boiling 10% KOH solution a few minutes and rinsed with water.

The photographs were taken with a Canon EOS 40D digital camera with Canon MP-E 65 mm objective. Images were produced using Zerene Stacker 1.04 and Adobe Photoshop software.
TAXONOMY

Remarks on different interpretations of the structure of the genus Blaps

The genus *Blaps* Fabricius, 1775 currently includes more than 300 Palaeartic and Afrotropic species and subspecies, arranged into four subgenera (Nabozhenko & Chigray 2020): *Blaps* s. str., *Arenoblaps* G. S. Medvedev, 1999, *Dineria* Motschulsky, 1860 and *Prosoblapsia*.

Solier (1848) made a first attempt to divide *Blaps* into groups of species. For delimitation of these groups arranged into a key to species he used the presence or absence of sexual dimorphism, shape of the pronotum and elytra.

Motschulsky (1860) splitted the genus *Blaps* into 13 genera mostly proposed by him, which were arranged into two groups. The group I unites the species without setal bruch between the abdominal ventrites 1 and 2 (*Gebleria* Motschulsky, 1846, *Prosodes* Eschscholtz, 1829, *Dila*, *Leptomorpha* Faldermann, 1835, *Dineria*, *Blapisa* Motschulsky, 1860, *Uroblaps* Motschulsky, 1860, *Blapimorpha* Motschulsky, 1860), while the species of the group II bear setal bruch between the abdominal ventrites 1 and 2 (*Platyblaps* Motschulsky, 1860, *Agroblaps* Motschulsky, 1860, *Blaps*, *Lithoblaps* Motschulsky, 1860, *Rhizoblaps* Motschulsky, 1860). The genera in these two groups were separated mainly after their body shape. Presently only *Prosodes*, *Gebleria* (subgenus of *Prosodes*), *Dila*, *Blaps* and *Dineria* (subgenus of *Blaps*) are recognized as the valid names of taxa, but others are considered as junior synonyms of *Blaps* (Löbl et al. 2008, Nabozhenko & Chigray 2020, Bouchard et al. 2021).

Allard (1880, 1881a, b, 1882) included in the tribe Blaptini (“Blapsides”) six genera from the East Hemisphere (*Tagona* Fischer von Waldheim, 1820, *Gnaptor* Brullé, 1832, *Blaps*, *Prosodes*, *Dila* and *Leptomorpha*) and two of the West Hemisphere (*Eleodes* Eschscholtz, 1829 and *Nycterinus* Eschscholtz, 1829). Besides, Allard (1880) re-organised the composition of *Blaps*: lowered the rank of some genera of Motschulsky (*Uroblaps*, *Lithoblaps*, *Rhizoblaps*, *Blapisa*, *Platyblaps*, *Blapimorpha*, *Dineria*, *Agroblaps*) to subgenera of *Blaps*; proposed one additional subgenus *Leptocolena* Allard, 1880; parted the genus into two divisions (“premiére” and “deuxième”), which were diagnosed by the structure of lamella between tarsal claws – division I comprises the species with the lamella acute at apex, while division II the species with the lamella widely rounded or straight at apex.

Seidlitz (1893) contributed some changes in the system elaborated by Allard (see above) and distinguished some groups in each of both divisions: 11 groups in the division I and 17 in the division II. Close relationship in both Allard’s divisions can be traced, but the groups defined by Seidlitz in each division mostly look like rather formal. Nevertheless, his species group interpretation is still used by many coleopterists.
Bauer (1921, pp. 229–230) divided the genus *Blaps* into two subgenera (“Untergattungen”): advanced (“höchstentwickelten”) subgenus *Blaps*, corresponding to the division I by Allard and more archaic (“untere Stufe”) subgenus *Protoblaps*, corresponding to the division II by Allard. In each of these subgenera Bauer included some aggregates of species (“Artengruppen” or “inferioren Untergattung”) with names: *Periblaps*, *Notoblaps*, and *Holoblaps* in *Blaps*, and also *Leptomorpha*, *Genoblaps*, *Blapidurus*, *Mesoblaps* etc. in *Protoblaps*. Later Kolbe (1928) recognized the system of the genus *Blaps* by Bauer and added some other species-groups (*Opisthoblaps*, *Tracheloblaps*, *Sceloblaps*). Many (but not all) species-groups (Artengruppen) and the so-called second-order subgenera (inferioren Untergattung) from papers of Bauer (1921) and Kolbe (1928) are formally available according to the ICZN (1999). They do not fall under the concept of “aggregates of species”, which implies the spelling of the species name with a lowercase letter (Article 6.2) and corresponds to Article 6.1 of ICZN, where subgeneric names “must begin with an upper-case letter” and have separate names.

Skopin (1960) after his studies of larvae of the tribe Blaptini restored the genus *Lithoblaps* completely corresponding to the division I by Allard and showed that its larvae are different from those of other species of *Blaps* and even of other genera of the subtribe Blaptina. Unfortunately, these Skopin’s conclusions did not find recognition among other tenebiologists: Bogatchev (1965) treated the *Lithoblaps* as a subgenus of *Blaps*; G. S. Medvedev (2001) also considered that *Lithoblaps* has not so distinct characters to raise its rank to a separate genus, although he recognized a reason to discriminate a separate subgenus. G. S. Medvedev provided the co-authors of the first edition of the Catalogue of Palaearctic Coleoptera (Löbl et al. 2008) with his consultations while they were preparing its manuscript, but he did not want to join to its authorship. In particular, he recommended (personal communication) to use as valid only four subgenera: *Blaps sensu stricto*, *Arenoblaps*, *Dineria* and *Prosoblapsia* (while *Lithoblaps* was preferred as a synonym of *Blaps*). In the second edition of this catalogue the subgeneric structure of the genus *Blaps* remained unchanged (Naboženkov & Chigray 2020), however, the names of Bauer (1921) were added as synonyms.

The phylogenetic hypothesis elaborated after the structural characters of Mediterranean members of the genus *Blaps* (Condamine et al. 2011) in general fits with the phylogeny based comparison of four mitochondrial gene fragments (Kergoat et al. 2014) where the genus *Blaps* is represented by two clades: *Blaps sensu stricto* + “Mediterranean *Blaps*”. Some combined phylogenetic models based on both structural and molecular characters the genus *Blaps* give two monophyletic branches corresponding with two clades obtained in the molecular comparision (Condamine et al. 2013) or the tribe Blaptini is parted into two branches: *Blaps* s. str. + (Gnaptorina Reitter, 1887 + (Prosodes Eschscholtz, 1829 + Gnaptor)) + («Mediterranean *Blaps*») (Soldati et al. 2017).
THE SUPRASPECIFIC STRUCTURE OF BLAPTINA (COL., TENEBRIONIDAE)

Position of some subgeneric taxa of Bauer (1921)

The subgenera, erected by Kolbe (1928) in the genus Blaps were synonymized in the Catalogue (Nabozhenko & Chigray 2020) and are not considered here. Later, Bouchard et al. (2021) rightly corrected the authorship, year, and the type species for the subgenus Mesoblaps Bauer, 1921 on page 246, but forgot to correct this on page 44. The same was done for Notoblaps Bauer, 1921 (correctly on page 269, incorrectly on 44).

Caraboblaps Bauer, 1921. Bouchard et al. (2021) noted that this taxon was described before 1931 and available according Article 12.1 (ICZN, 1999). Originally and subsequently, no species were included in this subgenus and now its status is undetermined taxon in Blaptina (Bouchard et al. 2021). According to the original description, Bauer (1921) included in Caraboblaps slender species with thin antennae, clear elytral mucro with visible lateral margins and absence of hair tuft between male abdominal ventrites 1 and 2. Bauer also mentioned, that species of this group are distributed in “Turkestan, Buchara and Astrabad”. The species Blaps scabiosa Baudi di Selve, 1874 is clearly corresponds to the diagnosis of the subgenus Caraboblaps (Nabozhenko et al. 2019). Thus, we include Blaps scabiosa Baudi di Selve, 1874 as a single species in the subgenus Caraboblaps and this species is deemed to be the only originally included nominal species and the type species by monotypy. There is no important character to distinguish the subgenus Caraboblaps, as the presence/absence of hair tuft on male abdomen can only be a distinguished feature between species (difference occurred even between closely related ones). Morphological characteristics of Blaps scabiosa Baudi di Selve, 1874 are presented in Nabozhenko with co-authors, and of Blaps mortisaga (Linnaeus, 1758) in many papers (Ferrer & Picka 1990, Ferrer & Fernández 2008, Nabozhenko et al. 2022, etc.). As a result, the following new synonymy is proposed: Blaps Fabricius, 1775 = Caraboblaps Bauer, 1921, syn. n.

Periblaps Bauer, 1921. Here is the same nomenclatural problem as with Caraboblaps (Bouchard et al. 2021). Bauer (1921) included this “Artengruppen” to the subgenus “Blaps s. str.” sensu Bauer, which is interpreted here as the genus Lithoblaps. He noted, that Periblaps includes eight species from Mesopotamia, Arabia, Egypt, Nubia and Algeria. Bauer mentioned only one more or less clear diagnostic character for Periblaps: comparatively short elytral mucro. The characters of Blaps nitens nitens Laporte, 1840 from Algeria and Tunisia are clearly correspond to those in the diagnosis of the subgenus. Thus, we include B. nitens nitens (now in the genus Lithoblaps) as a single species in the subgenus Periblaps and this species is deemed to be the only originally included nominal species and the type species by monotypy. The type species of Periblaps is transferred here to Lithoblaps. As a result, the following new synonymy is proposed: Lithoblaps Motschulsky, 1860 = Periblaps Bauer, 1921, syn. n.
Holoblaps Bauer, 1921. Here is the same nomenclatural problem as with Caraboblaps and Periblaps (Bouchard et al. 2021). Bauer (1921) included this “Artengruppen” to the subgenus “Blaps s. str.” sensu Bauer, which is interpreted here as the genus Lithoblaps. He noted, that Holoblaps includes species from “Buchara, Turkmenien, und Turkestan und zum Kaspi-See (Baku)” (now Uzbekistan, Kazakhstan, Turkmenistan and Azerbaijan). Bauer mentioned only one more or less clear diagnostic character for Periblaps: elytral mucro is very long. Many species from Middle Asia possess this character, but only one Lithoblaps species is known from Baku: “Blaps” ominosa Ménétriés, 1832. Thus, we include B. ominosa (now in the genus Lithoblaps) as a single species in the subgenus Holoblaps and this species is deemed to be the only originally included nominal species and recognised as its type species. The type species of Holoblaps is transferred here to Lithoblaps. As a result, the following new synonymy is proposed: Lithoblaps Motschulsky, 1860 = Holoblaps Bauer, 1921, syn. n.

Protoblaps Bauer, 1921. Despite Bauer’s unequivocal position that the named species groups (Caraboblaps, Genoblaps, Periblaps, Holoblaps etc.) are infrasubgeneric groupings within the two subgenera Blaps and Protoblaps, the code (ICZN, 1999) interprets the names of these “Artengruppen” as subgeneric ones according to Article 6.1. Bouchard et al. (2021) noted that this taxon was described before 1931 and, therefore applicable according to the Article 12.1 (ICZN). Originally and subsequently, no species were included in this subgenus and now its status is undetermined taxon in Blaptina (Bouchard et al. 2021). However, Bauer clearly wrote that his subgenus Protoblaps included species from 17 species-groups, some of which were discussed separately in his paper. He clearly added seven species (in different species-groups) in the subgenus Protoblaps: B. prolongata, B. chinensis, B. glabrata, B. tentyrioides, B. emoda, B. crassicornis, B. rugulipennis (for authors, years and synonymy of these taxa see the catalogue below). All of these taxa are formally deemed to be the only originally included nominal species. As a result, we designated here Blaps tentyrioides Seidlitz, 1893 as the type species of

Fig. 1. Blaps (Ablapsis) compressipes Reitter, 1887, aedeagus: A = dorsal view; B = ventral view; C = lateral view
the subgenus *Protoblaps* Bauer, 1921. This species best characterizes this “primitive” subgenus in the understanding of Bauer (1921).

On composition and position of the taxa Ablapsis Reitter, 1887, Protoblaps Bauer, 1921 and Prosoblapsia Skopin et Kaszab, 1978 in the subtribe Blaptina

Reitter (1887) proposed *Ablapsis* Reitter, 1887 as a subgenus in the genus *Blaps* but later he elevated it to a generic rank (Reitter 1893). Seidlitz (1893) regarded *Ablapsis* in the genus *Prosodes*. Medvedev (2001) pointed out that *Ablapsis* would be better to include in *Blaps* as a subgenus and added to its composition also some species from the subgenus *Prosoblapsia*. *Ablapsis* indeed is rather similar to *Blaps sensu stricto* by its body shape the chaetotaxy of antennomeres, shape of the pronotum, structure of femora, tibial spurs, plantar setose brushes on tarsomeres, ventral lamella between tarsal claws and structure of spermateca; however, the aedeagal structure of *Ablapsis compressipes* is distinct from those in *Blaps sensu stricto* in the smaller parameres in relation to the basal piece of the aedeagus and completely separated by the suture between them, apical piece upward curved at apex and ribbed lateral edges of the gonopore (Fig. 1). Such shape of the aedeagus is characteristic of some species of the subgenus *Prosoblapsia*, including the type species of the latter taxon (*Leptocolena allardiana* Reitter, 1889). This

![Fig. 2. Apical piece of aedeagus (parameres): A–C = Blaps (Ablapsis) allardiana allardiana Reitter, 1889; D = B. (Ablapsis) berezowskii G.S. Medvedev, 1998; E, F = Blaps tentyroides Seidlitz, 1893 (= Blaps socia Seidlitz, 1893); A, E = dorsal view; B = ventral view; C, D, F = lateral view](image)
Medvedev’s opinion is here supported here and, therefore, *Ablapsis* stat. resurr. is hereby considered as a subgenus in the genus *Blaps*.

Bauer (1921) erected the subgenus *Genoblaps* with the type species *Blaps tentyroides* Seidlitz, 1893 (= *Blaps socia* Seidlitz, 1893) by monotypy (Bouchard et al. 2021). Bouchard et al. (2021) treated *Protoblaps* Bauer, 1921 as a genus, however, Bauer (1921) proposed it as a subgenus of the genus *Blaps*. The structure of the aedeagus of the type species of *Protoblaps* is similar to that in the type species of *Ablapsis*. The genera *Protoblaps* Bauer, 1921 and *Genoblaps* Bauer, 1921 should be synonymized on the base on one type species. The subgenus *Prosoblapsia* was proposed by Skopin and Kaszab (1978) with indication in its diagnosis of four male characters and 12 characters of both sexes. Nevertheless, conditions of some of these features are present only in the species

Fig. 3. Antennae of Blaptina. A = *Blaps* (*Blaps*) mortisaga (Linnaeus, 1758); B = *Blaps* (*Ablapsis*) allardiana allardiana Reitter, 1889; C = *Blaps* (*Dineria*) halophila Fischer von Waldheim, 1820; D = *Blaps* (*Arenoblaps*) hiemalis Semenov et Bogatchev, 1940; E = *Lithoblaps* gigas (Linnaeus, 1767), comb. n.; F = *Dila laevicollis* (Gebler, 1841); G = *Dilablaps paradoxa* Bogatchev, 1976
indicated by the latter co-authors (f.e. setose brushes on protarsomeres), while some others are shared among other subgenera (widely rounded apex of the lamella between tarsal claws). It is thought the most diagnostic features of the latter subgenus are the parameres curved upward and completely divided by a suture (Fig. 2A–C). As the aedeagal structure of type species of *Ablapsis, Protoblaps* and *Prosoblapsia* is similar, the new synonymy is proposed: *Ablapsis* Reitter, 1887 = *Protoblaps* Bauer, 1921 syn. n. = *Genoblaps* Bauer, 1921 syn. n. = *Prosoblapsia* Skopin et Kaszab, 1978, syn. n.

Blaps berezowskii G. S. Medvedev, 1998 was proposed originally for the subgenus *Blaps*, but the structure of the apical part of the parameres clearly indicates that this taxon is a member of the subgenus *Ablapsis* (Fig. 2D).

Fig. 4. Antennae of Blaptina: A = *Medvedevoblaps kashkarovi* (G. S. Medvedev, 1998); B = *Thaumatoblaps marikovskijii* Kaszab & G. S. Medvedev, 1984; C = *Coelocnemodes tibialis* Ren in Ren, Ba, Liu, Niu, Zhu, Li et Shi, 2016; D = *Nalepa cylindracea* (Reitter, 1887); E = *Thaioblaps punneae* Masumoto, 1989; F = *Blaps* (*Ablapsis*) *compressipes* Reitter, 1887

Position of Lithoblaps in the subtribe Blaptina

Having reconstructed the fauna of the Middle Asia Kryzhanovskij (1965) supposed the origin of the tribe Blaptini in the Paleogene and further diversification in the Neogene. Condamine et al. (2013) found an early separation of the Mediterranean “branches” of Blaps sensu stricto and “Mediterranean Blaps” (i.e., Lithoblaps) admitting age of this separation not later than the early Oligocene.

Analyses of structural and molecular characters (Condamine et al. 2013, Kergoat et al. 2014, Soldati et al. 2017) of representatives of the tribe Blaptina showed that Lithoblaps is distinctly and comparably separated from all other genera of the subtribe, including the genus Blaps (comprising Blaps sensu stricto, Arenoblaps, Dineria and Ablapsis). This is clearly seen in the structure of antennomeres 8–11 (Figs 3, 4), ventral lamella between tarsal claws (Fig. 5) and male meso- and metafemora (Figs 6, 7) and described below in the emended diagnosis in more detail. Thus, the rank of Lithoblaps gen. resurr. is reasonable to consider as generic.

Emended diagnosis of the genus Lithoblaps gen. resurr.

Antennomeres 8–11 comparatively short, with ratio of their joint length to joint length of antennomeres 6–7–1.2. Setae of antennomeres not thick. Mentum not concealed the base of labial palpi. Pronotum transverse and bordered along sides. Processes of mesoventrite and abdominal ventrite 1 comparatively narrower (distance between mesocoxae 1.3–2.2 times as great as

![Fig. 5. Ventral lamella between tarsal claws. A = Lithoblaps gigas (Linnaeus, 1767), comb. n.; B = Blaps (Blaps) mortisaga (Linnaeus, 1758); C = Blaps (Ablapsis) allardiana allardiana Reitter, 1889; D = Blaps (Dineria) halophila Fischer von Waldheim, 1820; E = Blaps (Arenoblaps) hiemalis Semenov et Bogatchev, 1940; F = Dilablaps paradoxa Bogatchev, 1976; G = Medvedevoblaps kashkarovi (G. S. Medvedev, 1998); H = Coelocnemodes tibialis Ren in Ren, Ba, Liu, Niu, Zhu, Li et Shi, 2016; I = Thaumatoblaps marikovskiji Kaszab et G. S. Medvedev, 1984](image-url)
transverse diameter of mesocoxa). Diameter of metacoxa 1.5–2.1 times as long as distance between metacoxa. Elytral apices frequently form elongate process (mucro). Abdomen with setose tuft between ventrites 1 and 2, sometimes tuft missing. Upper and lower edges of flexion side of profemora without teeth or angular projecting. Male meso- and metafemora along lower posterior edge serrate. Protibia with two apical spurs, slightly different in length. Male protarsomeres without plantar setose brush. Ventral lamella between tarsal claws acuminate or narrowly rounded, subtriangular or lanceolate.

Fig. 6. Mesofemora of Blaptina: A = Lithoblaps gigas (Linnaeus, 1767), comb. n.; B = Blaps (Blaps) mortisaga (Linnaeus, 1758); C = Blaps (Arenoblaps) hiemalis Semenov et Bogatchev, 1940; D = Blaps (Dineria) halophila Fischer von Waldheim, 1820; E = Blaps (Ablapsis) allardiana allardiana Reitter, 1889; F = Thaiooblaps punneeae Masumoto, 1989; G = Dila laevicollis (Gebler, 1841); H = Thaumatoblaps marikovskiji Kaszab et G. S. Medvedev, 1984; I = Coelocnemodes tibialis Ren in Ren, Ba, Liu, Niu, Zhu, Li et Shi, 2016; J = Nalepa cylindracea (Reitter, 1887); K = Medvedevoblaps kashkarovi (G. S. Medvedev, 1998); L = Dilablaps paradoxa Bogatchev, 1976; M = Blaps (Ablapsis) compressipes Reitter, 1887
Emended diagnosis of the genus Blaps

Antennomeres 8–11 comparatively long with ratio of their joint length to joint length of antennomeres 6–7 – 1.47. Setae of antennomeres not thick. Mentum not covering base of labial palpi. Pronotum transverse to subquadrate and bordered along sides. Processes of mesoventrite and abdominal ventrite 1 comparatively narrower (distance between mesocoxae 1.3–2.2 times as great as transverse diameter of mesocoxa). Metacoxa 1.5–2.1 times as long as distance between metacoxae. Elytral apices frequently forming elongate process

Fig. 7. Metafemora of Blaptina: A = Lithoblaps gigas (Linnaeus, 1767), comb. n.; B = Blaps (Blaps) mortisaga (Linnaeus, 1758); C = Blaps (Arenoblaps) hiemalis Semenov et Bogatchev, 1940; D = Blaps (Dineria) halophila Fischer von Waldheim, 1820; E = Blaps (Ablapsis) allardiana allardiana Reitter, 1889; F = Thaumatoblaps marikovskiji Kaszab & G.S. Medvedev, 1984; G = Thaioablaps punneeae Masumoto, 1989; H = Dila laevicollis (Gebler, 1841); I = Coelocnemodes tibialis Ren in Ren, Ba, Liu, Niu, Zhu, Li et Shi, 2016; J = Nalepa cylindracea (Reitter, 1887); K = Medvedevoblaps kashkarovi (G. S. Medvedev, 1998); L = Dilablaps paradoxa Bogatchev, 1976; M = Blaps (Ablapsis) compressipes Reitter, 1887
(mucro). Abdomen with setose tuft between ventrites 1 and 2, sometimes tuft missing. Upper and lower edges of flexion side of profemora without teeth, either sometimes with one tooth (Blaps femoralis Fischer von Waldheim, 1844) or small kiel. Male meso- and metafemora along lower side even. Protibia with two apical spurs, slightly different in length. Male protarsomeres without plantar setose brush or with plantar brush at basal half of protarsomeres 1-2 and mesotarsomere 1. Ventral lamella between tarsal claws straight or widely rounded, quadrangular or trapezoid.

Notes of differences of larvae of Lithoblaps and Blaps

Mature larva of Lithoblaps. The external labral surface with 32–36 longer setae (Fig. 8A). According to Skopin (1960) the inner labral surface with fields of thorns (thorned) clearly extended behind the middle (sometimes almost

![Fig. 8. The external labral surface of larvae: A = Lithoblaps ominosa (Ménétriés, 1832) comb. n.; B = Blaps (Blaps) parvicollis parvicollis Zubkov, 1829](image-url)
reached labral base). The external edge of the abdominal tergite IX with of more numerous, widely spread and longer thorns and its apex obtuse, without long process (Fig. 9A, B).

Mature larva of *Blaps*. The external labral surface with 20–22 shorter setae (Fig. 8B). According to Skopin (1960) the inner labral surface with fields of thorns (thorned) not extended behind the middle. The external edge of the abdominal tergite IX with narrow stripe of short thorns and its apex with a long process and paired thorns (Fig. 9C, D).

Fig. 9. The abdominal tergite IX of larvae: A, B = *Lithoblaps ominosa* (Ménétríés, 1832) comb. n.; C, D = *Blaps* (*Blaps*) *parvicollis parvicollis* Zubkov, 1829; A, C = lateral view; B, D = dorsal view
A KEY OF GENERA OF THE SUBTRIBE BLAPTINA

1. Lamella between tarsal claws acute, triangular or lanceolate at apex
 \[Lithoblap\]s

 – Lamella between tarsal claws obtuse, straight or widely rounded at apex 2

2. Protibia with one spur. Body narrower \[Thaumatoblaps\]

 – Protibia with two spurs. Body wider 3

3. Pronotum not beaded. Mentum very large, concealed parts of cardo and stipes, and completely concealed base of labial palpi. Processes of mesoventrite and abdominal ventrite 1 very wide (distance between mesocoxae 1.1 times as great as transverse diameter of mesocoxa). Distance between metacoxae subequal to transverse diameter of metacoxal \[Medvedevia\]

 – Pronotum beaded. Mentum smaller, cardo, stipes and base of labial palpi exposed. Processes of mesoventrite and abdominal ventrite 1 narrower (distance between mesocoxae 1.3–2.2 times as great as transverse diameter of mesocoxa). Diameter of metacoxa longer 1.5–2.1 times as great as distance between metacoxae 4

4. Outer spur of protibia much smaller than inner one \[Nalepa\] Reitter, 1887

 – Spurs of protibia slightly different in size 5

5. Male abdomen always without setose tuft between ventrites 1 and 2, flexion side of profemora with clear tooth or large projecting keel on upper edges 6

 – Male abdomen often with setose tuft between ventrites 1 and 2, flexion side of profemora without clear tooth or large projecting keel, sometimes if tooth present, male abdomen with setose tuft (\[Blaps femoralis\], Mongolia) 10

6. Elytral integument microgranulate and rugose \[Hoplitoblaps\]

 – Elytral integuiment smoothed, sometimes with rasp-like punctation (but not rugose) 7

7. Setae of antennomeres thick (Fig. 4C). Flexion side of male profemora with two very large teeth, female profemora with only one tooth on upper side. Flexion side of all male tibiae with small setose tuft near spurs \[Coelocnemodes\]
– Setae of antennomeres not thick (Figs 3F, G, 4E). Flexion side of male and female profemora with one tooth or projecting keel on upper side. Sometimes flexion side of only male pro- and mesotibiae with small setose tuft near spurs

8. Pronotum subexplanate at all sides (including anterior and posterior). Male metatibiae S-curved

– Pronotum gently sloping at all sides (including anterior and posterior). Male metatibiae not S-curved

9. Mucro absent or very short, unclearly separated from main parts of elytra. Apical lobes of coxites of ovipositor widely rounded at apex. Basal duct of spermatheca short, accessory gland of spermatheca longer than basal duct, spermatheca with two reservoirs

– Mucro well expressed, clearly separated from main parts of elytra. Apical lobes of coxites of ovipositor long, apex of lobes narrowly rounded. Basal duct of spermatheca moderately long, spermatheca with three reservoirs (first reservoir very small, second and third reservoirs of usual size)

– Plantar surface of male protarsomeres without setose tuft or with small tuft in basal side of protarsomeres 1–2 and mesotarsomere 1. Meso- and metafemora without teeth on inner side. Epipleura longer, reaching at least middle of abdominal ventrite 5

Figures of type species of the genera and subgenera of the subtribe Blaptina are given below (Figs 10–13).

CATALOGUE OF THE SUBTRIBE BLAPTINA LEACH, 1815

Notes. The catalogue includes all genera and subgenera currently recognized from the Palaearctic, Afrotropical and Indo-Malayan regions (see Chigray 2020, Bouchard et al. 2021, Li et al. 2022, Nabozhenko et al. 2022a, b).

“Blaps sinuatocollis sinuatocollis” was proposed as an intrasubspecies unit of Blaps reflexicollis Solier, 1848 (= Blaps lethifera Marsham, 1802). This name was excluded from the taxa considering by the zoological nomenclature regu-
lated by ICZN (Nabozhenko et al. 2022b), therefore, Blaps sinuatocollis suecica J. Ferrer et Picka, 1990 should be used as a valid subspecies of B. lethifera.

The status of Blaps platythorax Gemminger, 1870 (for replacement name of Blaps laticollis Redtenbacher, 1850 (non Blaps laticollis Solier, 1848)) needs to be supported (Chigray & Nabozhenko 2016, Chigray et al. 2019). It was described from Shiraz and Redtenbacher pointed out the elongate cylindrical body and presence of large tooth on the profemora in this taxon: “femoribus anticis dentatis” (Kollar & Redtenbacher 1850). The latter character differs the genus Dila from other genera of the tribe Blaptini known from Iran and this species must be excluded from the genus Blaps: Dila platythorax (Gemminger, 1870) comb.n.

We offer “comb. resurr.” instead of “comb. n.” for some species of Lithoblaps, because Motschulsky (1860) and Skopin (1960) have already established such combination.

Fig. 10. Species of Blaptina, habitus: A = Blaps mortisaga (Linnaeus, 1758); B = Lithoblaps gigas (Linnaeus, 1767)
Fig. 11. Species of Blaptina, habitus: A = Blaps (*Ablapsis*) *compressipes* Reitter, 1887; B = Blaps (*Ablapsis*) *allardiana allardiana* Reitter, 1889; C = Blaps (*Dineria*) *halophila* Fischer von Waldheim, 1820; D = Blaps (*Arenoblaps*) *hiemalis* Semenov et Bogatchev, 1940
Fig. 12. Species of Blaptina, habitus: A = *Dilablaps paradoxa* Bogatchev, 1976; B = *Dila laevicol-lis* (Gebler, 1841); C = *Coelocnemodes tibialis* Ren in Ren, Ba, Liu, Niu, Zhu, Li et Shi, 2016; D = *Thaioblaps punneeae* Masumoto, 1989.
Fig. 13. Species of Blaptina, habitus: A = Medvedevia glebi I. Chigray, 2019; B = Nalepa cylindracea (Reitter, 1887); C = Medvedevoblaps kashkarovi (G. S. Medvedev, 1998); D = Thaumatooblaps marikovskiji Kaszab et G. S. Medvedev, 1984
Genus *Blaps* Fabricius, 1775, type species *Tenebrio mortisagus* Linnaeus, 1758

Subgenus *Ablapsis* Reitter, 1887, type species *Blaps compressipes* Reitter, 1887

 = *Prosoblapsia* Skopin et Kaszab, 1978, type species *Leptocolena allardiana* Reitter, 1889

 = *Protoblaps* Bauer, 1921, type species *Blaps tentyrioides* Seidlitz, 1893

 (= *Blaps (Ablapsia) socia* Seidlitz, 1893), designated here

 = *Genoblaps* Bauer, 1921, type species *Blaps tentyroides* Seidlitz, 1893

allardiana alaiensis Seidlitz, 1893

 = sunpantinga Schuster, 1923

allardiana allardiana Reitter, 1889

 = znoikoi Semenov et Bogatchev, 1936

apicecostata Blair, 1922

berezowskii G. S. Medvedev, 1998

brevipes Seidlitz, 1893

brevis Ren et Wang, 2001

compressipes (Reitter, 1887), **comb. resurr.**

(Ablapsis)

conica Ren et Shi, 2016

gentilis gentilis Fairmaire, 1887

gentilis semistriatomorpha Skopin et Kaszab, 1978

gentilis transversithorax Skopin et Kaszab, 1978

helleri Schuster, 1923

himalaica Blair, 1923

latericosta Reitter, 1889

maeander Kraatz, 1885

socia Seidlitz, 1893

 = gentiloides Kaszab, 1977

 = punctithorax Kaszab, 1977

 = radula Kaszab, 1977

 = semistriata Kaszab, 1977

 = tentyrioides Seidlitz, 1893

tenuicornis Gebler, 1847

 = altaica Kelejnikova, 1970

 = depressa Gebler, 1829

transversimsulcata meandroides Skopin, 1977

transversimsulcata transversimsulcata Ballion, 1878

= rudesculpta Semenov et Bogatchev, 1936

Subgenus *Arenoblaps* G.S. Medvedev, 1999, type species *Blaps hiemalis* Semenov et Bogatchev, 1940

hiemalis Semenov et Bogatchev, 1940

Subgenus *Blaps* Fabricius, 1775, type species *Tenebrio mortisagus* Linnaeus, 1758

 = *Acanthoblaps* Reitter, 1889, type species *Blaps dentitibia* Reitter, 1889

 = *Agroblaps* Motschulsky, 1860, type species *Blaps fatidica* J. Sturm, 1807 (= *Blaps lethifera* Marsham, 1802)

 = *Blapidurus* Fairmaire, 1891, type species *Blapidurus crassicornis* Fairmaire, 1891

 = *Blapimorpha* Motschulsky, 1860, type species *Blaps reflexa* Gebler, 1832

 = *Blapsia* Motschulsky, 1860, type species *Blaps jaegeri* Hummel, 1827 (= *Tenebrio mortisagus* Linnaeus, 1758)

 = *Caraboblaps* Bauer, 1921, type species *Blaps scabiosa* Baudi di Selve, 1874

 = *Hypoblaps* Kolbe, 1928, type species *Blaps rotundata* Solier, 1848

 = *Leptocolena* Allard, 1880, type species *Blaps mucronata* Latreille, 1804

 = *Leptomorpha* Faldermann, 1835, type species *Leptomorpha chinensis* Faldermann, 1835

 = *Mesoblaps* Bauer, 1921, type species *Blaps rugulipennis* Fairmaire, 1891

 = *Nanoblaps* Semenov & Bogatchev, 1936, type species *Blaps jakovlevi* Semenov & Bogatchev, 1936

 = *Notoblaps* Bauer, 1921, type species *Blaps juliae* Allard, 1881

 = *Opisthoblaps* Kolbe, 1928, type species *Blaps sulcifera* Seidlitz, 1893

 = *Platyblaps* Motschulsky, 1860, type species *Blaps holconota* Fischer von Waldheim, 1844
abbreviata abbreviata Ménétriés, 1836
 = ecuadate Küster, 1845
 = ovata Solier, 1848
 = rotundicollis Reiche et Saulcy, 1857
abbreviata indagator Reiche et Saulcy, 1857
acuminata acuminata Fischer von Walde-
 him, 1820
 = przewalskyi Reitter, 1887
acuminata kulszana Skopin, 1973
acutangula Ren et Wang, 2001
adelae L. Soldati et F. Soldati, 1999
afghanistanica Gridelli, 1954 (1955)
amurensis Allard, 1881
angusta Seidlitz, 1893
anura Seidlitz, 1893
araxicolà Seidlitz, 1893
aruktavica G. S. Medvedev, 2004
aspericollis Schuster, 1923
badakshanica Kaszab, 1960
balashoe Bogatchev et G. S. Medvedev,
 1974
ballioni Skopin, 1977
bogatshov G. S. Medvedev, 1964
brunnea Allard, 1881
bucarensis Seidlitz, 1893
bushirensis Kaszab, 1959
caraboides caraboides Allard, 1882
 = aberrans Reinig, 1931
 = alaiensis Reinig, 1931
 = chinensis Reinig, 1931
 = emarginata Reinig, 1931
 = licinoides Seidlitz, 1893
 = ovata Reinig, 1931
 = schusteri Reinig, 1934
caraboides intermittens Kaszab, 1962
 capspica I. Chigray, Abdurakhmanov,
 Nabozenko et Shapovalov, 2016
 caucasica A. Nabozenko et I. Chigray, 2022
 chinensis Faldermann, 1835
 chou Ren et Wang, 2001
 clotzeri Fischer von Waldheim, 1844
 concii Koch, 1965
 conratti Seidlitz, 1893
 contracta Ren, 2016
 crassicornis Fairmaire, 1891
 cretensis Koch, 1948
 criibrosa Solier, 1848
 = angulata Reiche et Saulcy, 1857
cychroides Fairmaire, 1887
davidis Deyrolle, 1878
 = davidea (Allard, 1886) (Blapimorpha)
dehaani Baudi di Selve, 1875
dentitibia Reitter, 1889
deplanata Ménétriés, 1832
 = cordata Seidlitz, 1893
 = curvipes Baudi di Selve, 1874 (1875)
 = muricata Fischer von Waldheim, 1832
dispar Seidlitz, 1893

doorsgranata Fairmaire, 1887
deleodes Kaszab, 1962
dendralica Seidlitz, 1893
denisia Allard, 1881

denbogi Seidlitz, 1893
demesti I. Chigray, 2020
demodida Seidlitz, 1893
demostis Semenov et Bogatchev, 1936

demostis Waterhouse, 1889
 = regia Seidlitz, 1893
demoralis demoralis Fischer von Waldheim,
 1844
demoralis rectispina Kaszab, 1968

demoufouia I. Chigray et Ivanov, 2020

demourghi Skopin, 1969
demourica Ren et Wang, 2001
gibba Laporte, 1840
 = australis Solier, 1984
 = impressicollis Solier, 1848
 = itsica Baudi di Selve, 1875
 = planicollis Solier, 1848
 = reticulata Solier, 1848
glabrata Seidlitz, 1893
glabronov Semenov et Bogatchev, 1936
gobiensis J. Frivaldszky, 1890
 = mongolica Seidlitz, 1893
graeca Solier, 1948

granulata altaenemelis Skopin, 1966

granulata granulata Gebler, 1825
 = seiniditz Schuster, 1936

granulata granulosa Ménétriés, 1854

granulata kirgisica Skopin, 1966

granulata obliterata Ménétriés, 1849

granulata stockelbergi Bogatchev, 1952

granulata turcomana Fischer von Wald-
 him, 1843
 = caudata Gebler, 1844

granulipennis Skopin, 1966

gressoria Reitter, 1889

greerovi Gridelli, 1954

greerovi Seidlitz, 1893
THE SUPRASPECIFIC STRUCTURE OF BLAPTINA (COL., TENEBRIONIDAE)

holconota Fischer von Waldheim, 1844
= corroso Fischer von Waldheim, 1844
= quinquecostata Fischer von Waldheim, 1844
= stenothorax Fischer von Waldheim, 1844
holcus Ren, 2016
= lucens Fairmaire, 1891
inflatipennis J.R. Sahlberg, 1908
= carboxaria Kraatz, 1888
= handahaueri Seidlitz, 1893
iraquensis Kaszab, 1959
jakovlevi Semenov et Bogatchev, 1936
japonensis Marseul, 1879
jeannei J. Ferrer et L. Soldati, 1999
kabulensis Kaszab, 1960
kadyrbekovi G. S. Medvedev, 2004
kasatkini I. Chigray et Nabozhenko, 2016
kashgarensis Bates, 1879
= eusoma Kraatz, 1888
= laevicollis Faldermann, 1837
= pterotapha Fischer von Waldheim, 1832
= lucuota Ménétriés, 1832
= menetriesii Kraatz, 1881
= milleri Seidlitz, 1893
= obliterata Ménétriés, 1848 (1849)
= orbicollis Motschulsky, 1845
= pallasi Seidlitz, 1893
= plicaticollis Ménétriés, 1836
= proxima Solier, 1848
= pulvinata Ménétriés, 1849
= reflexicollis Solier, 1848
= robusta Motschulsky, 1845
= similis Latreille, 1804
= striatopunctata Allard, 1881
= subquadra Brullé, 1832
= tarda (Motschulsky, 1860) (Agroblaps)
lethifera suecica J. Ferrer et Picka, 1990
lindbergi Kaszab, 1959
longicornis Kraatz, 1882
longula Reiche et Saulcy, 1857
lucidula G. S. Medvedev, 1998
marginicollis (Fairmaire, 1891) (Blapidurus)
martensi Kaszab, 1978
medusa Reitter, 1900
medusula Skopin, 1964
menetriesiana Bogatchev, 1948
miliaria Fischer von Waldheim, 1844
moerens Allard, 1881
mortisaga (Linnaeus, 1758) (Tenebrio)
= acuminata (DeGeer, 1775) (Tenebrio)
= brevicornis Seidlitz, 1893
= canaliculata Faldermann, 1837
= carbo Fischer von Waldheim, 1844
= confusa Fischer von Waldheim, 1844
= dahlii Solier, 1848
= elongata Ménétriés, 1832
=.encifer Motschulsky, 1845
= jaegeri Hummel, 1827
= koenigii Seidlitz, 1893
= planicollis Motschulsky, 1845
= reflexicollis Fischer von Waldheim, 1844

mucronata Latreille, 1804
 = chevrotalii Solier, 1848
 = dilatata Laporte, 1840
 = foveicollis Allard, 1881
 = obtusa J. Sturm, 1807
 = reflexa Solier, 1848
 = stricticollis A. Villa et J. B. Villa, 1835
 = striolata Küster, 1846
 = sublineata Brullé, 1832
 = subovata Solier, 1848
murgabensis Bogatchev, 1961
 = convexa Reiche et Saulcy, 1857
mutata Gemminger, 1870
 = convexa Reiche et Saulcy, 1857
nadaii G. S. Medvedev, 2004
nanshanica Semenov et Bogatchev, 1936
nitra Fischer von Waldheim, 1844
 = amoena Fischer von Waldheim, 1844
 = stricticollis A. Villa et J. B. Villa, 1835
 = striolata Küster, 1846
oblonga Kraatz, 1883
 = gracilicollis Kraatz, 1885
 = major Kraatz, 1883
octavia Allard, 1881
ooerzenii Seidlitz, 1893
oglobini Semenov et Bogatchev, 1936
opaca Reitter, 1889
paludana Kaszab, 1959 (1960)
parvicollis parvicollis Zubkov, 1829
 = affinis Seidlitz, 1893
 = krynickii Krynicki, 1829
 = scabra Fischer von Waldheim, 1842
parvicollis quadricollis Ballion, 1878
 = subcordata Seidlitz, 1893
perlonga Bates, 1879
 = prolongata (Fairmaire, 1887) (Leptomorpha)
persicola Seidlitz, 1893
petiti Pierre, 1964
petra I. Chigray, Nabozhenko et Keskin, 2015
pilosa Ren et Wang, 2001
potanini Reitter, 1889
pseudocaudata Kaszab, 1960
pterosticha Fischer von Waldheim, 1844
 = akinina (Allard, 1882) (Agroblaps)
 = multistriata Ballion, 1878
putida Motschulsky, 1845
reflexa Gebler, 1832
 = variolaris Gemminger, 1870
 = variolosa Fischer von Waldheim, 1844 (№ 95)
 = vermiculata Allard, 1882
reichardi Semenov et Bogatchev, 1936
rhynchoptera Fairmaire, 1886
 = inermis Fairmaire, 1887
 = krynickii Kry Nicki, 1829
 = acuta Seidlitz, 1893
 = lajoyei Allard, 1883
 = seriata Ballion, 1883
 = seriata Ballion, 1883
 = seriata Ballion, 1883
 = seriata Ballion, 1883
 = seriatorata Ballion, 1883
 = striola Motschulsky, 1860
shach Kaszab, 1970
simplex Kaszab, 1960
sonamarga Skopin, 1978
spilchali Gebien, 1913
srinagarica Kaszab, 1975
stoetzneri Schuster, 1923
stoliczkana Bates, 1879
strandi Semenov, 1936
sulcatipennis Schuster, 1920
szetschwana Schuster, 1923
taiyuanica Ren et Wang, 2001
talsienlua Schuster, 1923
tenuepunctata (Motschulsky, 1860) (Agroblaps)
 = vicina Ménétriés, 1849
tenicauda Solier, 1893
tenuicollis Solier, 1848
theodoridis Pierre, 1964
thibetana Blair, 1922
thibetanoïdes Ren, 2004
tianshanica Semenov et Bogatchev, 1936
tibialis Reiche et Saulcy, 1857
 = strigicollis Baudi di Selve, 1875
 = ecaudata Seidlitz, 1893
tibiella Seidlitz, 1893
transversalis Fischer von Waldheim, 1844
trapezoidalis Kaszab, 1970
tristiciae Bogatchev, 1949
tsharynensis balchashensis Skopin, 1966
 = tsharynensis Skopin, 1961
tsharynensis tschitscherini Semenov et Bogatchev, 1936
 = tschiliana Wilke, 1921
 = montana Motschulsky, 1839
virgo Seidlitz, 1893
 = sagitta Seidlitz, 1893
urophora Fairmaire, 1891
waschana Schuster, 1923
yini (Ren, Wang et Yu, 2000) (Blaptogonia)

Subgenus Dineria Motschulsky, 1860,
type species Blaps confusa Ménétriés, 1832 (=Blaps halophila Fischer von Waldheim, 1820)
 = Laraliprosodes Bogatchev, 1947, type species Prosodes lar Bogatchev, 1947
halophila Fischer von Waldheim, 1820
 = confusa Ménétriés, 1832
 = confluens Fischer von Waldheim, 1844
 = convexicollis Motschulsky, 1845
 = coriacea Fischer von Waldheim, 1842
 = intrusa Fischer von Waldheim, 1844
 = longicollis Fischer von Waldheim, 1842
 = solierí Allard, 1881
 = songorica Fischer von Waldheim, 1844
lar (Bogatchev, 1947) (Prosodes)

Genus Lithoblaps Motschulsky, 1860,
gen. resurr., type species Tenebrio gigas Linnaeus, 1767
 = Holoblaps Bauer, 1921, syn. n., type species Blaps ominosa Ménétriés, 1832
 = Periblaps Bauer, 1921, syn. n., type species Blaps nitens Laporte, 1840
 = Rhizoblaps Motschulsky, 1860, syn. n., type species Blaps pruinosa Falderman, 1833
 = Uroblaps Motschulsky, 1860, syn. n., type species Blaps producta Brullé, 1832 (=Blaps lusitanica Herbst, 1799)
 = Laraliprosodes Bogatchev, 1947, type species Prosodes lar Bogatchev, 1947

L. alternans (Brullé, 1839), comb. n.
 (Blaps)
L. antennalis (Allard, 1881), comb. n.
 (Blaps)
L. appendiculata (Motschulsky, 1851),
 comb. n. (Blaps)
 = caudata (Solier, 1848)
 = caudigera (Gemminger, 1870)
L. approximans (Seidlitz, 1893), comb. n.
 (Blaps)
L. barclayi (Martínez Fernández et Ferrer, 2012), comb. n. (Blaps)
L. barrancoi (Castro Tovar, 2014), comb. n.
 (Blaps)
L. batesi (Allard, 1881) comb. n. (Blaps)
 = rathjensi (Schuster, 1938)
L. bedeli (Chatanay, 1914), comb. n.
 (Blaps)
L. bengalensis (Hope, 1831), comb. n.
 (Blaps)
 = spathulata (Solier, 1848)
L. bifurcata bifurcata (Solier, 1848), comb. n. (Blaps)
 = andresi (Koch, 1935)
 = dimidiata (Solier, 1848)
L. bifurcata mirrei (Gridelli, 1952), comb. n. (Blaps)
L. bifurcata strachii (Reiche, 1861), **comb. n.** (Blaps)
= gridelli (Pierre, 1961)

L. binominata (EscaLera, 1914), **comb. n.** (Blaps)
= caudata (Allard, 1881)
= caudigerar (Allard, 1881)

L. cognata (Solier, 1848), **comb. n.** (Blaps)
= schwefinthurii (Seidlitz, 1893)

L. cordicollis (Solier, 1848), **comb. n.** (Blaps)
L. debdouensis (Obenberger, 1914), **comb. n.** (Blaps)

L. divergens (Fairmaire, 1875), **comb. n.** (Blaps)

L. doderoi (Schuster, 1922), **comb. n.** (Blaps)

L. effeminata (L. Soldati, 2017), **comb. n.** (Blaps)

L. emondi (Solier, 1848), **comb. n.** (Blaps)
= nitidula (Solier, 1848)

L. fascinosa (Seidlitz, 1893), **comb. n.** (Blaps)

L. faustii bactriana (Bogatchev, 1959), **comb. n.** (Blaps)

L. faustii faustii (Seidlitz, 1893), **comb. n.** (Blaps)

L. ferganica (Bogatchev, 1959), **comb. n.** (Blaps)

L. fortesculpta (Gridelli, 1953), **comb. n.** (Blaps)

L. gigas (Linnaeus, 1767), **comb. resurr.** (Tenébréo)
= avenae (J. R. Sahlberg, 1903)
= azorica (Seidlitz, 1893)
= gages (Linnaeus, 1767)
= gigantea (L. Petagna, 1819)
= obtusangula (Rey, 1892)
= occulta (Seidlitz, 1893)
= producta (Brullé, 1833)

L. haberti (Peyerimhoff, 1931), **comb. n.** (Blaps)

L. heydeni (Allard, 1881), **comb. n.** (Blaps)
= fasciturna (Peyerimhoff, 1949)

L. hispanica (Laporte, 1840), **comb. n.** (Blaps)

L. inflata (Allard, 1881), **comb. n.** (Blaps)
L. intermedia (L. Soldati, 2017), **comb. n.** (Blaps)

L. julaeorum (Miller, 1861), **comb. n.** (Blaps)
= judaica (Seidlitz, 1893)
= phara (Seidlitz, 1893)

L. juliae (Allard, 1881), **comb. n.** (Blaps)

L. kaifensis (Seidlitz, 1893), **comb. n.** (Blaps)

L. kollari kollari (Seidlitz, 1893), **comb. n.** (Blaps)

L. kollari zhenzhuristi (Bogatchev, 1939), **comb. n.** (Blaps)

L. lugens (Seidlitz, 1893), **comb. n.** (Blaps)

L. lusitanica cebalosi (Koch, 1944), **comb. n.** (Blaps)

L. lusitanica espanoli (Koch, 1944), **comb. n.** (Blaps)

L. lusitanica lusitanica (Herbst, 1799), **comb. n.** (Blaps)
= kordofana (Baudi di Selve, 1875)
= mequignoni (Koch, 1944)
= producta (Brullé, 1832)

L. magica (Erichson, 1841), **comb. n.** (Blaps)

L. maldesi (L. Soldati, 2017), **comb. n.** (Blaps)

L. maroccana (Seidlitz, 1893), **comb. n.** (Blaps)

L. medvedevi (Bogatchev, 1961), **comb. n.** (Blaps)

L. megalatlan tica (Koch, 1945), **comb. n.** (Blaps)

L. motschulski ana (Bogatchev, 1947) **comb. n.** (Blaps)
= gigantea (Motschulsky, 1845)

L. murati (Peyerimhoff, 1943), **comb. n.** (Blaps)

L. nefrauensis nefrauensis (Seidlitz, 1893), **comb. n.** (Blaps)

L. nefrauensis vespertina (Koch, 1937), **comb. n.** (Blaps)

L. nitens barbar a (Solier, 1848), **comb. n.** (Blaps)
= substriata (Solier, 1848)

L. nitens brachyura (Küster, 1848), **comb. n.** (Blaps)
= abbreviat a Solier, 1848

L. nitens cyrenai a (Seidlitz, 1893), **comb. n.** (Blaps)
L. nitens glebmedvedevi (L. Soldati, 2020), **comb. n.** (Blaps)
= medvedevi (L. Soldati, Kergoat et Condamine, 2009)
L. nitens laportei (Ardoin, 1973), **comb. n.** (Blaps)
= sulcata (Laporte de Castelnau, 1840)
L. nitens mercati (Canzoneri, 1969), **comb. n.** (Blaps)
L. nitens nitens (Laporte, 1840), **comb. n.** (Blaps)
= stygia (Erichson, 1841)
= subteres (Solier, 1848)
= tunisia (Seidlitz, 1893)
= vicina (Solier, 1848)
L. nitens praedeserta (Koch, 1944), **comb. n.** (Blaps)
L. nitens requieni (Solier, 1848), **comb. n.** (Blaps)
L. nittiduloides (L. Soldati, 2017), **comb. n.** (Blaps)
L. ominosa (Ménétriés, 1832), **comb. n.** (Blaps)
= armeniaca (Faldermann, 1837)
L. orientalis (Solier, 1848), **comb. resurr.** (Blaps)
L. ovipennis (Seidlitz, 1893), **comb. n.** (Blaps)
L. pauliani (Koch, 1945), **comb. n.** (Blaps)
L. paulovskii (Bogatchev, 1959), **comb. n.** (Blaps)
L. persica (Seidlitz, 1893), **comb. n.** (Blaps)
L. peyerimhoffi (Koch, 1945), **comb. n.** (Blaps)
L. pinguis (Allard, 1881), **comb. resurr.** (Blaps)
L. plana (Solier, 1848), **comb. n.** (Blaps)
L. polychresta (Forskål, 1775), **comb. resurr.** (Tenebrio)
= kuesteri (Ballion, 1888)
= maura (Solier, 1848)
= minor (Solier, 1848)
= sulcata (Fabricius, 1775)
L. povołnyi (Kaszab, 1970), **comb. n.** (Blaps)
L. prodigiosa (Erichson, 1841), **comb. resurr.** (Blaps)
= multicosta (Solier, 1848)
L. prophetia fiorii (Español, 1967), **comb. n.** (Blaps)
L. prophetia prophetica (Reiche, 1861b), **comb. n.** (Blaps)
= algirica (Ballion, 1888)
L. pratinos (Eversmann, 1833), **comb. resurr.** (Blaps)
= fischeri (Fischer von Waldheim, 1844) (Blaps)
= longipes (Zubkov, 1833)
= rorulenta (Motschulsky, 1845)
L. reitteri (Allard, 1885), **comb. n.** (Uroblaps)
L. punctostriata (Solier, 1848), **comb. n.** (Blaps)
L. quedenfeldtii (Seidlitz, 1893), **comb. n.** (Blaps)
L. ruhmeni (Seidlitz, 1893), **comb. n.** (Blaps)
L. spinosa (Allard, 1881), **comb. n.** (Blaps)
L. sulcifera (Seidlitz, 1893), **comb. n.** (Blaps)
L. superstitiosa icosiensis (Peyerimhoff, 1925), **comb. n.** (Blaps)
L. superstitiosa superstitiosa (Erichson, 1841), **comb. n.** (Blaps)
L. taeniolata (Ménétriés, 1832), **comb. resurr.** (Blaps)
= hians (Fischer von Waldheim, 1844)
L. teocchii (L. Soldati, 2017), **comb. n.** (Blaps)
L. tichyi (Martinez Fernández, 2010), **comb. n.** (Blaps)
L. tingitana (Allard, 1881), **comb. n.** (Blaps)
= desertica (Escalera, 1913)
L. titanus (Ménétriés, 1849), **comb. n.** (Blaps)
L. torresallai (Español, 1961), **comb. n.** (Blaps)
L. tridentata (Waterhouse, 1889), **comb. n.** (Blaps)
L. tripolitanica (Karsch, 1881), **comb. n.** (Blaps)
= vialattei (Peyerimhoff, 1920)
L. turcomanorum (Seidlitz, 1893), **comb. n.** (Blaps)
L. tuxeni (Gridelli, 1954), **comb. n.** (Blaps)
L. waltlii (Seidlitz, 1893), **comb. n.** (Blaps)
L. wiedemanni (Solier, 1848), **comb. n.** (Blaps)
L. wotlinskii (Bodemeyer, 1927), **comb. n.** (Blaps)
L. zarudniana chorassanica (Semenov et Bogatchev, 1936), **comb. n.** (Blaps)
L. zarudniana persis (Semenov et Bogatchev, 1936), **comb. n.** (Blaps)
L. zarudniana zarudniana (Semenov et Bogatchev, 1936), **comb. n.** (Blaps)
L. zugmayeri (Schuster, 1935), **comb. n.** (Blaps)

Genus Coelocnemodes Bates, 1879 (1886),
type species Coelocnemodes stoliczkanus Bates, 1879
 = Neoblaps Ren et Li, 2001, type species Neoblaps huizensis Ren et Li, 2001
 heqingensis Ren in Ren, Ba, Liu, Niu, Zhu, Li et Shi, 2016
 huizensis (Ren et Li, 2001) (Neoblaps)
 aspericollis Fairmaire, 1886
 stoliczkanus Bates, 1879
tibialis Ren in Ren, Ba, Liu, Niu, Zhu, Li et Shi, 2016

Genus Dila Fischer von Waldheim, 1844,
type species Blaps laevicollis Gebler, 1841
 = Caenoblaps König, 1906, type species Caenoblaps difformis König, 1906
 afghanica Kaszab, 1960
 alaica Semenov et Bogatchev, 1940
 angustata (Baudi di Selve, 1875) (Blaps)
 = laticollis Baudi di Selve, 1875
 = miniszech Allard, 1881
 armata (Blair, 1913) (Blaps)
 baeckmanni (Schuster, 1928) (Caenoblaps)
 = daghestanica G. S. Medvedev et Abdurakhmanov, 1984
 bomina Ren et Li, 2001
 cadata Kaszab, 1970
 crenatopunctata I. Chigray, Nabozhenko, Abdurakhmanov et Keskin, 2019
 difformis (König, 1906) (Caenoblaps)

Genus Dilablaps Bogatchev, 1976, type species Dilablaps paradoxa Bogatchev, 1976

Genus Hoplitoblaps Fairmaire, 1888,
type species Hoplitoblaps fallaciosa Fairmaire, 1888
 fallaciosa Fairmaire, 1888

Genus Medvedevia I. Chigray, 2019
type species Medvedevia glebi I. Chigray, 2019
 glebi I. Chigray, 2019

Genus Nalepa Reitter, 1887
type species Blaps cylindracea Reitter, 1887
 acuminata Li et Ren, 2022
 cylindracea (Reitter, 1887) (Blaps)
 = ratalaria (Ren et Wang, 2001)
 ovalifolia Li et Ren, 2022
 polita Li et Ren, 2022
 quadrata Li et Ren, 2022
 xinlongensis Li et Ren, 2022
 yushuensis Li et Ren, 2022
Genus *Medvedevoblaps* Bouchard et Bousquet, 2021
type species Protoblaps kashkarovi (G.S. Medvedev, 1998)
kashkarovi (G. S. Medvedev, 1998) (*Protoblaps*)

Genus *Thaioblaps* Masumoto, 1989
type species Thaioblaps punneeae Masumoto, 1989
punneeae Masumoto, 1989

Genus *Thaumatoblaps* Kaszab et G. S. Medvedev, 1984
type species Thaumatoblaps marikovskiji Kaszab et G. S. Medvedev, 1984
marikovskiji Kaszab et G. S. Medvedev, 1984
zhengi Ren et Luo, 1995

Species with unclear position, described in the genus *Blaps* and need further re-examination
Blaps armeniaca Baudi di Selve, 1876
Blaps indica Hope, 1831
Blaps lineata Laporte, 1840
Blaps planicollis Laporte, 1840
Blaps laticollis Solier, 1848
Blaps brevicollis Fairmaire, 1891

Acknowledgements – The authors are much obliged to M. V. Nabozhenko (Percaspian Institute of Biological Resources of the Daghestan Federal Research Centre of the Russian Academy of Sciences, Makhachkala), M. J. Kamiński (Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw) and L. Soldati (French National Institute for Agriculture, Food, and Environment, Paris) for useful comments and suggestions, Győző Szél (HNHM, Budapest) and Aranka Grabant (HNHM, Budapest) for their help in the study of the Blaptina collection of HNHM. The studies were carried out within the framework of the Russian state research project No. 122031100272-3.

REFERENCES

Bates, F. (1879) [1875–1882]: Characters of the new genera and species of Heteromera collected by Dr. Stoliczka during the Forsyth Expedition to Kashgar in 1873–74. – *Cistula Entomologica* 2: 467–484.

Kryzanovsky, O. L. (1965): Sostav i proiskhozhdenie nazemnoy fauny Sredney Azii (glavnym obrazom na materiale po zhestkokrylym nasekomyh) [Composition and origin of terrestrial fauna of Middle Asia (based on material of beetles)]. – Nauka, Moscow – Leningrad, 419 pp. [In Russian]

MEDVEDEV, G. S. (1998): To the knowledge of tenebrionid beetles of the tribe Blaptini (Coleoptera, Tenebrionidae) from the eastern part of the Tibet Plateau. – *Entomological Review* 78(1): 79–111.

NABOZHENKO, M., DOĞAN, D. & YILDIRIM, E. (2022a): Additions to the knowledge of the diversity of darkling beetles (Coleoptera: Tenebrionidae) from Turkey with new records and taxonomic notes. – *Journal of Insect Biodiversity* 32(1): 5–25. https://doi.org/10.12976/jib/2022.32.1.2

Submitted February 16, 2023; accepted July 17, 2023; published August 25, 2023

Academic editor: Barna Páll-Gergely